
Pyxplot Users’ Guide

A Scientific Scripting Language,

Graph Plotting Suite and

Vector Graphics Toolkit.

Version 0.9.2

h̄2

2m
∂2ψ
∂x2

+ V ψ = Eψ

d sin θ = nλ

∇ ·D = ρfree
∇ × E = −∂B

∂t

∇ · B = 0

∇ × H = Jfree − ∂D
∂t

ds2 =
(
1 − 2GM

rc2

)
dt2

H(t) = Ṙ
R

q(t) = − R̈R
Ṙ2

dL =
(

L
4πF

) 1
2

ẍa + Γa
bcẋ

bẋc = 0

∆φ

Lead Developer: Dominic Ford

Lead Tester: Ross Church

Email: coders@pyxplot.org.uk

This manual is also available in HTML, at
http://www.pyxplot.org.uk/0.9/doc/html/

September 2012

http://www.pyxplot.org.uk/0.9/doc/html/

Contents

I Introduction to Pyxplot 1

1 Introduction 3
1.1 What is Pyxplot? . 3
1.2 Compatibility with gnuplot . 4
1.3 The structure of this manual 4
1.4 An introductory tour . 4
1.5 License . 9
1.6 Spelling conventions . 10
1.7 Acknowledgments . 10

2 Installation 11
2.1 Installation within Linux distributions 11
2.2 System requirements . 11

2.2.1 Dependencies in Debian and Ubuntu 12
2.2.2 Dependencies in MacOS 13

2.3 Installation from source archive 13
2.3.1 System-wide installation 14

3 First steps with Pyxplot 15
3.1 Getting started . 15
3.2 First plots . 16
3.3 Comments . 18
3.4 Splitting long commands . 20
3.5 Printing text . 20
3.6 Axis labels and titles . 22

3.6.1 Removing labels and titles 23
3.7 Querying the values of settings 24
3.8 Plotting data files . 25
3.9 Plotting many data files at once 27

3.9.1 Horizontally arranged data files 27
3.9.2 Choosing which data to plot 28

3.10 The replot command . 28
3.11 Directing where output goes 29
3.12 Setting the size of output . 30
3.13 Plotting styles . 30
3.14 Setting axis ranges . 31
3.15 Interactive help . 34

i

ii CONTENTS

4 Performing calculations 37
4.1 Variables . 37
4.2 Physical constants . 38
4.3 Functions . 38

4.3.1 Spliced functions . 39
4.4 Handling numerical errors . 43
4.5 Working with complex numbers 44
4.6 Working with physical units 45

4.6.1 Treatment of angles in Pyxplot 47
4.6.2 Converting between different temperature scales . . . 48

4.7 Configuring how numbers are displayed 49
4.7.1 Display of physical units 49
4.7.2 Changing the accuracy to which numbers are displayed 51
4.7.3 Creating pastable text 52

4.8 Numerical integration and differentiation 52
4.9 Solving systems of equations 54
4.10 Searching for minima and maxima of functions 56
4.11 Working with time-series data 58

4.11.1 Calendars . 62
4.11.2 Time intervals . 64

5 Working with data 67
5.1 Input filters . 67
5.2 Reading data from a pipe . 68
5.3 Including data within command scripts 68
5.4 Special comment lines in data files 69
5.5 Tabulating functions and slicing data files 69
5.6 Function fitting . 71
5.7 Datafile interpolation . 73

5.7.1 Two-dimensional interpolation 75
5.8 Fourier transforms . 76

5.8.1 Window functions . 80
5.9 Histograms . 82
5.10 Random data generation . 83

6 Programming: Pyxplot’s data types 87
6.1 Instantiating objects . 87
6.2 Strings . 89

6.2.1 The string substitution operator 90
6.2.2 Converting strings to numbers 91
6.2.3 Slicing strings . 92
6.2.4 String methods . 92
6.2.5 Regular expressions 93

6.3 Lists . 94
6.3.1 Using lists as stacks 95
6.3.2 Using lists as buffers 95
6.3.3 Sorting lists . 96
6.3.4 Iterating over lists . 97
6.3.5 Calling functions with lists of arguments 98
6.3.6 List mapping and filtering 98

CONTENTS iii

6.3.7 Vectors versus lists 99
6.4 Dictionaries . 99
6.5 Vectors and matrices . 100

6.5.1 Dot and cross products 101
6.5.2 Matrix algebra . 101
6.5.3 Plotting data from vectors 102

6.6 Colors . 102
6.6.1 Color representations of the electromagnetic spectrum 103

6.7 Dates . 103
6.8 Modules and classes . 106
6.9 File handles . 107

6.9.1 Storing data structures in text files 109

7 Programming: flow control 111
7.1 Conditionals . 111
7.2 For loops . 112
7.3 Foreach loops . 113
7.4 Foreach datum loops . 114
7.5 While and do loops . 115
7.6 The break and continue statements 116
7.7 The conditional operator . 117
7.8 Subroutines . 117
7.9 Macros . 122
7.10 The exec command . 123
7.11 Assertions . 123
7.12 Raising exceptions . 123
7.13 Shell commands . 124
7.14 Script watching: pyxplot watch 125

II Plotting and vector graphics 127

8 Plotting: a complete guide 129
8.1 The with modifier . 129

8.1.1 The palette . 132
8.1.2 Default settings . 133

8.2 Pyxplot’s plot styles . 134
8.2.1 Lines and points . 134
8.2.2 Error bars . 137
8.2.3 Shaded regions . 138
8.2.4 Barcharts and histograms 138
8.2.5 Steps . 141
8.2.6 Arrows . 141
8.2.7 Color maps, contour maps and surface plots 143

8.3 Labelling datapoints . 143
8.4 The style keyword . 144
8.5 Plotting functions in exotic styles 144
8.6 Plotting parametric functions 145

8.6.1 Two-dimensional parametric surfaces 147
8.7 Graph legends . 151

iv CONTENTS

8.8 Configuring axes . 152
8.8.1 Adding additional axes 152
8.8.2 Selecting which axes to plot against 153
8.8.3 Plotting quantities with physical units 153
8.8.4 Specifying the positioning of axes 154
8.8.5 Configuring the appearance of axes 154
8.8.6 Setting the color of axes 156
8.8.7 Specifying where ticks should appear along axes . . . 157
8.8.8 Configuring how tick marks are labelled 159
8.8.9 Linked axes . 161

8.9 Gridlines . 164
8.10 Clipping behaviour . 165
8.11 Labelling graphs . 165

8.11.1 Arrows . 165
8.11.2 Text labels . 166

8.12 Color maps . 171
8.12.1 Custom color mappings 173
8.12.2 Color scale bars . 178

8.13 Contour maps . 180
8.14 Three-dimensional plotting . 182

8.14.1 Surface plotting . 183

9 Producing image files 187
9.1 The set terminal command 187

9.1.1 Previewing graphs on the screen 187
9.1.2 Producing images on disk 189
9.1.3 The complete syntax of the set terminal command 189

9.2 The default terminal . 191
9.3 PostScript output . 191

9.3.1 Paper sizes . 191
9.4 Backing up over-written files 191
9.5 Changing font . 192

10 Producing vector graphics 193
10.1 Adding other vector graphics objects 193
10.2 Multiplot mode . 194
10.3 The text command . 194
10.4 The arrow and line commands 195
10.5 Editing items on the canvas 197

10.5.1 Settings associated with multiplot items 197
10.5.2 Reordering multiplot items 198
10.5.3 The construction of large multiplots 198

10.6 Linked axes and galleries of plots 202
10.6.1 The replot command revisited 204

10.7 The polygon command . 204
10.8 The image command . 206
10.9 The eps command . 207
10.10 The box and circle commands 207
10.11 The arc command . 208
10.12 The point command . 212

CONTENTS v

10.13 The ellipse command . 212
10.14 The piechart command . 214
10.15 LaTeX and Pyxplot . 217

III Reference manual 219

11 Command reference 221
11.1 ? . 222
11.2 ! . 222
11.3 arc . 222
11.4 arrow . 223
11.5 assert . 223
11.6 box . 223
11.7 break . 224
11.8 call . 225
11.9 cd . 225
11.10 circle . 225
11.11 clear . 225
11.12 continue . 226
11.13 delete . 226
11.14 do . 227
11.15 ellipse . 227
11.16 else . 228
11.17 eps . 228
11.18 exec . 229
11.19 exit . 229
11.20 fft . 229
11.21 fit . 230
11.22 for . 231
11.23 foreach . 232
11.24 foreach datum . 232
11.25 global . 232
11.26 help . 233
11.27 histogram . 233
11.28 history . 234
11.29 if . 235
11.30 ifft . 235
11.31 image . 235
11.32 interpolate . 236
11.33 jpeg . 237
11.34 let . 238
11.35 list . 238
11.36 load . 238
11.37 local . 238
11.38 maximize . 239
11.39 minimize . 239
11.40 move . 240
11.41 piechart . 240
11.42 plot . 240

vi CONTENTS

11.42.1 axes . 241
11.42.2 label . 241
11.42.3 title . 242
11.42.4 with . 242

11.43 point . 243
11.44 print . 244
11.45 pwd . 244
11.46 quit . 244
11.47 rectangle . 244
11.48 refresh . 245
11.49 replot . 245
11.50 reset . 246
11.51 save . 246
11.52 set . 246

11.52.1 arrow . 246
11.52.2 autoscale . 247
11.52.3 axescolor . 248
11.52.4 axis . 248
11.52.5 axisunitstyle . 249
11.52.6 backup . 250
11.52.7 bar . 250
11.52.8 binorigin . 250
11.52.9 binwidth . 250
11.52.10 boxfrom . 251
11.52.11 boxwidth . 251
11.52.12 c1format . 251
11.52.13 c1label . 251
11.52.14 calendar . 252
11.52.15 clip . 252
11.52.16 colorkey . 252
11.52.17 colormap . 253
11.52.18 contours . 253
11.52.19 c<n>range . 253
11.52.20 data style . 254
11.52.21 display . 254
11.52.22 filter . 255
11.52.23 fontsize . 255
11.52.24 function style . 255
11.52.25 grid . 255
11.52.26 gridmajcolor . 256
11.52.27 gridmincolor . 256
11.52.28 key . 256
11.52.29 keycolumns . 257
11.52.30 label . 257
11.52.31 linewidth . 258
11.52.32 logscale . 259
11.52.33 multiplot . 259
11.52.34 mxtics . 260
11.52.35 mytics . 260
11.52.36 mztics . 260

CONTENTS vii

11.52.37 noarrow . 260
11.52.38 noaxis . 260
11.52.39 nobackup . 260
11.52.40 noclip . 260
11.52.41 nocolorkey . 260
11.52.42 nodisplay . 261
11.52.43 nogrid . 261
11.52.44 nokey . 261
11.52.45 nolabel . 261
11.52.46 nologscale . 261
11.52.47 nomultiplot . 262
11.52.48 nostyle . 262
11.52.49 notitle . 262
11.52.50 noxtics . 262
11.52.51 noytics . 262
11.52.52 noztics . 262
11.52.53 numerics . 262
11.52.54 origin . 263
11.52.55 output . 263
11.52.56 palette . 264
11.52.57 papersize . 264
11.52.58 pointlinewidth . 264
11.52.59 pointsize . 265
11.52.60 preamble . 265
11.52.61 samples . 265
11.52.62 seed . 266
11.52.63 size . 266
11.52.64 style . 267
11.52.65 style data — style function 267
11.52.66 terminal . 267
11.52.67 textcolor . 271
11.52.68 texthalign . 271
11.52.69 textvalign . 272
11.52.70 timezone . 272
11.52.71 title . 272
11.52.72 trange . 272
11.52.73 unit . 273
11.52.74 urange . 274
11.52.75 view . 274
11.52.76 viewer . 274
11.52.77 vrange . 275
11.52.78 width . 275
11.52.79 xformat . 275
11.52.80 xlabel . 276
11.52.81 xrange . 276
11.52.82 xtics . 277
11.52.83 yformat . 278
11.52.84 ylabel . 278
11.52.85 yrange . 278
11.52.86 ytics . 278

viii CONTENTS

11.52.87 zformat . 278
11.52.88 zlabel . 278
11.52.89 zrange . 278
11.52.90 ztics . 278

11.53 show . 278
11.54 solve . 279
11.55 spline . 280
11.56 swap . 280
11.57 tabulate . 281
11.58 text . 282
11.59 undelete . 283
11.60 unset . 283
11.61 while . 283

12 List of in-built functions 285
12.0.1 The ast module . 298
12.0.2 The colors module 300
12.0.3 The exceptions module 300
12.0.4 The fractals module 300
12.0.5 The os module . 301
12.0.6 The os.path module 302
12.0.7 The phy module . 303
12.0.8 The random module 303
12.0.9 The stats module 304
12.0.10 The time module . 306
12.0.11 The types module 308

13 List of data types 313
13.1 Methods common to all data types 314
13.2 The boolean type . 314
13.3 The color type . 315
13.4 The date type . 315
13.5 The dictionary type . 316
13.6 The exception type . 317
13.7 The fileHandle type . 317
13.8 The function type . 318
13.9 The instance type . 318
13.10 The list type . 319
13.11 The matrix type . 320
13.12 The module type . 321
13.13 The null type . 321
13.14 The number type . 321
13.15 The string type . 321
13.16 The type type . 323
13.17 The vector type . 323

14 List of physical constants 325

15 List of physical units 329

CONTENTS ix

16 List of paper sizes 341

17 Color tables 345

18 Line and point types 349

19 Configuring Pyxplot 353
19.1 Configuration files . 353
19.2 An example configuration file 355
19.3 Setting definitions . 358

19.3.1 The filters section 358
19.3.2 The settings section 358
19.3.3 The styling section 369
19.3.4 The terminal section 370
19.3.5 The units section . 371

19.4 Recognised color names . 372

IV Appendices 373

A Other applications of Pyxplot 375
A.1 Conversion of jpeg images to PostScript 375
A.2 Inserting equations in Powerpoint presentations 375
A.3 Delivering talks in Pyxplot . 376

A.3.1 Setting up the infrastructure 376
A.3.2 Writing a short example talk 378
A.3.3 Delivering your talk 380

B Summary of differences between Pyxplot and gnuplot 381
B.1 The typesetting of text . 381
B.2 Complex numbers . 382
B.3 The multiplot environment . 382
B.4 Plots with multiple axes . 383
B.5 Plotting parametric functions 383

C The fit command: mathematical details 385
C.1 Notation . 385
C.2 The probability density function 385
C.3 Estimating the error in u0 . 386
C.4 The covariance matrix . 387
C.5 The correlation matrix . 389
C.6 Finding σi . 389

D ChangeLog 391

x CONTENTS

List of Figures

3.1 An example Pyxplot data file – the data file is shown in the two
left-hand columns, and commands are shown to the right. 26

5.1 Window functions available in the fft and ifft commands. . . . 80

8.1 A gallery of the various bar chart styles which Pyxplot can produce139
8.2 A second gallery of the various bar chart styles which Pyxplot

can produce . 140

17.1 A list of the named colors which Pyxplot recognises, sorted al-
phabetically . 346

17.2 A list of the named colors which Pyxplot recognises, sorted by hue347
17.3 The named colors which Pyxplot recognises, arranged in HSB

color space . 348

xi

xii LIST OF FIGURES

List of Examples

1 A diagram of the trajectories of projectiles fired with different
initial velocities . 33

2 Modelling a physics problem using a spliced function 41
3 Using a spliced function to calculate the Fibonacci numbers . . . 42
4 Creating a simple temperature conversion scale 49
5 Integrating the function sinc(x) 53
6 Finding the maximum of a blackbody curve 56
7 Calculating the date of Leo Tolstoy’s birth 62
8 A plot of the rate of downloads from an Apache webserver 64
9 A demonstration of the linear, spline and akima modes of

interpolation . 74
10 The Fourier transform of a top-hat function 77
11 Using random numbers to estimate the value of π 83
12 Calculating the mean and standard deviation of data 115
13 An image of a Newton fractal . 118
14 The dynamics of the simple pendulum 120
15 A Hertzsprung-Russell diagram 134
16 A diagram of fluid flow around a vortex 142
17 Spirograph patterns . 145
18 A three-dimensional view of a torus 148
19 A three-dimensional view of a trefoil knot 149
20 A plot of the function exp(x) sin(1/x) 158
21 A plot of many blackbodies demonstrating the use of linked axes 161
22 A plot of the temperature of the CMBR as a function of redshift

demonstrating non-linear axis linkage 163
23 A diagram of the atomic lines of hydrogen 167
24 A map of Australia . 170
25 An image of the Mandelbrot set 179
26 A surface plotted above a contour map 184
27 The sinc(x) function represented as a surface 185
28 A simple notice generated with the text and arrow commands . 196
29 A diagram from Euclid’s Elements 199
30 A diagram of the conductivity of nanotubes 201
31 A simple polygon . 204
32 The first eight regular polygons 205
33 A simple no-entry sign . 208
34 Labelled diagrams of triangles . 209
35 A labelled diagram of a converging lens forming a real image . . 211
36 A labelled diagram of an ellipse 213

xiii

xiv LIST OF EXAMPLES

37 A piechart of the composition of the Universe 215

Part I

Introduction to Pyxplot

1

Chapter 1

Introduction

1.1 What is Pyxplot?

Pyxplot is a multi-purpose graph plotting tool, scientific scripting language,
vector graphics suite, and data processing package. Its interface is designed
to make common tasks – e.g., plotting labelled graphs of data – accessible via
short, simple, intuitive commands.

But these commands also take many optional settings, allowing their out-
put to be fine-tuned into styles appropriate for printed publications, talks or
websites. Pyxplot is simple enough to be used without prior programming ex-
perience, but powerful enough that programmers can extensively configure and
script it.

A scientific scripting language

Pyxplot doesn’t just plot graphs. It’s a scripting language in which vari-
ables can have physical units. Calculations automatically return results in an
appropriate unit, whether that be kilograms, joules or lightyears. Data files
can be converted straightforwardly from one set of units to another. Meanwhile
Pyxplot has all the other features of a scripting language: flow control and
branching, string manipulation, complex data types, an object-oriented class
structure and straightforward file I/O. It also supports vector and matrix alge-
bra, can integrate or differentiate expressions, and can numerically solve systems
of equations.

A vector graphics suite

The graphical canvas isn’t just for plotting graphs on. Circles, polygons and
ellipses can be drawn to build vector graphics. Colors are a native object type for
easy customisation. For the mathematically minded, Pyxplot’s canvas interfaces
cleanly with its vector math environment, so that geometric construction is easy.

A data processing package

Pyxplot can interpolate data, find best-fit lines, and compile histograms. It
can Fourier transform data, calculate statistics, and output results to new data
files. Where fine control is needed, custom code can be used to process every
data point in a file.

3

4 CHAPTER 1. INTRODUCTION

1.2 Compatibility with gnuplot

Pyxplot’s plotting interface is very similar to that of gnuplot: the commands
used for plotting simple graphs in the two programs are virtually identical. Gnu-
plot users will have a head start with Pyxplot – simple gnuplot scripts often work
in Pyxplot with minimal modification – although the syntax used for advanced
plotting tasks often differs. Although Pyxplot’s programming and mathematical
environment is hugely extended over gnuplot’s to provide a scripting language
and vector graphics environment, we have followed the latter’s preference for
short simple command line syntax.

1.3 The structure of this manual

This manual serves both as a tutorial guide to Pyxplot, and also as a reference
manual. Part I provides a step-by-step tutorial and overview of Pyxplot’s fea-
tures, including numerous worked examples. Part II provides a detailed survey
of Pyxplot’s plotting and vector graphics commands. Part III provides an al-
phabetical reference to all of Pyxplot’s commands, mathematical functions and
plotting options. Finally, the appendices provide information which is likely to
be of more specialist interest.

1.4 An introductory tour

This section provides an overview of the wide range of tasks for which Pyxplot
can be used. Detailed explanations of the syntax of Pyxplot commands will
follow in later chapters, but most of the examples here will work if entered
directly at a Pyxplot command prompt.

The mathematical environment

Pyxplot’s mathematical environment comes with many standard functions
built-in. To see a list of them1, type

show functions

The show command is Pyxplot’s interactive documentation system; to obtain
a list of things that can be shown type

show

Pyxplot is an object-orientated language, and its built-in functions live in a
module called defaults. Its members may be listed by printing the module
object.

print defaults

Taking as an example the built-in function log10(x), it can be evaluated as
in almost any other programming language. The defaults module is special in
that its functions are always accessible to the user’s namespace:

1See also Chapter 12.

1.4. AN INTRODUCTORY TOUR 5

pyxplot> print log10(5)

0.69897

This function returns numerical data, but Pyxplot has other data types too.
For example, the primeFactors function returns a list:

pyxplot> print primeFactors(1001)

[7, 11, 13]

The rgb(r,g,b) function returns a color object, which can be used in Pyxplot’s
vector graphics commands:

pyxplot> print rgb(1,1,0)

rgb(1,1,0)

and the time.fromUnix(t) function returns a date object from a Unix time:

pyxplot> print time.fromUnix(946684800)

Sat 2000 Jan 1 00:00:00 UTC

Many commonly-used physical constants are built into Pyxplot’s physics
module, phy. For example, the speed of light:

pyxplot> print phy.c

299792.46 km/s

Numbers in Pyxplot have physical units, and hence the speed of light is dis-
played in km/s. If you would rather know how many miles light travels in a
year, you can change the display unit, here making use of the fact that the
variable ans is always set to the result of the last calculation:

pyxplot> print phy.c

299792.46 km/s

pyxplot> set unit preferred miles/year

pyxplot> print ans

5.87849967e+12 mi/yr

It is easy to use Pyxplot as a desktop calculator to solve many problems
which would conventionally need careful conversion between physical units. For
example:

• What is 80◦F in Celsius?

pyxplot> print 80*unit(oF) / unit(oC)

26.666667

• How long does it take for light to travel from the Sun to the Earth?2

pyxplot> print unit(AU) / phy.c

499.00478 s

2The astronomical unit (AU) is a unit used by astronomers, equal to the average distance
of the Earth from the Sun.

6 CHAPTER 1. INTRODUCTION

• What wavelength of light corresponds to the ionisation energy of hydrogen
(13.6 eV)?3

pyxplot> print phy.c * phy.h / (13.6 * unit(eV))

91.164844 nm

• What is the escape velocity of the Earth?4

pyxplot> print sqrt(2 * phy.G * unit(Mearth) / unit(Rearth))

11.186605 km/s

Graph plotting

The simplest way to plot a graph in Pyxplot is simply to follow the plot

command with the name of a function to be plotted, e.g.:

plot sin(x)

If a data file is to be plotted, its filename is put in place of a named function.
In this example the fifth column of a data file is plotted against the second,
including only those data points where the fourth column is larger than two:

plot ’data.dat’ using 2:5 select $4>2

In the example below, three Bessel functions are plotted over specified hor-
izontal and vertical ranges:

plot [0:10][-0.5:1] besselJ(0,x), besselJ(1,x), besselJ(2,x)

0 5 10
−0.5

0

0.5

1

besselJ (0, x)

besselJ (1, x)

besselJ (2, x)

With a little additional configuration, it is possible to produce three-dimensional
plots like this (this example is taken from Section 8.14.1; see Example 27):

3The electron volt (eV) is a unit of energy used by physicists.
4The Earth radius and Earth mass are defined as units in Pyxplot.

1.4. AN INTRODUCTORY TOUR 7

-6π

-3π

0π

3π

6π

x

0

0.5

1
z

-6π

-3π

0π

3π

6π

y

sinc (hypot (x, y))

It is also possible to produce colormaps with custom color scales; this is docu-
mented in full in Section 8.12. Pyxplot includes functions for converting wave-
lengths of light into colors; they are used here to create a color map of the
electromagnetic spectrum:

400 500 600 700

Wavelength / nm

The electromagnetic spectrum

This pair of images demonstrates RGB color mixing (see Example 8.12.1):

8 CHAPTER 1. INTRODUCTION

Generating data tables

Pyxplot can output tables of data to disk, using a similar syntax to that
used for plotting graphs. The data can either be sampled from functions, or
read in from another data file:

tabulate tan(x)

A common application of the tabulate command is filter or re-format the con-
tents of data files. For example, the command below takes only the third and
seventh columns out of a data file, and converts the latter from degrees into
radians:

tabulate ’data.dat’ using 3:$7*unit(deg)/unit(rad)

The same effect could be achieved by setting radians as the default unit of angle:

set unit of angle radians

tabulate ’data.dat’ using 3:$7*unit(deg)

More sophisticated data processing is also possible; this example produces a
histogram of the values in the fourth column of a datafile, and then outputs
that histogram as a new data file:

histogram h() ’data.dat’ using 4

tabulate h(x)

Solving equations

Pyxplot can solve systems of equations numerically; the following example

evaluates
∫ 2 s

0 s
x2 dx:

pyxplot> print int dx(x**2,0*unit(s),2*unit(s))

2.6666667 s**3

The solve command can be used to solve systems of simultaneous equations,
such as this system with two variables:

pyxplot> solve x+y=1 , 2*x+3*y=7 via x,y

pyxplot> print "x=%s; y=%s"%(x,y)

x=-4; y=5

The minimise and maximise commands find the extrema of functions; here
they are used to find the minimum of the function cos(x) closest to x = 0.5:

pyxplot> x=0.5

pyxplot> minimise cos(x) via x

pyxplot> print x

3.1415927

All of the examples shown so far have used only real numbers, but Pyx-
plot can also perform algebra on complex numbers. By default, evaluation of

1.5. LICENSE 9

sqrt(-1) throws an error – the emergence of complex numbers is often an in-
dication that a calculation has gone wrong – but complex arithmetic can be
enabled by typing

pyxplot> set numerics complex

pyxplot> print sqrt(-1)

i

Many of the mathematical functions which are built into Pyxplot can take
complex arguments, for example

pyxplot> set numerics complex

pyxplot> print exp(2+3*i)

(-7.3151101+1.0427437i)

pyxplot> print sin(i)

1.1752012i

pyxplot> print arg(2+3*i)

0.98279372

pyxplot> print Re(2+3*i)

2

Vector graphics

Pyxplot’s graph-plotting canvas can also be used for drawing general vector
graphics, using simple commands such as:

box from -8,-4 to 8,4 with fillcolor green

text "Pyxplot" at 2,3

arrow from 0,0 to -4,2

line from -5,0 to 5,0

These commands are described in detail in Chapter 10. They interface neatly to
the vector data type in Pyxplot’s mathematical environment, to ease geometric
construction. Thus, it is quite possible for mathematically-minded users to
multiply transformation matrices with position vectors on the graphics canvas
to calculate where objects should be drawn. The following example uses a
rotation matrix to draw a big arrow at angle θ to the vertical:

rotate(a) = matrix([[cos(a),-sin(a)], \

[sin(a), cos(a)]])

pos = vector(0,5)*unit(cm)

theta = 30*unit(deg)

arrow from 0,0 to rotate(theta)*pos with linewidth 3

1.5 License

This manual and the software which it describes are both copyright c© Dominic
Ford 2006–2012 and Ross Church 2008–2012. They are distributed under the
GNU General Public License (GPL) Version 2, a copy of which is provided in
the COPYING file in this distribution. Alternatively, it may be downloaded from

10 CHAPTER 1. INTRODUCTION

the web, from the following location:
http://www.gnu.org/copyleft/gpl.html.

1.6 Spelling conventions

Throughout this manual, US English is used. However, where spelling differs
between US and UK English, Pyxplot recognises both variants. For example,
where the word color appears in Pyxplot syntax, it may also be spelt colour;
minimize may also be spelt minimise; gray may also be spelt grey; neighbor
may also be spelt neighbour; etc.

1.7 Acknowledgments

Pyxplot builds on ideas from several pre-existing open-source software projects.
We like gnuplot’s simple and intuitive interface, and Pyxplot’s command syntax
is intentionally very similar, to the point of backwards compatibility in many
cases. Even when designing the entirely new parts of Pyxplot’s syntax, we
have followed gnuplot’s preference for short simple command-line syntax. Early
versions of Pyxplot utilised the PyX graphics library for Python, and we have
borrowed many ideas from it in our new output engine.

Several people have contributed code to Pyxplot. Michael Rutter provided
us with a copy of his public domain code for converting bitmap images into
PostScript, which we used in the implementation of the image command and
the colormap plot style. Matthew Smith provided C implementations of the
Airy functions and the Riemann zeta function for general complex inputs, and
helped test Pyxplot’s mathematical environment. Zoltán Vörös worked on our
development team from 2010 until 2011. John Walker has published public
domain code implementing RGB rendering of the electromagnetic spectrum,
which we use in the colors.wavelength() function.

We would also like to thank all the users who have got in touch with us by
email since Pyxplot was first released on the web in 2006. Your feedback and
suggestions have been gratefully received.

Final thanks go to our team of alpha testers, without whose work Pyxplot
would doubtless still contain many more bugs. Especial thanks go to Rachel
Holdforth and Stuart Prescott.

http://www.gnu.org/copyleft/gpl.html

Chapter 2

Installation

In this chapter we describe how to install Pyxplot on a range of UNIX-like
operating systems.

Pyxplot works on most UNIX-like operating systems. We have tested it un-
der Linux, Solaris and MacOS, and believe that it should work on other similar
POSIX systems. We regret that it is not available for Microsoft Windows, and
have no plans for porting it at this time.

2.1 Installation within Linux distributions

By far the easiest way to install Pyxplot under Linux is to use your distribution’s
package manager. If you use a recent release of Gentoo1, Ubuntu2 or Debian3,
your package manager can install Pyxplot and all its dependencies for you,
though the packaged version may be several months behind the latest release.
Please note that this manual describes Pyxplot 0.9.x, which is a very substantial
upgrade to version 0.8.x. To install the packaged version of Pyxplot under
Debian or Ubuntu, simply type:

apt-get install pyxplot gv

Users of other distributions, or who want a newer version of Pyxplot, should
use the .tar.gz archives available from the Pyxplot website. The process is
described below.

2.2 System requirements

Pyxplot depends on the following software packages, which are not included in
the source tarball:

• fftw (version 2 or, preferably, 3+)

• gcc and make

1See http://gentoo-portage.com/sci-visualization/pyxplot
2See http://packages.ubuntu.com/pyxplot
3See http://packages.debian.org/pyxplot

11

http://gentoo-portage.com/sci-visualization/pyxplot
http://packages.ubuntu.com/pyxplot
http://packages.debian.org/pyxplot

12 CHAPTER 2. INSTALLATION

• Ghostscript

• The Gnu Scientific Library (version 1.10+)

• ImageMagick

• latex (version 2ε; a full installation is likely to be required in distributions
which offer a choice)

• libpng (version 1.2+)

• libxml2 (version 2.6+)

• zlib

It is very strongly recommended that the following software packages also be
installed:

• cfitsio – required for Pyxplot to be able to plot data files in FITS format.

• Ghostview (or ggv) – required for Pyxplot to be able to display plots
live on the screen; Pyxplot remains able to generate image files on disk
without it. Alternatively, the set viewer command within Pyxplot allows
a different PostScript viewer to be used.

• gunzip – required for Pyxplot to be able to plot compressed data files in
.gz format.

• The Gnu Readline Library (version 5+) – required for Pyxplot to be able
to provide tab completion and command histories in Pyxplot’s interactive
command-line interface.

• libkpathsea – required to efficiently find the fonts used by latex.

• wget – required for Pyxplot to be able to plot data files directly from the
Internet.

In the case of the recommended packages, Pyxplot tests for the availability of
each when it is installed and issues a warning if any are not found. Installation
can proceed, but some of Pyxplot’s features will be disabled. If they are later
added to the system, Pyxplot should be reinstalled to take advantage of their
presence.

2.2.1 Dependencies in Debian and Ubuntu

Debian and Ubuntu users can find the above software in the following packages4:

4The package names listed here are correct as of Debian Squeeze and Ubuntu 12.04 (Pre-
cise). However, packages occasionally change name between versions.

2.3. INSTALLATION FROM SOURCE ARCHIVE 13

fftw3-dev, gcc, ghostscript, gv, imagemagick, libc6-dev,
libcfitsio3-dev, libgsl0-dev, libkpathsea-dev, libpng12-dev,
libreadline-dev, libxml2-dev, make, texlive-latex-extra,
texlive-latex-recommended, texlive-fonts-extra,
texlive-fonts-recommended, wget, zlib1g-dev.

These packages may be installed from a command prompt by typing, all on one
line:

sudo apt-get install fftw3-dev gcc ghostscript gv imagemagick

libc6-dev libcfitsio3-dev libgsl0-dev libkpathsea-dev

libpng12-dev libreadline-dev libxml2-dev make

texlive-latex-extra texlive-latex-recommended

texlive-fonts-extra texlive-fonts-recommended wget

zlib1g-dev

2.2.2 Dependencies in MacOS

Users of MacOS X can find the above software in the following MacPorts pack-
ages:

cfitsio, fftw-3, ghostscript, gsl-devel, gv, ImageMagick, libpng,
libxml2, readline-5, texlive, wget, zlib.

It may then be necessary to run the command

export C_INCLUDE_PATH=/opt/local/include

before running the configure script below.

2.3 Installation from source archive

First, download the required archive can be downloaded from the front page
of Pyxplot website – http://www.pyxplot.org.uk. It is assumed that the
packages listed above have already been installed; if they are not, you will need
to either install them yourself, if you have superuser access to your machine, or
contact your system administrator.

• Unpack the distributed .tar.gz:

tar xvfz pyxplot_0.9.2.tar.gz

cd pyxplot-0.9.2

• Run the installation script:

./configure

make

• Finally, start Pyxplot:

./bin/pyxplot

http://www.pyxplot.org.uk

14 CHAPTER 2. INSTALLATION

2.3.1 System-wide installation

Having completed the steps described above, Pyxplot may be installed system-
wide by a superuser with the following additional step:

sudo make install

By default, the Pyxplot executable installs to /usr/local/bin/pyxplot. If
desired, this installation path may be modified in the file Makefile.skel, by
changing the variable USRDIR in the first line to an alternative desired installa-
tion location.

Pyxplot may now be started by any user of the system, simply by typing:

pyxplot

Chapter 3

First steps with Pyxplot

This chapter provides an overview of the commands used to produce plots in
Pyxplot. The commands it covers have very similar syntax to gnuplot; if you
have used gnuplot in the past, you can find an approximate list of differences
between Pyxplot and gnuplot in Appendix B.

The introduction to plotting provided by this chapter will be extended in
Chapter 8, which is a complete guide to Pyxplot’s plot styles.

3.1 Getting started

The simplest way to start Pyxplot is to type pyxplot at a shell prompt. This
starts an interactive session, and produces a Pyxplot command-line prompt into
which commands can be typed. Pyxplot can be exited either by typing exit,
quit, or by pressing CTRL-D. Various switches can be specified on the shell
command line to modify Pyxplot’s behaviour; these are listed in Box 1. Of
particular interest may be the switches -c and -m, which change between the
use of color-highlighted (default) and non-colored text.

Typing commands into interactive terminals is likely to be a sufficient way
for a beginner to drive Pyxplot, but as tasks grow more complicated, more
commands are needed to set up plots. It is likely to become preferable to store
these commands in text files called scripts. Once such a script has been written,
it can be executed automatically by passing the filename of the command script
to Pyxplot on the shell command line, for example:

pyxplot foo.ppl

In this case, Pyxplot executes the commands in the file foo.ppl and then exits.
By convention, we affix the suffix .ppl to the filenames of all Pyxplot command
scripts. This is not strictly necessary, but it allows Pyxplot scripts to be easily
distinguished from other text files in a filing system. The filenames of several
command scripts may be passed to Pyxplot on a single command line, indicating
that they should be executed in sequence, as in the example:

pyxplot foo1.ppl foo2.ppl foo3.ppl

15

16 CHAPTER 3. FIRST STEPS WITH PYXPLOT

From the shell command line, Pyxplot accepts the following switches which
modify its behaviour:

-h --help Display a short help message listing the available
command-line switches.

-v --version Display the current version number of Pyxplot.
-q --quiet Turn off the display of the welcome message on startup.
-V --verbose Display the welcome message on startup, as happens

by default.
-c --color Use color highlightinga, as is the default behaviour,

to display output in green, warning messages in am-
ber, and error messages in red.b These colors can be
changed in the terminal section of the configuration
file; see Section 19.3.4 for more details.

-m --monochrome Do not use color highlighting.

aThis will only function on terminals which support color output.
bThe authors apologise to those members of the population who are red/green color blind,

but draw their attention to the following sentence.

Box 1: A list of the command line options accepted by Pyxplot.

It is also possible to have a single Pyxplot session alternate between running
command scripts autonomously and allowing the user to enter commands inter-
actively. There are two ways of doing this. Pyxplot can be passed the magic
filename -- on the command line, as in the example

pyxplot foo1.ppl -- foo2.ppl

where the -- represents an interactive session which commences after the execu-
tion of foo1.ppl and should be terminated by the user in the usual way, using
either the exit or quit commands. After the interactive session is finished,
Pyxplot will automatically execute the command script foo2.ppl.

From within an interactive session, it is possible to run a command script
using the load command, as in the example:

pyxplot> load 'foo.ppl'

This example would have the same effect as typing the contents of the file
foo.ppl into the present interactive terminal.

The save command may assist in producing Pyxplot command scripts: it
stores to a text file a history of the commands which have been typed into the
present interactive session.

3.2 First plots

The core graph-plotting command of Pyxplot is the plot command. The fol-
lowing simple example plots the trigonometric function sin(x):

plot sin(x)

3.2. FIRST PLOTS 17

When Pyxplot is used interactively, its command-line environment is based upon
the GNU Readline Library. This means that the up- and down-arrow keys can be
used to repeat or modify previously executed commands. Each user’s command
history is stored in his homespace in a history file called .pyxplot history;
this file is used by Pyxplot to remember command histories between sessions.
Pyxplot’s save command allows the user to save to a text file a list of the
commands which have been typed into the present session, as in the following
example:

save ’output filename.ppl’

The related history command displays on the terminal a history of all of the
commands which have been typed into this and previous interactive sessions.
The total history can stretch to several hundred lines long, in which case it can
be useful to follow the history command by an optional number, whereupon
it only displays the last n commands, e.g.:

history 20

Box 2: The storage of command histories in Pyxplot.

−10 0 10
−1

0

1

sin (x)

This is one of a large number of standard mathematical functions which are built
into Pyxplot; a complete alphabetical list of them can be found in Chapter 12.

It is also possible to plot data stored in files. The following would plot
data from a file data.dat, taking the x-coordinate of each point from the first
column of the data file, and the y-coordinate from the second. The data file
is assumed to be in plain text format1, with columns separated by whitespace
and/or commas2:

plot ’data.dat’

Several items can be plotted on the same graph by separating them by
commas, as in

1If the filename of a data file ends with a .gz suffix, it is assuming to be gzipped plaintext,
and is decoded accordingly. Other formats of data file can be opened with the use of input
filters; see Section 5.1.

2This format is compatible with the Comma Separated Values (CSV) format produced by
many applications such as Microsoft Excel.

18 CHAPTER 3. FIRST STEPS WITH PYXPLOT

plot ’data.dat’, sin(x), cos(x)

and it is possible to define one’s own variables and functions, and then plot
them, as in the example

a = 0.02

b = -1

c = 5

f(x) = a*(x**3) + b*x + c

plot f(x)

−10 0 10

0

10

f (x)

Pyxplot supports almost all of the same mathematical operators as the C
programming language; a complete list of them can be found in Table 3.1. If you
have experience of similar tricks in C, it is quite possible to write the following
expressions in Pyxplot (but don’t worry if this is a little over your head):

pyxplot> print (a=3)+(b=2)

5

pyxplot> print a>0?"yes":"no"
yes

pyxplot> print "%s %s"%(++a,b++)

4 2

pyxplot> print (a+=10 , b+=10 , a+b)

27

In the final example, the comma operator is used as in C, to return only the
value of the final comma-separated expression.

3.3 Comments

As in any programming language, it is good practice to include comments in
your code, to help other people (including yourself!) to work out what’s going
on. Comment lines in Pyxplot scripts should begin with a hash character, as in
the example

This is a comment

Comments may also be placed on the same line as commands, as in the example

3.3. COMMENTS 19

Symbol Description Operator Associativity
** Algebraic exponentiation right-to-left
- Unary minus sign right-to-left
-- Unary decrement right-to-left
+ Unary plus sign right-to-left
++ Unary increment right-to-left
not ! Logical not right-to-left
∼ Unary one’s complement right-to-left
* Algebraic multiplication left-to-right
/ Algebraic division left-to-right
% Modulo operator left-to-right
+ Algebraic sum left-to-right
- Algebraic subtraction left-to-right
<< Left binary shift left-to-right
>> Right binary shift left-to-right
< Magnitude comparison right-to-left
> Magnitude comparison right-to-left
<= Magnitude comparison right-to-left
>= Magnitude comparison right-to-left
== <> Equality comparison right-to-left
!= Equality comparison right-to-left
& Binary and left-to-right
^ Binary exclusive or left-to-right
| Binary or left-to-right
and && Logical and left-to-right
or || Logical or left-to-right
?: Ternary conditional right-to-left
= Assignment operator right-to-left
+= -= *= Assignment operators right-to-left
/= %= &=

^= |=

<<= >>=

, Comma separator left-to-right

Table 3.1: A list of mathematical operators which Pyxplot recognises, in order
of descending precedence. Items separated by horizontal rules are of differing
precedence; those not separated by horizontal rules are of equal precedence.
The third column indicates whether strings of operators are evaluated from left
to right, or from right to left. For example, the expression x**y**z is evaluated
as (x**(y**z)).

20 CHAPTER 3. FIRST STEPS WITH PYXPLOT

set nokey # I’ll have no key on _my_ plot

In both cases, all of the characters following the hash character are ignored.

3.4 Splitting long commands

Long commands may be split over multiple lines, provided that each line of the
command is terminated with a backslash character, whereupon the following
line will be appended to it. For example:

pyxplot> print 2 \
.......> +3

5

Such lines splits are often used in this manual where command lines are longer
than the width of the page.

3.5 Printing text

Pyxplot’s print command can be used to display strings and the results of
calculations, as in the following examples:

pyxplot> a=2

pyxplot> print "Why don't fish get lost in the ocean?"

Why don’t fish get lost in the ocean?

pyxplot> print a

2

Multiple items can be displayed one-after-another on a single line by sep-
arating them with commas. The following example displays the values of the
variable a and the function f(a) in the middle of a text string:

pyxplot> f(x) = x**2

pyxplot> a=3

pyxplot> print "The value of ",a," squared is ",f(a),"."

The value of 3 squared is 9.

Strings can be enclosed either in single (’) or double (") quotes. Strings
may also be enclosed by three quote characters in a row: either ’’’ or """.
Special care needs to be taken when using apostrophes or quotes in single-quote
delimited strings, as these characters may be misinterpreted as string delimiters,
as in the example:

% ’Robert’s data’

This easiest way to avoid such problems is to use three quotes:

" ’’’Robert’s data’’’

Alternatively, the \ character may be used to escape quote characters. Two
backslashes characters – \\ – produce a literal backslash:

3.5. PRINTING TEXT 21

Escape sequence Description
\? Question mark
\’ Apostrophe
\" Double quote
\\ Literal backslash
\a Bell character
\b Backspace
\f Formfeed
\n Newline
\r Carriage return
\t Horizontal tab
\v Vertical tab

Table 3.2: A complete list of Pyxplot’s string escape sequences. These are a
subset of those available in C.

" ’Robert\’s data’

"I typed \\’ to get an apostrophe"

Special characters such as tabs and newlines can be inserted into strings
using escape codes, but these are disabled by default. This is because latex uses
the backslash as its own escape character, and strings in Pyxplot are commonly
used to contain latex commands. So, by default the only escape characters that
Pyxplot expands are \’, \" and \\.

The use of other escape characters may be enabled by prefixing a string with
the character e, as in the example e’\t’ for a tab character. See Table 3.2 for
a complete list of escape codes available. For example, the following string is
split over three lines:

pyxplot> print e'the moon,\nthe moon,\nThey danced by the light of the moon.'

the moon,

the moon,

They danced by the light of the moon.

Alternatively, strings may be prefixed with the character r to turn off all
escape codes, including for quote characters:

pyxplot> print r'''I escaped the quote by typing \'.'''
I escaped the quote by typing \’.

When many items are being printed together on a line, they can be concate-
nated together using the + operator as above, but it is usually neater to use the
string substitution operator, %. The operator is preceded by a format string, in
which the places where numbers and strings are to be substituted are marked
by tokens such as %e and %s.

The substitution operator is followed by a ()-bracketed list of the quantities
which are to be substituted into the format string. This behaviour is similar to
that of python’s % operator, and of the printf command in C, as the following
examples demonstrate:

22 CHAPTER 3. FIRST STEPS WITH PYXPLOT

pyxplot> f(x)=x**2 ; a=3

pyxplot> print "The value of %d squared is %d."%(a,f(a))

The value of 3 squared is 9.

pyxplot> print "The %s of f(%f) is %d."%("value",sqrt(2), \
.......> f(sqrt(2)))

The value of f(1.414214) is 2.

The detailed behaviour of the string substitution operator, and a full list of
the substitution tokens which it accepts, are given in Section 6.2.1.

3.6 Axis labels and titles

Labels can be added to the axes of a plot, and a title put at the top. As with
any other strings (see the previous section), labels should be enclosed in either
single (’) or double (”) quotes, as in the following example script:

set xlabel "Horizontal axis"

set ylabel "Vertical axis"

set title ’A plot with labelled axes’

plot

−10 0 10

Horizontal axis

−10

0

10

V
er

ti
ca

l
ax

is

A plot with labelled axes

These labels and title – in fact, all text labels which are ever produced by
Pyxplot – are rendered using the latex typesetting system, and so any latex
commands can be used to produce custom formatting. This allows great flexi-
bility, but means that care needs to be taken to escape any of latex’s reserved
characters – i.e. \ & % # { } $ ˆ or ∼.

Two built-in functions provide some assistance in generating latex labels.
The texify() function takes as its argument a string containing a mathematical
expression, and returns a latex representation of it. The texifyText() function
takes as its argument a text string, and returns a latex representation of it, with
any necessary escape characters added. For example:

pyxplot> print texify("sqrt(x**2+1)")

$\displaystyle \sqrt{x\,*\kern-1.5pt *\,\,2+1}\mathrm{}$
pyxplot> a=50

pyxplot> print texifyText("A %d%% increase"%a)

3.6. AXIS LABELS AND TITLES 23

A 50\% increase

pyxplot> set ylabel texify("cos(x**2)")

Special care needs to be taken when typesetting latex expressions that con-
tain apostrophe or quote characters, as these are the string delimiters used by
Pyxplot. For ease, it is recommended that latex expressions be enclosed in triple
quotes:

" set xlabel """\textrm{J\"org’s data}"""

The reason for recommending this syntax is demonstrated by the examples
below, all of which will fail. In

% set xlabel ’My plot’s X axis’

the apostrophe will be mis-interpreted as a closing quote character. In

% set xlabel "J\"org’s data"

the backslash before the ” character, intended to be the latex control string for
an umlaut (\"o), will instead be interpreted as a Pyxplot escape character. It
will not be passed to latex, and a latex error will result. Whilst it is possible to
write

set xlabel "J\\\"org’s data"

this syntax is messy, as the backslashes are confusing to the eye. It is much
neater to use (see Section 3.5 for an explanation of string escaping):

" set xlabel r"""J\"org’s data"""

There are similar problems with

% set xlabel e"2 \times 3"

where the \t will be turned into a tab character, because extended escape
characters are enabled. This string could be made legal by removing the e

prefix (see Section 3.5).

3.6.1 Removing labels and titles

Having set labels and titles, they may be removed thus:

set xlabel ’’

set ylabel ’’

set title ’’

These are two other ways of removing the title from a plot:

set notitle

unset title

24 CHAPTER 3. FIRST STEPS WITH PYXPLOT

Query Description
all Lists all settings.
axes Lists all of the currently configured axes.
functions Lists all currently defined mathematical functions, both

those which are built into Pyxplot and those which the
user has defined.

settings Lists the current values of all settings which can be set with
the set command.

units Lists all of the physical units which Pyxplot is currently set
up to recognise.

userfunctions Lists all current user-defined mathematical functions and
subroutines.

variables Lists the values of all currently-defined variables.

Table 3.3: The special keywords which the show command recognises.

The unset command may be followed by almost any word that can follow
the set command, such as xlabel or title, to return that setting to its default
configuration. The reset command restores all configurable parameters to their
default states.

3.7 Querying the values of settings

As the previous section has demonstrated, the set command is used in a wide
range of ways to configure the way in which plots appear; we will meet many
more in due course. The corresponding show command can be used to query the
current values of settings. To query the value of one particular setting, the show
command should be followed by the name of the setting, as in the example:

show title

Alternatively, several settings may be queried at once, or all settings beginning
with a certain string of characters can be listed, as in the following two examples:

show xlabel ylabel key

show g

The special keyword settings may be used to display the values of all settings
which can be set with the set command. A list of other special keywords which
the show command accepts is given in Table 3.3.

Generally, the show command displays each setting in the form of a typeable
set command which could be used to set that setting, together with a comment
to briefly explain what effect the setting has. This means that the output can be
pasted directly into another Pyxplot terminal to copy settings from one session
to another. However, some settings such as papersize are only pastable once
the set numerics typeable command has been issued, for reasons which will
be explained in Section 4.7.3.

When a color-highlighted interactive session is used, settings which have been
changed are highlighted in yellow, whilst those settings which are unchanged

3.8. PLOTTING DATA FILES 25

from Pyxplot’s default configuration, or from a user-supplied configuration file,
are shown in green.

3.8 Plotting data files

In the simple example of the previous section, we plotted the first column of
a data file against the second. It is possible to plot any arbitrary column of a
data file against any other; the syntax for doing this is:

plot ’data.dat’ using 3:5

This example would plot the contents of the fifth column of the file data.dat

on the vertical axis, against the contents of the third column on the horizontal
axis. As mentioned above, columns in data files can be separated by whitespace
and/or commas. Algebraic expressions may also be used in place of column
numbers, as in the example:

plot ’data.dat’ using (3+$1+$2):(2+$3)

In such expressions, column numbers are prefixed by dollar signs to distinguish
them from numerical constants. The example above would plot the sum of the
values in the first two columns of the data file, plus three, on the horizontal axis,
against two plus the value in the third column on the vertical axis. The column
numbers in such expressions can also be replaced by algebraic expressions, and
so $2 can also be written as $(2) or $(1+1). In the following example, the
data points are all placed on the vertical line x = 3 – the brackets around the 3

distinguish it as a numerical constant rather than a column number – meanwhile
their vertical positions are drawn from the value of some column n in the data
file, where the value of n is itself read from the second column of the data file:

plot ’data.dat’ using (3):$($2)

It is also possible to plot data from only selected lines within a data file.
When Pyxplot reads a data file, it looks for any blank lines in the file. It
divides the data file up into data blocks, each being separated from the next by
a single blank line. The first data block is numbered 0, the next 1, and so on.

When two or more blank lines are found together, the data file is divided up
into index blocks. The first index block is numbered 0, the next 1, and so on.
Each index block may be made up of a series of data blocks. To clarify this, a
labelled example data file is shown in Figure 3.1.

By default, when a data file is plotted, all data blocks in all index blocks are
plotted. To plot only the data from one index block, the following syntax may
be used:

plot ’data.dat’ index 1

To achieve the default behaviour of plotting all index blocks, the index modifier
should be followed by a negative number.

It is also possible to specify which lines and/or data blocks to plot from
within each index. To do so, the every modifier is used, which takes up to six
values, separated by colons:

26 CHAPTER 3. FIRST STEPS WITH PYXPLOT

0.0 0.0 Start of index 0, data block 0.
1.0 1.0

2.0 2.0

3.0 3.0

A single blank line marks the start of a new data block.
0.0 5.0 Start of index 0, data block 1.
1.0 4.0

2.0 2.0

A double blank line marks the start of a new index.
...

0.0 1.0 Start of index 1, data block 0.
1.0 1.0

A single blank line marks the start of a new data block.
0.0 5.0 Start of index 1, data block 1.

<etc>

Figure 3.1: An example Pyxplot data file – the data file is shown in the two
left-hand columns, and commands are shown to the right.

plot ’data.dat’ every a:b:c:d:e:f

The values have the following meanings:

3.9. PLOTTING MANY DATA FILES AT ONCE 27

a Plot data only from every a th line in data file.
b Plot only data from every b th block within each index block.
c Plot only from line c onwards within each block.
d Plot only data from block d onwards within each index block.
e Plot only up to the e th line within each block.
f Plot only up to the f th block within each index block.

Any or all of these values can be omitted, and so the following are both valid
statements:

plot ’data.dat’ index 1 every 2:3

plot ’data.dat’ index 1 every ::3

The first would plot only every other data point from every third data block.
The second would plot data from the third line onwards within every data block.

Comment lines may be included in data files by prefixing them with a hash
character. Such lines are completely ignored by Pyxplot and do not count
towards the one or two blank lines required to separate blocks and index blocks.
It is often good practice to include comment lines at the top of data files to
indicate their date and source. In Section 5.4 we will see that Pyxplot can read
metadata from some comment lines which follow a particular syntax.

3.9 Plotting many data files at once

The wildcards * and ? may be used in filenames supplied to the plot command
to plot many data files at once. The following command, for example, plots
all data files in the current directory with a .dat suffix, using the same plot
options:

plot ’*.dat’ with linewidth 2

In the graph’s legend, full filenames are displayed, allowing the data files to be
distinguished.

If a blank filename is supplied to the plot command, the last used data file
is used again, as in the example:

plot ’data.dat’ using 1:2, ’’ using 2:3

This can even be used with wildcards, as in the following example:

plot ’*.dat’ using 1:2, ’’ using 2:3

3.9.1 Horizontally arranged data files

Pyxplot also allows rows of data to be plotted against one another. To do so,
the keyword rows is placed after the using modifier:

plot ’data.dat’ index 1 using rows 1:2

For completeness, the syntax using columns is also accepted, specifying that
columns should be plotted against one another, as happens by default:

28 CHAPTER 3. FIRST STEPS WITH PYXPLOT

plot ’data.dat’ index 1 using columns 1:2

When plotting horizontally-arranged data files, the meanings of the index

and every modifiers are altered slightly. The former continues to refer to
vertically-displaced blocks of data separated by two blank lines. Blocks, as ref-
erenced in the every modifier, likewise continue to refer to vertically-displaced
blocks of data points, separated by single blank lines. The row numbers passed
to the using modifier are counted from the top of the current block.

However, the line numbers specified in the every modifier – i.e. variables a,
c and e in the system introduced in the previous section – now refer to vertical
column numbers. For example,

plot ’data.dat’ using rows 1:2 every 2::3::9

would plot the data in row 2 against that in row 1, using only the values in
every other column, between columns 3 and 9.

3.9.2 Choosing which data to plot

The final modifier which the plot command takes to allow the user to specify
which subset(s) of a data file should be plotted is select. This can be used to
plot only those data points in a data file which satisfy some given criterion, as
in the following examples:

plot ’data.dat’ select ($8>5)

plot sin(x) select (($1>0) and ($2>0))

In the second example, two selection criteria are given, combined with the logical
and operator. A full list of all of the operators recognised by Pyxplot, including
logical operators, was given in Table 3.1.

When plotting using lines to connect the data points (see Section 3.13
for more information about Pyxplot’s plotting styles), the default behaviour
is for the lines not to be broken if a set of data points are removed by the
select modifier. However, this behaviour is sometimes undesirable. To cause
the plotted line to break when points are removed the discontinuous modifier
is supplied after the select modifier, as in the example

plot sin(x) select ($2>0) discontinuous

which plots a set of disconnected peaks from the sine function.

3.10 The replot command

The replot command may be used to add more datasets to an existing plot, or
to change its axis ranges. For example, having plotted one data file using the
command

plot ’datafile1.dat’

another can be plotted on the same axes using the command

replot ’datafile2.dat’ using 1:3

or the ranges of the axes on the original plot can be changed using the command

replot [0:1][0:1]

3.11. DIRECTING WHERE OUTPUT GOES 29

3.11 Directing where output goes

By default, when Pyxplot is used interactively, all plots are displayed on the
screen. It is also possible to produce PostScript output, to be read into other pro-
grams or embedded into latex documents, as well as a variety of other graphical
formats such as jpeg and png. The set terminal command3 is used to specify
the output format that is required, and the set output command is used to
specify the file to which output should be directed. For example,

set terminal pdf

set output ’myplot.pdf’

plot ’datafile.dat’

would output a PDF plot of data from the file datafile.dat to the file myplot.pdf,
which could be opened in Adobe Reader.

The set terminal command can also be used to configure various output
options within each supported file format. For example, the following commands
would produce black-and-white or color output respectively:

set terminal monochrome

set terminal color

The former is useful for preparing plots for black-and-white publications, the
latter for preparing plots for colorful presentations.

Both PostScript and Encapsulated PostScript can be produced. The former
is recommended for producing figures to embed into documents, the latter for
plots which are to be printed without further processing. The postscript

terminal produces the latter; the eps terminal should be used to produce the
former. Similarly the pdf terminal produces files in the Portable Document
Format (PDF) read by Adobe Acrobat:

set terminal postscript

set terminal eps

set terminal pdf

It is also possible to produce plots in the gif, png and jpeg graphic formats,
as follows:

set terminal gif

set terminal png

set terminal jpg

More than one of the above keywords can be combined on a single line, for
example:

set terminal postscript color

set terminal gif monochrome

To return to the default state of displaying plots on screen, the x11 terminal
should be selected:

3Gnuplot users should note that the syntax of the set terminal command in Pyxplot is
somewhat different from that used by Gnuplot; see Section 9.1.

30 CHAPTER 3. FIRST STEPS WITH PYXPLOT

set terminal x11

After changing terminals, the refresh command4 is especially useful; it
reproduces the last plot to have been generated in the newly-selected graphical
format. For more details of the set terminal command, including how to
produce gif and png images with transparent backgrounds, see Chapter 9.

3.12 Setting the size of output

The widths of plots may be set by means of two commands – set size and
set width. Both are equivalent, and should be followed by the desired width
measured in centimeters, for example:

set width 20

The set size command can also be used to set the aspect ratio of plots
by following it with the keyword ratio. The number which follows should be
the desired ratio of height to width. The following, for example, would produce
plots three times as high as they are wide:

set size ratio 3.0

The command set size noratio returns to Pyxplot’s default aspect ratio of

the golden ratio, i.e.
(
(1 +

√
5)/2

)−1
. The special command set size square

sets the aspect ratio to unity (i.e. square).

3.13 Plotting styles

By default, data from files are plotted with points and functions are plotted with
lines. However, either kind of data can be plotted in a variety of plot styles. To
plot a function with points, for example, the following syntax is used:

plot sin(x) with points

The number of points displayed (i.e. the number of samples of the function) can
be set as follows:

set samples 100

Likewise, data files can be plotted with a line connecting the data points:

plot ’data.dat’ with lines

A variety of other styles are available. The linespoints plot style combines
both the points and lines styles, drawing lines through points. Error bars can
also be drawn as follows:

4The effect of the refresh command is very similar to that of the replot command with
no arguments. The latter simply repeats the last plot command. We will see in Chapter 10
that the refresh command is to be preferred in the current context because it is applicable
to vector graphics as well as to graphs.

3.14. SETTING AXIS RANGES 31

plot ’data.dat’ with yerrorbars

In this case, three columns of data need to be specified: the x- and y-coordinates
of each data point, plus the size of the vertical error bar on that data point. By
default, the first three columns of the data file are used, but as elsewhere (see
Section 3.8), the using modifier can be used:

plot ’data.dat’ using 2:3:7 with yerrorbars

Other plot styles supported by Pyxplot are listed in Section 8.2. More details
of the errorbars plot style can be found in Section 8.2.2. Bar charts will be
discussed in Section 8.2.4.

The modifiers pointtype and linetype, which can be abbreviated to pt

and lt respectively, can also be placed after the with modifier. Each should
be followed by an integer. The former specifies what shape of points should be
used to plot the dataset, and the latter whether a line should be continuous,
dotted, dash-dotted, etc. Different integers correspond to different styles, and
are listed in Chapter 18.

The default plotting style, used when none is specified to the plot command,
can also be changed. For example:

set style data lines

would change the default style used for plotting data from files to lines. Simi-
larly, the set style function command changes the default style used when
functions are plotted.

3.14 Setting axis ranges

By default, Pyxplot automatically scales axes to some sensible range which
contains all of the plotted data. However, it is possible for the user to override
this and set his own range. This can be done directly from the plot command,
by following the word plot with the syntax [minimum:maximum].5 The first
specified range applies to the x-axis, and the second to the y-axis.6 In the
following example, the first three cylindrical Bessel functions are plotted in the
range 0 < x < 10:

plot [0:10][-0.5:1] besselJ(0,x), besselJ(1,x), besselJ(2,x)

5An alternative valid syntax is to replace the colon with the word to, i.e. [minimum to

maximum].
6As will be discussed in Section 8.8.1, if further ranges are specified, they apply to the

x2-axis, then the y2-axis, and so forth.

32 CHAPTER 3. FIRST STEPS WITH PYXPLOT

0 5 10
−0.5

0

0.5

1

besselJ (0, x)

besselJ (1, x)

besselJ (2, x)

Any of the values can be omitted, as in the following plot of three Legendre
polynomials:

set key xcenter

plot [-1:1][:] legendreP(2,x), legendreP(4,x), legendreP(6,x)

−1 0 1
−0.5

0

0.5

1

legendreP (2, x)

legendreP (4, x)

legendreP (6, x)

Here, we have used the set key command to specify that the plot’s legend
should be horizontally aligned in the center of the plot, to complement the
symmetry of the Legendre polynomials. This command will be described more
fully in Section 8.7.

Alternatively, ranges can be set before the plot statement, using the set

xrange command, as in the examples:

set xrange [-2:2]

set yrange [a:b]

If an asterisk is supplied in place of either of the limits in this command, then
any limit which had previously been set is switched off, and the axis returns to
its default autoscaling behaviour:

set xrange [-2:*]

A similar effect may be obtained using the set autoscale command, which
takes a list of the axes to which it is to apply. Both the upper and lower limits
of these axes are set to scale automatically. If no list is supplied, then the
command is applied to all axes.

3.14. SETTING AXIS RANGES 33

set autoscale x y

set autoscale

The range supplied to the set xrange can be followed by the word reverse

to indicate that the axis should run from right-to-left, or from top-to-bottom.
In practice, this is of limited use when an explicit range is specified, as the
following two commands are equivalent:

set xrange [-2:2] reverse

set xrange [2:-2] noreverse

However, this is useful when axes are set to autoscale:

set xrange [*:*] reverse

Axes can be set to have logarithmic scales by using the set logscale com-
mand, which also takes a list of axes to which it should apply. Its converse is
set nologscale:

set logscale

set nologscale y x x2

Further discussion of the configuration of axes can be found in Section 8.8.1.

Example 1: A diagram of the trajectories of projectiles fired with different
initial velocities.

In this example we produce a diagram of the trajectories of projectiles fired by
a cannon at the origin with different initial velocities v and different angles of
inclination θ. According to the equations of motion under constant acceleration,
the distance of such a projectile from the origin after time t is given by

x(t) = vt cos θ

h(t) = vt sin θ + 1/2gt2

where x(t) is the horizontal displacement of the projectile and h(t) the vertical
displacement. Eliminating t from these equation gives the expression

h(x) = x tan θ − gx2

2v2 cos2 θ
.

In the script below, we plot this function for five different values of v and θ.

g = phy.g # Acceleration due to gravity

deg = unit(deg) # Convert degrees to radians

The mathematical equation of a trajectory

h(x,theta,v) = x*tan(theta*deg) - 0.5*g*x**2/(v**2*cos(theta*deg)**2)

34 CHAPTER 3. FIRST STEPS WITH PYXPLOT

Plot configuration

set xlabel r"x"

set ylabel r"h"

set xrange [unit(0*m):unit(20*m)]

set yrange [unit(0*m):]

set key below

set title r’Trajectories of projectiles fired with speed v at angle θ’
plot h(x,30,unit(10*m/s)) t r"$\theta=30^\circ;\qquad v=10\,{\rm m\,s^{-1}}$", \
h(x,45,unit(10*m/s)) t r"$\theta=45^\circ;\qquad v=10\,{\rm m\,s^{-1}}$", \
h(x,60,unit(10*m/s)) t r"$\theta=60^\circ;\qquad v=10\,{\rm m\,s^{-1}}$", \
h(x,30,unit(15*m/s)) t r"$\theta=30^\circ;\qquad v=15\,{\rm m\,s^{-1}}$", \
h(x,60,unit(15*m/s)) t r"$\theta=60^\circ;\qquad v=15\,{\rm m\,s^{-1}}$"

0 5 10 15 20

x / m

0

2

4

6

8

h
/

m

θ = 30◦; v = 10ms−1

θ = 45◦; v = 10ms−1

θ = 60◦; v = 10ms−1

θ = 30◦; v = 15ms−1

θ = 60◦; v = 15ms−1

Trajectories of projectiles fired with speed v at angle θ

3.15 Interactive help

In addition to this Users’ Guide, Pyxplot also has a help command, which
provides a hierarchical source of information. Typing help alone gives a brief

3.15. INTERACTIVE HELP 35

introduction to the help system, as well as a list of topics about which help is
available. To display help on any given topic, type help followed by the name
of the topic. For example,

help datafile

provides information on the format in which Pyxplot expects to read data files
and

help plot

provides information about the plot command. Some topics have sub-topics,
which are listed at the end of each page. To view them, add further words to
the end of your help request – an example might be

help set title

36 CHAPTER 3. FIRST STEPS WITH PYXPLOT

Chapter 4

Performing calculations

Often calculations need to be performed on data before they are plotted. This
chapter and the next describe the mathematical environment which Pyxplot
provides.

Most of the examples in this chapter act on single numerical values, dis-
playing the results using the print command, demonstrating how Pyxplot may
be used as a desktop calculator. The next chapter will extend this to use of
Pyxplot’s mathematical environment to analyse whole datasets and produce
plots.

4.1 Variables

Variables can be assigned to hold numerical values using syntax of the form

a = 5.2 * sqrt(64)

which may optionally be written in longhand as

let a = 5.2 * sqrt(64)

Variables can subsequently be used by name in mathematical expressions, for
example:

print a / sqrt(64)

Having been defined, variables can later be undefined – set to have no value –
using syntax of the form:

a =

Variables can also hold non-numeric data, such as strings, colors, dates, lists
and dictionaries. The syntax for defining many of these data structures is similar
to that used by python, for example:

myList = [8,2,1,7]

myDict = {’john’:27 , ’fred’:14 , ’lisa’:myList}

myDate = time.fromCalendar(2012,7,1,14,30,0)

37

38 CHAPTER 4. PERFORMING CALCULATIONS

More information about Pyxplot’s data types can be found in Chapter 6.
A list of all of the variables which are currently defined can be obtained by

typing show variables. Some constants are pre-defined by Pyxplot, and so a
number of variables are listed even if none have been set by the user.

4.2 Physical constants

Many mathematical and physical constants are pre-defined in Pyxplot. A com-
plete list of these can be found Chapter 14. Some of these, for example, e, pi
and goldenRatio are standard mathematical constants which are accessible in
the user’s default namespace:

pyxplot> print pi

3.1415927

Others, such as physical constants, are of more specialist interest and are defined
in modules. For example, the speed of light is defined in the physics module
phy:

pyxplot> print phy.c

299792.46 km/s

Most of the pre-defined physical constants, such as this one, make use of
Pyxplot’s native ability to keep track of the physical units of quantities and to
convert them between different unit systems – for example, between inches and
centimeters. This will be explained in more detail in Section 4.6.

To list all of the functions and variables defined in a module such as phy,
type

print phy

or simply

phy

4.3 Functions

Many standard mathematical and operating system functions are pre-defined
within Pyxplot’s mathematical environment. These range from everyday exam-
ples like trigonometric functions, to very specialised functions; there is even a
function to return the phase of the Moon on any given day. As with the mathe-
matical constant, common functions are defined in the user’s default namespace,
for example

pyxplot> print exp(2)

7.3890561

whilst others live in modules, for example

print ast.moonPhase(time.now())

which returns the present phase of the Moon in radians, and

4.3. FUNCTIONS 39

print os.path.filesize("/etc/passwd")

which returns the size of a file (in units of bytes, of course!).
A complete list of these functioned, sorted by module, can be found in Chap-

ter 12. Another quick way to find out some more information about a function
is the print the function object, for example:

pyxplot> print log

log(x) returns the natural logarithm of x.

All, of Pyxplot’s built-in constants, functions and modules are contained in
the module defaults, which can also be printed to view its contents:

print defaults

It is possible to access pi, for example, as defaults.pi, though in practice
this syntax is very rarely needed. All of the objects in the defaults module
are always accessible by name (i.e. they are always in any namespace), unless
another local or global variable exists with the same name.

The user can define his own algebraic function definitions using a similar
syntax to that used to declare new variables, as in the examples:

f() = pi

g(x) = x*sin(x)

h(x,y) = x*y

Function objects are just like any other variables, and can even be used as
arguments to other functions:

pyxplot> f = sum

pyxplot> print f

sum(...) returns the sum of its arguments.

pyxplot> f = sin

pyxplot> g(x,y) = x(x(y))

pyxplot> print g(f,1)

0.74562414

User-defined functions can be undefined in the same way as any other vari-
able, for example by typing:

f =

Where the logic required to define a particular function is greater than can
be contained in a single algebraic expression, a subroutine should be used (see
Section 7.8); these allow an arbitrary numbers of lines of Pyxplot code to be
executed whenever a function is evaluated.

4.3.1 Spliced functions

The definitions of functions can be declared to be valid only within a certain
domain of argument space, allowing for error checking when models are evalu-
ated outside their domain of applicability. Furthermore, functions can be given

40 CHAPTER 4. PERFORMING CALCULATIONS

multiple definitions which are specified to be valid in different parts of argument
space. We term this function splicing, since multiple algebraic definitions for a
function are spliced together at the boundaries between their various domains.
The following example would define a function which is only valid within the
range −π/2 < x < π/2:1

truncated_cos(x)[-pi/2:pi/2] = cos(x)

Attempts to evaluate this function outside of the range in which it is defined
would return an error that the function is not defined at the requested argument
value. Thus, if the above function were to be plotted, no line would be drawn
outside of the range −π/2 < x < π/2. A similar effect could also have been
achieved using the select keyword (see Section 3.9.2). Sometimes, however,
the desired behaviour is rather that the function should be zero outside of some
region of parameter space where it has a finite value. This can be achieved as
in the following example:

f(x) = 0

f(x)[-pi/2:pi/2] = cos(x)

Plotting this function would yield the following result:

−2.5 0 2.5

0

0.5

1 f (x)

To produce this function, we have made use of the fact that if there is an
overlap in the domains of validity of multiple definitions of a function, then later
declarations are guaranteed take precedence. The definition that the function
equals zero is valid everywhere, but is overridden in the region −π/2 < x < π/2
by the second function definition.

Where functions have been spliced together, the show functions command
will show all of the definitions of the spliced function, together with the regions
of parameter space in which they are used. This is indicated using the same
syntax that is used for defining spliced functions, such that the output can be
stored and pasted into a future Pyxplot session to redefine exactly the same
spliced function.

When a function takes more than one argument, multiple ranges can be
specified, one for each argument. Any of the limits can be left blank if there
is no upper or lower limit upon the value of that particular argument. In the
following example, the function f(a,b,c) would only be defined when all of a,
b and c were in the range −1→ 1:

1The syntax [-pi/2:pi/2] can also be written [-pi/2 to pi/2].

4.3. FUNCTIONS 41

f(a,b,c)[-1:1][-1:1][-1:1] = a+b+c

Function splicing can be used to define functions which do not have analytic
forms, or which are, by definition, discontinuous, such as top-hat functions or
Heaviside functions. The following example would define f(x) to be a Heaviside
function:

f(x) = 0

f(x)[0:] = 1

Similar effects may also be achieved using the ternary conditional ?: oper-
ator (see Section 7.7), for example:

f(x) = (x>0) ? 1 : 0

Example 2: Modelling a physics problem using a spliced function.

Question
A light bead is free to move from side to side between two walls which are placed
at x = −2l and x = 2l. It is connected to each wall by a light elastic string of
natural length l, which applies a force k∆x when extended by an amount ∆x,
but which applies no force when slack. What is the total horizontal force on the
bead as a function of its horizontal position x?

Answer
This system has three distinct regimes. In the region −l < x < l, both strings
are under tension. When x < −l, the left-hand string is slack, and only the
right-hand string exerts a force. When x > l, the converse is true: only the
left-hand string exerts a force. The case |x| > 2l is not possible, as the bead
would have to penetrate the hard walls. It is left as an exercise for the reader to
use Hooke’s Law to derive the following expression, but in summary, the force
on the bead can be defined in Pyxplot as:

F(x)[-2*l :- l] = -k*(x-l)

F(x)[- l : l] = -2*k*x

F(x)[l : 2*l] = -k*(x+l)

where it is necessary to first define a value for l and k. Plotting these functions
yields the result:

42 CHAPTER 4. PERFORMING CALCULATIONS

−2 −1 0 1 2

x/l

−4

−2

0

2

4
F

(x
)/
k
l

F (x)

Attempting to plot this function with an x-axis which extends outside of the
range of values of x for which F (x) is defined, as above, will result in error
messages being returned that the function could not be evaluated at all argument
values. These can be suppressed by typing (see Section 4.4)

set numeric errors quiet

Example 3: Using a spliced function to calculate the Fibonacci numbers.

The Fibonacci numbers are defined to be the sequence of numbers in
which each member is the sum of its two immediate predecessors, and the
first three members of the sequence are 0, 1, 1. Thus, the sequence runs
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, In this example, we use function splicing to
calculate the Fibonacci sequence in an iterative and highly inefficient way, hard-
coding the first three members of the sequence and then using the knowledge
that all of the subsequent members are the sums of their two immediate prede-
cessors:

f(x) = 0.0

f(x)[1:] = 1.0

f(x)[3:] = f(x-1) + f(x-2)

This method is highly inefficient because each evaluation spawns two fur-
ther evaluations of the function, and so the number of operations required to
evaluate f(x) scales as 2x. It is inadvisable to evaluate it for x & 25 unless
you’re prepared for a long wait.

4.4. HANDLING NUMERICAL ERRORS 43

A much more efficient method of calculating the Fibonacci numbers is to
use Binet’s formula,

f(x) = ψx − (1− ψ)x
√

5,

where ψ = 1 +
√

5/2 is the golden ratio, which provides an analytic expression
for the sequence. In the following script, we compare the values returned by
these two implementations. We enable complex arithmetic as Binet’s formula
returns complex numbers for non-integer values of x.

Binet’s Formula for the Fibonacci numbers

set numerics complex

binet(x) = Re((goldenRatio**x - (1-goldenRatio)**x) / sqrt(5))

set samples 100

set xrange [0:9.5]

set yrange [0:35]

set xlabel "x"

set ylabel "y"

set key bottom right

plot f(x) , binet(x)

0 2 4 6 8

x

0

10

20

30

y

f (x)

binet (x)

4.4 Handling numerical errors

By default, an error message is returned whenever calculations return values
which are infinite, as in the case of 1/0, or when functions are evaluated outside
the domain of parameter space in which they are defined, as in the case of
besseli(-1,1). Sometimes this behaviour is desirable: it flags up to the user

44 CHAPTER 4. PERFORMING CALCULATIONS

that a calculation has gone wrong, and exactly what the problem is. At other
times, however, these error messages can be undesirable and may lead you to
miss more genuine and serious errors buried in their midst.

For this reason, the issuing of explicit error messages when calculations re-
turn non-finite numeric results can be switched off by typing:

set numeric errors quiet

Having done this, expressions such as

x = besseli(-1,1)

fail silently, and variables which contain non-finite numeric results are displayed
as NaN, which stands for Not a Number. The issuing of explicit errors may
subsequently be re-enabled by typing:

set numeric errors explicit

Having turned off the display of numerical errors, it may be useful to use
the assert command to throw an error message if a calculation has failed in an
unrecoverable way that the user really ought to know about:

assert x>0 "Cannot continue with negative x"

The assert command should be followed by an algebraic expression which
must be true for execution to continue. If it is false, an error results. Optionally,
an error message can be included, as above, to tell the user what the problem
is.

4.5 Working with complex numbers

In all of the examples given thus far, algebraic expressions have only been al-
lowed to return real numbers: Pyxplot has not been handling any complex
numbers. Since there are many circumstances in which the data being analysed
may be known for certain to be real, complex arithmetic is disabled in Pyxplot
by default. Expressions such as sqrt(-1) will return either an error or NaN.
The most obvious example of this is the built-in variable i, which is set to equal
sqrt(-1):

pyxplot> print i

nan

Complex arithmetic may be enabled by typing

set numeric complex

and then disabled again by typing

set numeric real

4.6. WORKING WITH PHYSICAL UNITS 45

Once complex arithmetic has been enabled, many of Pyxplot’s built-in math-
ematical functions accept complex input arguments, including the logarithm
function, all of the trigonometric functions, and the exponential function. A
complete list of functions which accept complex inputs can be found in Ap-
pendix 12.

Complex number literals can be entered into algebraic expressions in either
of the following two forms:

print (2 + 3*i)

print (2 + 3*sqrt(-1))

The former version depends upon the pre-defined system variable i being defined
to equal

√
−1. The user could cause this to stop working, of course, by re-

defining this variable to have a different value. However, in this case the variable
i could straightforwardly be returned to its default value by typing:

i=sqrt(-1)

The user can, of course, define any other variable to equal
√
−1, thus allowing

him to use any other letter, e.g. j, to represent the imaginary component of a
number.

Several built-in functions are provided for manipulating complex numbers.
The Re(z) and Im(z) functions return respectively the real and imaginary parts
of a complex number z. The arg(z) function returns the complex argument of
z. And the abs(z) function returns the modulus of z. The conjugate(z) com-
mand returns the complex conjugate of z. The following lines of code demon-
strate the use of these functions:

pyxplot> set numeric complex

pyxplot> x=0.5

pyxplot> print Re(exp(i*x))

0.87758256

pyxplot> print cos(x) # This equals the above
0.87758256

pyxplot> print arg(exp(i*x)) # This equals x
0.5

4.6 Working with physical units

Pyxplot, and all its mathematical functions, have native support for numbers
to have physical units. This means, for example, that multiplying two lengths
yields an area, and taking passing a selection of lengths to the max(...) function
returns the longest of the lengths supplied.

This makes it a powerful desktop tool for converting measurements between
different systems of units – for example, between imperial and metric units – or
for doing physical calculations.

The special function unit() is used to specify the physical unit associated
with a quantity. For example, the expression

print 2*unit(s)

46 CHAPTER 4. PERFORMING CALCULATIONS

takes the number 2 and multiplies it by the unit s, which is the SI abbreviation
for seconds. Technically, the function unit(s) returns a numeric object equal
to one second.

The resulting quantity above, which has dimensions of time, could then, for
example, be divided by the unit hr to find the dimensionless number of hours
in two seconds:

print 2*unit(s)/unit(hr)

Compound units such as miles per hour, which is defined in terms of two
other units, can be used as in

print 2*unit(miles/hour)

In many cases, commonly-used units such units have their own explicit abbre-
viations, in this case mph:

print 2*unit(mph)

As these examples demonstrate, the unit() function can be passed a string
of units either multiplied together with the * operator, or divided using the
/ operator. Units may be raised to powers with the ** operator2, as in the
example:

pyxplot> a = 2*unit(m**2)

pyxplot> print "An area of %f square feet"%(a/unit(ft**2))

An area of 21.527821 square feet

As the examples above have demonstrated, units may be referred to by either
their abbreviated or full names, and each of these may be used in either their
singular or plural forms. For example, s, second, and seconds are all valid and
equivalent. A complete list of all of the units which Pyxplot recognises by de-
fault, together with all of their recognised names, can be found in Appendix 15.

SI units may be preceded with SI prefixes, as in the examples3:

a = 2*unit(um)

a = 2*unit(micrometers)

When quantities with physical units are substituted into algebraic expres-
sions, Pyxplot automatically checks that the expression is dimensionally correct
before evaluating it. For example, the following expression is not dimension-
ally correct and would return an error because the first term in the sum has
dimensions of velocity, whereas the second term is a length:

%
a = 2*unit(m)

b = 4*unit(s)

print a/b + a

2The ^ character may be used as an alias for the ** operator, though this notation is
arguably confusing, since the same character is used for the binary exclusive or operator in
Pyxplot’s normal arithmetic.

3As the first of these examples demonstrates, the letter u is used as a Roman-alphabet
substitute for the Greek letter µ.

4.6. WORKING WITH PHYSICAL UNITS 47

Pyxplot continues to throw an error in this case, even when explicit numerical
errors are turned off with the set numeric errors quiet command, since it
is deemed a serious error: the above expression would never be correct for any
values of a and b given their dimensions.

A large number of units are pre-defined in Pyxplot by default, a complete
list of which can be found in Appendix 15. However, the need may occasionally
arise to define new units. It is not possible to do this from an interactive Pyxplot
terminal, but it is possible to do so from a configuration script which Pyxplot
runs upon start-up. Such configuration scripts will be discussed in Chapter 19.
New units may either be derived from existing SI units, alternative measures of
existing quantities, or entirely new base units such as numbers of CPU cycles
or man-hours of labour.

4.6.1 Treatment of angles in Pyxplot

There are a small number of cases where Pyxplot’s handling of units does not
completely follow normal (i.e. SI) conventions, which require further explana-
tion. The most obvious such case is its handling of angles.

By convention, the SI system of units does not have a base unit of angle:
instead, the radian is considered to be a dimensionless unit. There are some
strong mathematical reasons why this makes sense, since it makes it possible to
write equations such as

d = θr

and
x = exp(a+ iθ),

which would otherwise have to be written as, for example,

d = 2π

(
θ

2π rad

)
r =

(
θ

rad

)
r

in order to be strictly dimensionally correct.
However, it also has some disadvantages since some physical quantities such

as fluxes per steradian are measured per unit angle or per unit solid angle, and
the SI system traditionally4 offers no way to dimensionally distinguish these
from one another or from quantities with no angular dependence. In addition,
many of Pyxplot’s vector graphics commands take rotation angles as inputs,
and it is useful to express these in units of angle.

In most cases, the user is free to decide whether angles should have units.
All of the following print statements are equivalent:

print sin(pi)

print sin(180*unit(deg))

print sin(pi *unit(rad))

print sin(0.5*unit(rev))

However, it is useful to be able to define whether inverse trigonometric func-
tions such as asin(x) and atan(x) return results with units of angle, or which
are dimensionless. By default, these functions return dimensionless results, but
this may be changed using the commands:

4Radians are sometimes treated in the SI system as supplementary or derived units.

48 CHAPTER 4. PERFORMING CALCULATIONS

set unit angle dimensionless

set unit angle nodimensionless

Note that even when inverse trigonometric functions are set to return dimension-
less outputs, expressions such as unit(rad)+1 are still dimensionally incorrect.
Functions such as sin(x) and exp(x) can always accept inputs which are either
dimensionless, or have units of angle.

4.6.2 Converting between different temperature scales

Pyxplot can convert temperatures between different temperature scales, for ex-
ample between ◦C, ◦F and K. However, these conversions have some subtleties
which are unique to temperature conversions. This means they should be used
with some caution.

Consider the following two questions:

• How many Kelvin corresponds to a temperature of 20◦C?

• How many Kelvin corresponds to a temperature rise of 20◦C?

The answers to these two questions are 293 K and 20 K respectively: although
we are converting from 20◦C in both cases, the corresponding number of Kelvin
depends whether we are talking about an absolute temperature or a relative
temperature. A heat capacity of 1 J/◦C equals 1 J/K, even though a temperature
of 1◦C does not equal a temperature of 1 K.

The cause of this problem, and the reason why it rarely affects any physical
units other than temperatures is that there exists such a thing as absolute
temperature.

Take the example of distances. Distances are almost always relative: they
measure distance gaps between points. Occasionally people might choose to
express positions as distance from some particular origin. But if scheme A
involved measuring in meters from New York, and scheme B involved measuring
in feet from Chicago, they wouldn’t expect Pyxplot to convert between the two
systems.

The problem of converting between temperature systems is just like this.
One system measures distance in degrees Fahrenheit away from 0◦F; another
the distance in degrees Celsius away from 0◦C.5

As Pyxplot cannot distinguish between absolute and relative temperatures,
it takes a safe approach of performing algebra consistently with any unit of
temperature, never performing automatic conversions between different tem-
perature scales. A calculation based on temperatures measured in ◦F will pro-
duce an answer measured in ◦F. However, as converting temperatures between
temperature scales is a useful task which is often wanted, this is allowed, when
specifically requested, in the specific case of dividing one temperature by an-
other unit of temperature to get a dimensionless number, as in the following
example:

5There is one other common example of this problem. Times are expressed as absolute
quantities when dates are written down. The year AD 1453 implicitly corresponds to a period
of 1453 years after the Christian epoch. So, similar problems arise when trying to convert
such a year into the Muslim calendar, which counts from the year AD 622. Pyxplot can,
incidentally, make this conversion, using date objects, as will be seen in Section 4.11.

4.7. CONFIGURING HOW NUMBERS ARE DISPLAYED 49

" print 98*unit(oF) / unit(oC)

Note that the two units of temperature must be placed in separate unit(...)

functions. The following is not allowed:

% print 98*unit(oF / oC)

Note that such a conversion always assumes that the temperatures supplied
are absolute temperatures. Pyxplot has no facility for converting relative tem-
peratures between different scales. This must be done manually.

The conversion of derived units of temperature, such as J/K or ◦C2, to
derived units of other temperature scales, such as J/◦F or K2, is not permitted,
since in general these conversions are ill-defined.

The moral of this story is: pick what unit of temperature you want to work
in, convert all of your temperatures to that scale, and then stick to it.

Example 4: Creating a simple temperature conversion scale.

In this example, we use Pyxplot’s automatic conversion of physical units to
create a temperature conversion scale.

set size ratio 1e-2

set axis x2 linked x using x*unit(oC)/unit(oF)

set axis y invisible

set xtics outward -10,10

set x2tics outward 20,20

set xlabel r"$^\circ$C"
set x2label r"$^\circ$F"
plot [-10:100]

−10 0 10 20 30 40 50 60 70 80 90 100

◦C

20 40 60 80 100 120 140 160 180 200

◦F

4.7 Configuring how numbers are displayed

4.7.1 Display of physical units

When displaying quantities that have physical units, Pyxplot searches through
its database of known units looking for the most appropriate unit, or combi-
nation of units, to use. By default, SI units, or combinations of SI units, are
chosen for preference, and SI prefixes such as milli- or kilo- are applied where
appropriate. This behaviour can, however, be extensively configured.

50 CHAPTER 4. PERFORMING CALCULATIONS

Name Description
ancient Ancient units, especially those used in the Authorised Ver-

sion of the Bible.
CGS CGS units.
Imperial British imperial units.
Planck Planck units, also known as natural units, which make sev-

eral physical constants equal unity.
SI SI units.
US US customary units.

Table 4.4: A list of Pyxplot’s unit schemes.

The most general configuration option allows one of several units schemes
to be selected, each of which comprises a list of units which are deemed to
be members of the particular scheme. For example, in the CGS unit scheme,
all lengths are displayed in centimeters, all masses are displayed in grammes,
all energies are displayed in ergs, and so forth. In the imperial unit scheme,
quantities are displayed in British imperial units – inches, pounds, pints, and so
forth. In the US unit scheme, US customary units are used. The current unit
scheme can be changed using the set unit scheme command:

pyxplot> vol = 3*unit(m**3)

pyxplot> set unit scheme si ; print vol

3 m**3

pyxplot> set unit scheme cgs ; print vol

3000000 cm**3

pyxplot> set unit scheme imperial ; print vol

3.9238519 yd**3

pyxplot> set unit scheme us ; print vol

12680.259 cups US

A complete list of Pyxplot’s unit schemes can be found in Table 4.4.
These units schemes are often sufficient to ensure that most quantities are

displayed in the desired units, but commonly there are a few specific quantities
in any particular piece of work where non-standard units are used. For example,
a study of Jupiter-like planets might express masses in Jupiter masses, rather
than kilograms. A study of the luminosities of stars might express powers in
units of solar luminosities, rather than watts. And a cosmology paper might
express distances in megaparsecs. This level of control is made available through
the set unit of command. The three examples just given could be achieved
using the following commands:

set unit of mass Mjupiter

set unit of power solar_luminosity

set unit of length parsec

An astronomer wishing to express masses in Pluto masses would need to
first define the Pluto mass as a user-defined unit, since it is not pre-defined
unit within Pyxplot. In Chapter 19, we shall see how to define new units in a
configuration script. Having done so, the following syntax would be allowed:

4.7. CONFIGURING HOW NUMBERS ARE DISPLAYED 51

set unit of mass Mpluto

The set unit preferred command offers a slightly more flexible way of
achieving the same result. Whereas the set unit of command can only op-
erate on named quantities such as lengths, areas and powers, and cannot act
upon compound units such as W/Hz, the set unit preferred command can
act upon any unit or combination of units:

set unit preferred parsec

set unit preferred W/Hz

set unit preferred N*m

The latter two examples are particularly useful when working with spectral
densities (powers per unit frequency) or torques (forces multiplied by distances).
Unfortunately, both of these units are dimensionally equal to energies, and so
are displayed by Pyxplot in joules by default. The above statement overrides
such behaviour. Having set a particular unit to be preferred, this can be unset
as in the following example:

set unit nopreferred parsec

By default, units are displayed in their abbreviated forms, for example A

instead of amperes and W instead of watts. Furthermore, SI prefixes such as
milli- and kilo- are applied to SI units where they are appropriate. Both of these
behaviours can be turned on or off, in the former case with the commands

set unit display abbreviated

set unit display full

and in the latter case using the following pair of commands:

set unit display prefix

set unit display noprefix

4.7.2 Changing the accuracy to which numbers are dis-
played

By default, when numbers are displayed, they are printed accurate to eight
significant figures, although fewer figures may actually be displayed if the final
digits are zeros or nines.

This is generally a helpful convention: Pyxplot’s internal arithmetic is gen-
erally accurate to around 16 significant figures, and so it is quite conceivable
that a calculation which is supposed to return, say, 1, may in fact return
0.999 999 999 999 999 9. Likewise, when complex arithmetic is enabled, routines
which are expected to return real numbers may in fact return results with imag-
inary parts at the level of one part in 1016. By displaying numbers to only eight
significant figures in such cases, the user is usually shown the ‘right’ answer,
instead of a noisy and unattractive one.

However, there may also be cases where more accuracy is desirable, in which
case, the number of significant figures to which output is displayed can be set
using the command

52 CHAPTER 4. PERFORMING CALCULATIONS

n = 12

set numerics sigfig n

where n can be any number in the range 1-30. It should be noted that the
number supplied is the minimum number of significant figures to which numbers
are displayed; on occasion an extra figure may be displayed.

Alternatively, the string substitution operator, described in Section 6.2.1
may be used to specify how a number should be displayed on a one-by-one
basis, as in the examples:

pyxplot> print "%d" %(pi) # Print the integer part of pi
3

pyxplot> print "%.5f"%(pi) # Print pi in non-scientific format, to 5 d.p.
3.14159

pyxplot> print "%.5e"%(pi) # Print pi in scientific format, to 5 d.p.
3.14159e+00

pyxplot> print "%s" %(pi) # Print pi as normal
3.1415927

4.7.3 Creating pastable text

Pyxplot’s default convention of displaying numbers in a format such as

(2+3i) meters

is well-suited for creating text which is readable by human users, but is less well-
suited for creating text which can be copied and pasted into another calculation
in another Pyxplot terminal, or for creating text which could be used in a latex
text label on a plot. For this reason, the set numerics display command
allows the user to choose between three different ways in which numbers can be
displayed:

pyxplot> set numerics display natural

pyxplot> print phy.c

299792.46 km/s

pyxplot> set numerics display typeable

pyxplot> print phy.c

299792.46*unit(km/s)

pyxplot> set numerics display latex

pyxplot> print phy.c

$299792.46\,\mathrm{km}/\mathrm{s}$

The first case is the default way in which Pyxplot displays numbers. The
second case produces text which forms a valid algebraic expression which could
be pasted into another Pyxplot calculation. The final case produces a string of
latex text which could be used as a label on a plot.

4.8 Numerical integration and differentiation

Two special functions, int dx() and diff dx(), may be used to integrate or
differentiate algebraic expressions numerically. In each case, the letter x is the

4.8. NUMERICAL INTEGRATION AND DIFFERENTIATION 53

dummy variable which is to be used in the integration or differentiation and
may be replaced by any valid variable name of up to 16 characters in length.

The function int dx() takes three parameters – firstly the expression to be
integrated, which may optionally be placed in quotes, followed by the minimum
and maximum integration limits. These may have any physical dimensions, so
long as they match, but must both be real numbers. For example, the following
would plot the integral of the function sin(x):

plot int_dt(’sin(t)’,0,x)

The function diff dx() takes two obligatory parameters plus one further
optional parameter. The first is the expression to be differentiated, which, as
above, may optionally placed in quotes for clarity. This should be followed by
the numerical value x of the dummy variable at the point where the expression is
to be differentiated. This value may have any physical dimensions, and may be a
complex number if complex arithmetic is enabled. The final, optional, parameter
to the diff dx() function is an approximate step size, which indicates the range
of argument values over which Pyxplot should take samples to determine the
gradient. If no value is supplied, a value of 10−6x is used, replaced by 10−6 if
x = 0. The following example would evaluate the differential of the function
cos(x) with respect to x at x = 1.0:

" print diff dx(’cos(x)’, 1.0)

When complex arithmetic is enabled, Pyxplot checks that the function being
differentiated satisfies the Cauchy-Riemann equations, and returns an error if
it does not, to indicate that it is not differentiable. The following is an example
of a function which is not differentiable, and which throws an error because the
Cauchy-Riemann equations are not satisfied:

% set num comp

print diff dx(Re(sin(x)),1)

Advanced users may be interested to know that int dx() function is im-
plemented using the gsl integration qags() function of the Gnu Scientific
Library (GSL), and the diff dx() function is implemented using the gsl -

deriv central() function of the same library. Any caveats which apply to the
use of these routines also apply to Pyxplot’s numerical calculus.

Example 5: Integrating the function sinc(x).

54 CHAPTER 4. PERFORMING CALCULATIONS

The function sinc(x) cannot be integrated analytically, but it can be shown that

∫ ±∞

0

sinc(x) dx = ±π/2.

In the following script, we use Pyxplot’s facilities for numerical integration to
produce a plot of

y =

∫ x

0

sinc(x) dx.

We reduce the number of samples taken along the abscissa axis to 80, as evalu-
ation of the numerical integral may be time consuming on older computers. We
use the set xformat command (see Section 8.8.8) to demark both the x- and
y-axes in fractions of π:

set samples 80

set key bottom right

set xformat r"%sπ"%(x/pi)
set yformat r"%sπ"%(y/pi)
set xrange [-5*pi:5*pi]

plot int dz(sinc(z),0,x)

-5π 0π 5π

-0.6π

-0.2π

0.2π

0.6π

∫ x

0

(sinc (z)) dz

4.9 Solving systems of equations

The solve command can be used to solve systems of one or more simultaneous
equations numerically. It takes as its arguments a comma-separated list of the
equations which are to be solved, and a comma-separated list of the variables
which are to be found. The latter should be prefixed by the word via, to
separate it from the list of equations:

solve <equation 1>, ... via <variable 1>, ...

4.9. SOLVING SYSTEMS OF EQUATIONS 55

Note that the time taken by the solver dramatically increases with the num-
ber of variables which are simultaneously found, whereas the accuracy achieved
simultaneously decreases. The following example solves a simple pair of simul-
taneous equations of two variables:

pyxplot> solve x+y=10, x-y=3 via x,y

pyxplot> print x

6.5

pyxplot> print y

3.5

No output is returned to the terminal if the numerical solver succeeds, otherwise
an error message is displayed. If any of the fitting variables are already defined
prior to the solve command’s being called, their values are used as initial
guesses, otherwise an initial guess of unity for each fitting variable is assumed.
Thus, the same solve command returns two different values in the following
two cases:

pyxplot> x= # Undefine x
pyxplot> solve cos(x)=0 via x

pyxplot> print x/pi

0.5

pyxplot> x=10

pyxplot> solve cos(x)=0 via x

pyxplot> print x/pi

3.5

In cases where any of the variables being solved for are not dimensionless, it
is essential that an initial guess with appropriate units be supplied, otherwise
the solver will try and fail to solve the system of equations using dimensionless
values:

%
x =

y = 5*unit(km)

solve x=y via x

"
x = unit(m)

y = 5*unit(km)

solve x=y via x

The solve command works by minimising the squares of the residuals of all
of the equations supplied, and so even when no exact solution can be found,
the best compromise is returned. The following example has no solution – a
system of three equations with two variables is over-constrained – but Pyxplot
nonetheless finds a compromise solution:

pyxplot> solve x+y=10, x-y=3, 2*x+y=16 via x,y

pyxplot> print x

6.4220634

pyxplot> print y

3.4266948

56 CHAPTER 4. PERFORMING CALCULATIONS

When complex arithmetic is enabled, the solve command allows each of
the variables being fitted to take any value in the complex plane, and thus the
number of dimensions of the fitting problem is effectively doubled – the real
and imaginary components of each variable are solved for separately – as in the
following example:

pyxplot> set numerics complex

pyxplot> solve exp(x)=e*i via x

pyxplot> print Re(x)

-1227.7

pyxplot> print Im(x)/pi

0

4.10 Searching for minima and maxima of func-
tions

The minimize and maximize commands can be used to find the minima or
maxima of algebraic expressions. In each case, a single algebraic expression
should be supplied for optimisation, together with a comma-separated list of
the variables with respect to which it should be optimised. In the following
example, a minimum of the sinusoidal function cos(x) is sought:

pyxplot> set numerics real

pyxplot> x=0.1

pyxplot> minimize cos(x) via x

pyxplot> print x/pi

1

Note that this particular example doesn’t work when complex arithmetic is
enabled, since cos(x) diverges to −∞ at x = π +∞i.

Various caveats apply both to the minimize and maximize commands, as
well as to the solve command. All of these commands operate by searching
numerically for optimal sets of input parameters to meet the criteria set by the
user. As with all numerical algorithms, there is no guarantee that the locally
optimum solutions returned are the globally optimum solutions. It is always
advisable to double-check that the answers returned agree with common sense.

These commands can often find solutions to equations when these solutions
are either very large or very small, but they usually work best when the solution
they are looking for is roughly of order unity. Pyxplot does have mechanisms
which attempt to correct cases where the supplied initial guess turns out to
be many orders of magnitude different from the true solution, but it cannot
be guaranteed not to wildly overshoot and produce unexpected results in such
cases. To reiterate, it is always advisable to double-check that the answers
returned agree with common sense.

Example 6: Finding the maximum of a blackbody curve.

4.10. SEARCHING FOR MINIMA AND MAXIMA OF FUNCTIONS 57

When a surface is heated to any given temperature T , it radiates thermally.
The amount of electromagnetic radiation emitted at any particular frequency,
per unit area of surface, per unit frequency of light, is given by the Planck Law:

Bν(ν, T) =

(
2h3

c2

)
ν3

exp(hν/kT)− 1

The visible surface of the Sun has a temperature of approximately 5800 K and
radiates in such a fashion. In this example, we use the solve, minimize and
maximize commands to locate the frequency of light at which it emits the most
energy per unit frequency interval. This task is simplified as Pyxplot has a
system-defined mathematical function Bv(nu,T) which evaluates the expression
given above.

Below, a plot is shown of the Planck Law for T = 5800 K to aid in visual-
ising the solution to this problem:

30 100 300 1000

Frequency / THz

10−8

10−6

10−4

B
v

(ν
,T

)
/

er
g

s−
1
H

z−
1
cm

−
2
st

er
ad

−
1

Blackbody at 5800 K

To search for the maximum of this function using the maximize command,
we must provide an initial guess to indicate that the answer sought should have
units of Hz:

pyxplot> nu = 1e14*unit(Hz)

pyxplot> maximize phy.Bv(nu,5800*unit(K)) via nu

pyxplot> print nu

340.9781 THz

58 CHAPTER 4. PERFORMING CALCULATIONS

This maximum could also be sought be searching for turning points in the
function Bν(ν, T), i.e. by solving the equation

dBν(ν, T)

dν
= 0.

This can be done as follows:

pyxplot> nu = 2e14*unit(Hz)

pyxplot> solve diff dv(phy.Bv(v,5800*unit(K)),nu) = \
.......> unit(0*W/Hz**2/m**2/sterad) via nu

pyxplot> print nu

340.9781 THz

Finally, this maximum could also be found using Pyxplot’s built-in function
Bvmax(T):

pyxplot> print phy.Bvmax(5800*unit(K))

340.97806 THz

4.11 Working with time-series data

Time-series data need to be handled carefully. If times and dates are specified
in local time, then conversions may be necessarily between timezones, especially
around the beginning and end of daylight saving time.

Even when this it not an issue, months have different lengths and leap years
have an extra day, which mean it is not straightforward to convert a series of
calendar dates into elapsed times between the data points.

On a more basic level, even time expressed in hours and minutes are com-
plicated by being expressed as non-decimal fractions of days.

To simplify the process of working with dates and times, Pyxplot has native
date object type, together with pre-defined functions in the time module for
creating and manipulating such objects. A date object represents a specific
moment in time, and can be created from a time and date specified in any
arbitrary timezone. It is then possible to read out the time and date components
of this date object in any other arbitrary timezone.

The functions for creating date objects are as follows:

time.fromCalendar(year,month,day,hour,min,sec,<timezone>)

This function creates a date object from the specified calendar date. It takes
six compulsary numerical inputs: the year, the month number (1–12), the day
of the month (1–31), the hour of day (0–24), the number of minutes (0–59), and
the number of seconds (0–59). To enter dates before AD 1, a year of 0 should be
passed to indicate 1 BC, −1 should be passed to indicate the year 2 BC, and so
forth.

A timezone may optionally be specified as the final argument to the function.
If no timezone is specified, then the default is used, which may be set using the
set timezone command. The timezone should be specified as a location string,
of the form Europe/London, America/New York or Australia/Perth, as used
by the tz database. A complete list of available timezones can be found here:

4.11. WORKING WITH TIME-SERIES DATA 59

http://en.wikipedia.org/wiki/List_of_tz_database_time_zones.
Daylight saving time will be applied as appropriate for the specified location.

Note that strings such as GMT, EDT or CEST are not allowed as timezones; a
location should be specified.

If universal time is used, the timezone may be specified as UTC.

time.fromUnix(t)

This function creates a date object from the specified numerical Unix time – i.e.
the number of seconds ellapsed since midnight on 1st January 1970 UTC.

time.fromJD(t)

This function creates a date object from the specified numerical Julian date.

time.fromMJD(t)

This function creates a date object from the specified numerical modified Julian
date.

time.now()

This function takes no arguments, returns a date object corresponding to
the current system clock time, as in the following example:

pyxplot> print time.now()

Tue 2012 Sep 4 20:57:00 UTC

pyxplot> set timezone "America/Los Angeles"

pyxplot> print time.now()

Tue 2012 Sep 4 13:57:41 PDT

Note that the date object created by the time.now() function is identical
regardless of timezone, but it is displayed differently depending upon the current
timezone.

The following example creates a date object representing midnight on 1st
January 2000, in universal time, and in Western Australian time:

pyxplot> print time.fromCalendar(2000,1,1,0,0,0)

Sat 2000 Jan 1 00:00:00 UTC

pyxplot> a = time.fromCalendar(2000,1,1,0,0,0,"Australia/Perth")

pyxplot> print a # Note that this does not use Australian time
Fri 1999 Dec 31 15:59:59 UTC

pyxplot> set timezone "Pacific/Chatham"

pyxplot> print a

Sat 2000 Jan 1 05:45:00 CHADT

pyxplot> set timezone "Antarctica/South Pole"

pyxplot> print a

Sat 2000 Jan 1 05:00:00 NZDT

pyxplot> print a.toYear() # at the south pole
2000

pyxplot> print a.toYear("Europe/London")

1999

Once created, it is possible to add numbers with physical units of time to

http://en.wikipedia.org/wiki/List_of_tz_database_time_zones

60 CHAPTER 4. PERFORMING CALCULATIONS

dates, as in the following example:

pyxplot> myDate = time.fromCalendar(2012,8,1,0,0,0)

pyxplot> print myDate + unit(7*day)

Wed 2012 Aug 8 00:00:00 UTC

pyxplot> print myDate - unit(2000*day)

Fri 2007 Feb 9 00:00:00 UTC

Standard string representations of calendar dates can be produced with the
print command. It is also possible to use the string substitution operator, as
in "%s"%(date), or the str method of date objects, as in date.str().

In addition, the time.string function can be used to choose a custom dis-
play format for the date, or to specify the timezone in which the date should be
displayed. Its arguments are as follows:

time.string(t,<format>,<timezone>)

This function returns a string representation of the specified date object t. The
second argument is optional, and may be used to control the format of the
output. If no format string is provided, then the format
"%a %Y %b %d %H:%M:%S %Z"

is used. In such format strings, the following tokens are substituted for various
parts of the date:

Token Value
%% A literal % sign.
%a Three-letter abbreviated weekday name.
%A Full weekday name.
%b Three-letter abbreviated month name.
%B Full month name.
%C Century number, e.g. 21 for the years 2000-2099.
%d Day of month.
%H Hour of day, in range 00-23.
%I Hour of day, in range 01-12.
%k Hour of day, in range 0-23.
%l Hour of day, in range 1-12.
%m Month number, in range 01-12.
%M Minute, in range 00-59.
%p Either am or pm.
%S Second, in range 00-59.
%y Last two digits of year number.
%Y Year number.
%Z Timezone name (e.g. UTC, CEST, EDT).

The third argument is also optional, and specifies the timezone that the
time should be displayed in. As above, this should be specified in the form
Europe/London, America/New York or Australia/Perth, as used by the tz

database. A complete list of available timezones can be found here: http:

//en.wikipedia.org/wiki/List_of_tz_database_time_zones. If universal
time is used, the timezone may be specified as UTC. If no timezone is specified,
the default is used as set in the set timezone command.

http://en.wikipedia.org/wiki/List_of_tz_database_time_zones
http://en.wikipedia.org/wiki/List_of_tz_database_time_zones

4.11. WORKING WITH TIME-SERIES DATA 61

Several functions are provided for converting date objects back into various
numerical forms of timekeeping and components of calendar dates, which are
listed below. Where appropriate, an optional timezone may be specified to
obtain a calendar date for a particular location:

toDayOfMonth(< timezone >)
The toDayOfMonth(< timezone >) method returns the day of the month of a
date object in the current calendar.

toDayWeekName(< timezone >)
The toDayWeekName(< timezone >) method returns the name of the day of
the week of a date object.

toDayWeekNum(< timezone >)
The toDayWeekNum(< timezone >) method returns the day of the week (1–7)
of a date object.

toHour(< timezone >)
The toHour(< timezone >) method returns the integer hour component (0–23)
of a date object.

toJD()
The toJD() method converts a date object to a numerical Julian date.

toMinute(< timezone >)
The toMinute(< timezone >) method returns the integer minute component
(0–59) of a date object.

toMJD()
The toMJD() method converts a date object to a modified Julian date.

toMonthName(< timezone >)
The toMonthName(< timezone >) method returns the name of the month in
which a date object falls.

toMonthNum(< timezone >)
The toMonthNum(< timezone >) method returns the number (1–12) of the
month in which a date object falls.

toSecond(< timezone >)
The toSecond(< timezone >) method returns the seconds component (0–60) of
a date object, including the non-integer component.

toUnix()
The toUnix() method converts a date object to a Unix time.

toYear(< timezone >)

62 CHAPTER 4. PERFORMING CALCULATIONS

The toYear(< timezone >) method returns the year in which a date object falls
in the current calendar.

For example:

pyxplot> a = time.fromCalendar(2000,1,1,0,0,0)

pyxplot> time.string(a)

Sat 2000 Jan 1 00:00:00 UTC

pyxplot> time.string(a,"%d %B %Y")

1 January 2000

pyxplot> set calendar muslim

pyxplot> time.string(a,"%d %B %Y")

21 Dhu l-Qa’da 1389

4.11.1 Calendars

By default, the time.fromCalendar function makes a transition from the old
Julian calendar to the new Gregorian calendar at midnight on 14th September
1752 (Gregorian calendar), when Britain and the British Empire switched cal-
endars. Thus, dates between 2nd September and 14th September 1752 are not
valid input dates, since they days never occurred in the British calendar.

This behaviour may be changed using the set calendar command, which
offers a choice of nine different calendars listed in Table 4.8. Most of the these
calendars differ only in the date on which the transition is made between the
old (Julian) calendar and the new (Gregorian) calendar.

The exceptions are the Hebrew and Islamic calendars, which have entirely
different systems of months.

Optionally, the set calendar command can be used to set different calen-
dars to use when converting calendar dates into date objects, and when con-
verting in the opposite direction. This is useful when converting data from one
calendar to another. The syntax used to do this is as follows:

set calendar in Julian # only applies to time.fromCalendar()

set calendar out Gregorian # does not apply to time.fromCalendar()

set calendar in Julian out Gregorian # change both

show calendar # show calendars currently being used

Example 7: Calculating the date of Leo Tolstoy’s birth.

The Russian novelist Leo Tolstoy was born on 28th August 1828 and died on
7th November 1910 in the Russian calendar. What dates do these correspond
to in the Western calendar?

pyxplot> set calendar in russian out british

pyxplot> birth = time.fromCalendar(1828, 8,28,12,0,0)

pyxplot> death = time.fromCalendar(1910,11, 7,12,0,0)

pyxplot> print birth

Tue 1828 Sep 9 12:00:00 UTC

pyxplot> print death

Sun 1910 Nov 20 12:00:00 UTC

4.11. WORKING WITH TIME-SERIES DATA 63

Calendar Description
British Use the Gregorian calendar from 14th September 1752

(Gregorian), and the Julian calendar prior to 2nd Septem-
ber 1752 (Julian).

French Use the Gregorian calendar from 20th December 1582 (Gre-
gorian), and the Julian calendar prior to 9th December 1582
(Julian).

Greek Use the Gregorian calendar from 1st March 1923 (Grego-
rian), and the Julian calendar prior to 15th February 1923
(Julian).

Gregorian Use the Gregorian calendar for all dates.
Hebrew Use the Hebrew (Jewish) calendar.
Islamic Use the Islamic (Muslim) calendar. Note that the Islamic

calendar is undefined prior to 1st Muharram AH 1, corre-
sponding to 18th July AD 622.

Julian Use the Julian calendar for all dates.
Papal Use the Gregorian calendar from 15th October 1582 (Gre-

gorian), and the Julian calendar prior to 4th October 1582
(Julian).

Russian Use the Gregorian calendar from 14th February 1918 (Gre-
gorian), and the Julian calendar prior to 31st January 1918
(Julian).

Table 4.8: The calendars supported by the set calendar command, which
can be used to convert dates between calendar dates and Julian Day numbers.

64 CHAPTER 4. PERFORMING CALCULATIONS

4.11.2 Time intervals

The time interval between two date objects can be found by subtracting one
from the other. The following example calculates the time interval between
Albert Einstein’s birth and death. The result is returned as a numerical object
with physical dimensions of time:

pyxplot> myDate1 = time.fromCalendar(1879,3,14,0,0,0)

pyxplot> myDate2 = time.fromCalendar(1955,4,18,0,0,0)

pyxplot> print myDate2 - myDate1

2401315200 s

pyxplot> print (myDate2 - myDate1) / unit(year)

76.094714

The function time.interval(t1,t2) has the same effect. The next example
calculate the time elapsed between the traditional date for the foundation of
Rome by Romulus and Remus in 753 BC and that of the deposition of the last
Emperor of the Western Empire in AD 476:

pyxplot> x = time.fromCalendar(-752,4,21,12,0,0)

pyxplot> y = time.fromCalendar(476,9, 4,12,0,0)

pyxplot> print y-x

3.8764483e+10 s

pyxplot> print time.interval(y,x)

3.8764483e+10 s

pyxplot> print (y-x)/unit(year)

1228.3986

The function time.intervalStr() is similar, but returns a textual represen-
tation of the time interval. It takes an optional third parameter which specifies
the textual format in which the time interval should be represented. If no for-
mat is supplied, then the following verbose format is used:

"%Y years %d days %h hours %m minutes and %s seconds"

Table 4.10 lists the tokens which are substituted for various parts of the time
interval. The following examples demonstrate the use of the function:

pyxplot> x = time.fromCalendar(-752,4,21,12,0,0)

pyxplot> y = time.fromCalendar(476,9, 4,12,0,0)

pyxplot> print time.intervalStr(y,x)

pyxplot> print time.intervalStr(y,x,"$%Y^\mathrm{y}%d^\mathrm{d}$")
$-1229^\mathrm{y}-78^\mathrm{d}$

Example 8: A plot of the rate of downloads from an Apache webserver.

4.11. WORKING WITH TIME-SERIES DATA 65

Token Substitution value
%% A literal % sign.
%d The number of days elapsed, modulo 365.
%D The number of days elapsed.
%h The number of hours elapsed, modulo 24.
%H The number of hours elapsed.
%m The number of minutes elapsed, modulo 60.
%M The number of minutes elapsed.
%s The number of seconds elapsed, modulo 60.
%S The number of seconds elapsed.
%Y The number of years elapsed.

Table 4.10: Tokens which are substituted for various components of the time
interval by the time diff string function.

In this example, we use Pyxplot’s facilities for handling dates and times to
produce a plot of the rate of downloads from an Apache webserver based upon
the download log which it stores in the file /var/log/apache2/access.log.
This file contain a line of the following form for each page or file requested from
the webserver:

127.0.0.1 - - [14/Jun/2012:16:43:18 +0100] "GET / HTTP/1.1" 200 484 "-"

"Mozilla/5.0 (X11; Linux x86 64) AppleWebKit/535.19 (KHTML, like Gecko)

Ubuntu/12.04 Chromium/18.0.1025.151 Chrome/18.0.1025.151 Safari/535.19"

However, Pyxplot’s default input filter for .log files (see Section 5.1) manipu-
lates the dates in strings such as these into the form

127.0.0.1 - - [14 6 2012 16 43 18 +0100] "GET HTTP 1.1" 200 484

"-" "Mozilla/5.0 (X11; Linux x86 64) AppleWebKit/535.19 (KHTML, like Gecko)

Ubuntu/12.04 Chromium/18.0.1025.151 Chrome/18.0.1025.151 Safari/535.19"

such that the day, month, year, hour, minute and second components of
the date are contained in the 5th to 10th white-space-separated columns
respectively. In the script below, the time.fromCalendar() function and
toUnix() method are then used to convert these components into Unix times.
The histogram command (see Section 5.9) is used to sort each of the web
accesses recorded in the Apache log file into hour-sized bins. Because this may
be a time-consuming process for large log files on busy servers, we use the
tabulate command (see Section 5.5) to store the data into a temporary data
fileon disk before deciding how to plot it:

set output ’apache.dat’

histogram f() ’/var/log/apache2/access.log’ \
using time.fromCalendar($7,$6,$5,$8,$9,$10).toUnix() \
binwidth 1/24

tabulate f(x) with format "%16f %16f"

66 CHAPTER 4. PERFORMING CALCULATIONS

Having stored our histogram in the file apache.dat, we now plot the resulting
histogram, labelling the horizontal axis with the days of the week. The com-
mands used to achieve this will be introduced in Chapter 8. The major axis
ticks along the horizontal axis are placed at daily intervals, and minor axis ticks
are placed along the axis every quarter day, i.e. every six hours.

set width 10

set xlabel ’Day’

set ylabel ’Rate of downloads per day’

set xtics 0, 86400

set mxtics 0, 21600

set xformat "%s"%(time.fromUnix(x).toDayWeekName()) rot 30

set xrange [1269855360:1270373760]

plot "apachelog.dat" notitle with lines

The plot below shows the graph which results on a moderately busy webserver
which hosts, among many other sites, the Pyxplot website:

Tuesday

Wednesday

Thursday

Friday
Saturday

Sunday

Day

2 × 105

3 × 105

4 × 105

R
at

e
of

d
ow

n
lo

ad
s

p
er

d
ay

Chapter 5

Working with data

This chapter returns to Pyxplot’s commands for acting on data stored in files.
Chapter 3 has already introduced the plot command, which draws graphs, but
there are also commands for tabulating data to new data files, for computing
histograms, for interpolating data, and for taking Fourier transforms.

Section 3.8 has already introduced the options which can be used to select
data from particular columns or which satisfy particular criteria: using, index,
every and select. These options are universal to all of Pyxplot’s commands
which operate on data sets. In all cases, data sets can be read from files,
sampled from functions, or specified as a colon-separated list of vectors (see
Section 6.5.3).

This chapter begins by describing other common features of these commands,
before moving on to describe each command in turn. It leaves the details of the
plot command, which was introduced in Chapter 3, to be described in full detail
in Chapter 8.

5.1 Input filters

By default, Pyxplot expects data files to be in a simple plaintext format which
is described in Section 3.8. However, input filters provide a mechanism by which
data files in arbitrary formats can be read.

An input filter is specified to act on all data files that match some filename
pattern. For example, a filter could be defined to act on all data files called
*.txt or *.dat. The filter itself takes the form of a program which is launched
by Pyxplot whenever a matching data file is read. The program is passed the
filename of the data file as a command line argument immediately following
any arguments specified in the filter’s definition. It is then expected to return
the data contained in the file to Pyxplot in plaintext format using its stdout

stream. Any errors which such a program returns to stderr are passed to the
user as error messages.

Pyxplot has five input filters built-in, as the show filters command reveals:

set filter "*.fits" "/usr/local/lib/pyxplot/pyxplot_fitshelper"

set filter "*.gz" "/bin/gunzip -c"

set filter "*.log" "/usr/local/lib/pyxplot/pyxplot_timehelper"

set filter "ftp://*" "/usr/bin/wget -O -"

67

68 CHAPTER 5. WORKING WITH DATA

set filter "http://*" "/usr/bin/wget -O -"

The above set of filters allow Pyxplot to read data from gzipped plaintext
data files, from data files available over the web via HTTP or FTP, and data
tables in FITS format. A filter is also provided for converting textual dates in
log files into numbers representing days, months and years. To add to this list of
filters, it is necessary to write a short program or shell script; the simple filters
provided in Pyxplot’s source code for .log and .fits files may provide a useful
model.

The filter can then be installed using the syntax

set filter <filenameWildcard> <shellCommand>

5.2 Reading data from a pipe

Pyxplot usually reads data from files, or samples it from functions. However,
it is also possible to read data piped into it from other processes if these are
directed to Pyxplot’s standard input stream, stdin. To do this, the magic
filename - is used:

plot ’-’ with lines

This makes it possible to call Pyxplot from within another program and pass
it data to plot without ever storing the data on disk. Whilst this facility has
great power, it should be used with caution.

It is often very tempting to write programs which both perform calculations
and plot the results immediately, but this can make it difficult to replot graphs
later. A few months after the event, when the need arises to replot the same
data in a different form or in a different style, remembering how to use a sizable
program can prove tricky – especially if the person struggling to do so is not
you! But a simple data file is quite straightforward to plot time and again.

5.3 Including data within command scripts

It is also possible to embed data directly within Pyxplot scripts, which may
be useful when a small number of markers are wanted at particular pre-defined
positions on a graph, or when it is desirable to roll a Pyxplot script and the
data it takes into a single file for easy storage or transmission. To do this, one
uses the magic filename -- and terminates the data with the string END:

plot ’--’ with lines

0 0

1 1

2 0

3 1

END

print "More Pyxplot commands can be placed after END"

5.4. SPECIAL COMMENT LINES IN DATA FILES 69

5.4 Special comment lines in data files

Whilst most comment lines in data files – those lines which begin with a hash
character – are ignored by Pyxplot, lines which begin with any of the following
four strings are parsed:

Columns:

ColumnUnits:

Rows:

RowUnits:

The first pair of special comments affect the behaviour of Pyxplot when plotting
using columns, while the second pair affect the behaviour of Pyxplot when
plotting using rows (see Section 3.9.1). Within each pair, the first may be
used to tell Pyxplot the names of each of the columns/rows in the data file,
while the second may be used to tell Pyxplot the physical units of the values in
each of the columns/rows. These special comments may appear multiple times
throughout a single data file to indicate changes to the format of the data.

For example, a data file prefixed with the lines

Columns: Time Distance

ColumnUnits: s 10*m

contains two columns of data, the first containing times measured in seconds
and the second containing distances measured in tens of metres. Note that
because the entries on each of these lines are whitespace-separated, spaces are
not allowed in column names or within units such as 10*m. This data file could
be plotted using any of the following forms equivalently

plot ’data’ using Time:Distance

plot ’data’ using $Time:$Distance

plot ’data’ using 1:2

and the axes of the graph would indicate the units of the data (see Section 8.8.3).

5.5 Tabulating functions and slicing data files

Pyxplot’s tabulate command is similar to its plot command, but instead of
plotting a series of data points onto a graph, it writes them to a data file. It can
be used to produce text files containing samples of functions, to rearrange/filter
the columns in data files, to produce a copy of a data file using different physical
units, and so on.

The following example would produce a data file called gamma.dat containing
a list of values of the gamma function:

set output ’gamma.dat’

tabulate [1:5] gamma(x)

One way to tabulate multiple functions into a common file is with the using

modifier, as in the example

tabulate [0:2*pi] sin(x):cos(x):tan(x) using 1:2:3:4

70 CHAPTER 5. WORKING WITH DATA

This tabulates the supplied functions horizontally alongside one another in a
series of columns. As many expressions may be supplied to the using modifier
as columns are wanted.

Alternatively, if a series on functions or data files are listed in a comma-
separated list (as is done in the plot command to plot multiple datasets), the
functions are tabulated one after another in a series of index blocks separated
by double linefeeds (see Section 3.8):

tabulate [0:2*pi] sin(x), cos(x), tan(x)

The set samples command can be used to control the number of points
that are listed when tabulating functions, in the same way that it controls the
number of data points drawn by the plot command:

set samples 200

If the abscissa axis is set to be logarithmic then the functions are evaluated
at logarithmically-space points along the axis; otherwise, they are samples at
linearly-spaced points.

The select, using and every modifiers operate in the same manner in
the tabulate command as in the plot command. Thus the following example
would write out the third, sixth and ninth columns of the data file input.dat,
but only when the arcsine of the value in the fourth column is positive:

set output ’filtered.dat’

tabulate ’input.dat’ using 3:6:9 select (asin($4)>0)

The numerical display format used for each column of the output file is
automatically chosen to preserve accuracy whilst simultaneously being as easily
human readable as possible. Thus, columns which contain only integers are
displayed as such, and scientific notation is only used in columns which contain
very large or very small values.

If desired, however, a custom format may be specified using the with format

modifier. This can be used both to specify text to appear in between the columns
of data, and to specify the format of the data itself using tokens such as %.5f,
as used by Pyxplot’s string substitution operator (%; see Section 6.2.1), and the
sprintf statement of many other programming languages.

For example, to tabulate the values of x2 to very many significant figures
with some additional text, one could use:

tabulate x**2 with format "x = %f ; x**2 = %27.20e"

This might produce the following output:

x = 0.000000 ; x**2 = 0.00000000000000000000e+00

x = 0.833333 ; x**2 = 6.94444444444442421371e-01

x = 1.666667 ; x**2 = 2.77777777777778167589e+00

There is flexibility as to how many substitution tokens appear in the format
specification. If the number of tokens is fewer than the number of columns of
data, then the format is repeated until all the columns have been printed. Thus,
the command

5.6. FUNCTION FITTING 71

tabulate x**2 with format "%.3f "

might produce the output:

0.000 0.000

0.833 0.694

1.667 2.778

Note that the space character at the end of the format is important to ensure
that there is a gap between the columns.

If formats are supplied for more columns than are present, then the final
columns are padded with nan (not a number).

The data produced by the tabulate command can be sorted in order of
any arbitrary metric by supplying an expression after the sortby modifier. The
data are sorted in order from the lowest value of this expression to the highest.

5.6 Function fitting

The fit command can be used to fit arbitrary functional forms to data points
read from files. It can be used to produce best-fit lines1 for datasets, or to
determine gradients and other mathematical properties of data by looking at
the parameters associated with the best-fitting functional form.

The following simple example fits a straight line to data in a file called
data.dat:

f(x) = a*x+b

fit f() ’data.dat’ index 1 using 2:3 via a,b

The first line specifies the functional form which is to be used. The coefficients
of this function, a and b, which are to be varied during the fitting process, are
listed after the keyword via in the fit command. The modifiers index, every,
select and using have the same meanings as in the plot command.

When a function of n variables is being fit, at least n+ 1 columns (or rows –
see Section 3.9.1) of data must be specified after the using modifier. By default,
the first n+ 1 columns are used. These correspond to the values of each of the
n arguments to the function, plus finally the value which the output from the
function is aiming to match.

If an additional column is specified, then this is taken to contain the standard
error in the value that the output from the function is aiming to match, and
can be used to weight the data points which are being used to constrain the fit.

As an example, below we generate a data file containing samples of a square
wave using the tabulate command and fit the first three terms of a truncated
Fourier series to it:

set samples 10

set output ’square.dat’

tabulate [-pi:pi] 1-2*heaviside(x)

1Another way of producing best-fit lines is to use the interpolate command; more details
are given in Section 5.7

72 CHAPTER 5. WORKING WITH DATA

f(x) = a1*sin(x) + a3*sin(3*x) + a5*sin(5*x)

fit f() ’square.dat’ via a1, a3, a5

set xlabel ’x’ ; set ylabel ’y’

plot ’square.dat’ title ’data’ with points pointsize 2, \

f(x) title ’Fitted function’ with lines

−2.5 0 2.5

x

−1

−0.5

0

0.5

1
y

Data
Fitted function

As the fit command works, it displays statistics including the best fit values
of each of the fitting parameters, the uncertainties in each of them, and the
covariance matrix. These can be useful for analysing the security of the fit
achieved, but calculating the uncertainties in the best fit parameters and the
covariance matrix can be time consuming, especially when many parameters are
being fitted simultaneously. The optional word withouterrors can be included
immediately before the filename of the input data file to substantially speed up
cases where this information is not required.

By default, the starting values for each of the fitting parameters is 1.0.
However, if the variables to be used in the fitting process are already set before
the fit command is called, these initial values are used instead. For example,
the following would use the initial values {a = 100, b = 50}:
f(x) = a*x+b

a = 100

b = 50

fit f() ’data.dat’ index 1 using 2:3 via a,b

If any of the fitting coefficients are not dimensionless – that is, they have physical
units such as meters or seconds – then an initial value with the appropriate units
must be specified.

A few points are worth noting:

• A series of ranges may be specified after the fit command, using the same
syntax as in the plot command, as described in Section 3.14. If ranges
are specified then only data points falling within these ranges are used in
the fitting process; the ranges refer to each of the n variables of the fitted
function in order:

fit [0:10] f() ’data.dat’ via a

• As with all numerical fitting procedures, the fit command comes with
caveats. It uses a generic fitting algorithm, and may not work well with

5.7. DATAFILE INTERPOLATION 73

poorly behaved or ill-constrained problems. It works best when all of the
values it is attempting to fit are of order unity. For example, in a problem
where a was of order 1010, the following might fail:

f(x) = a*x

fit f() ’data.dat’ via a

However, better results might be achieved if a were artificially made of
order unity, as in the following script:

f(x) = 1e10*a*x

fit f() ’data.dat’ via a

• For those interested in the mathematical details, the workings of the fit

command are discussed in more detail in Appendix C.

5.7 Datafile interpolation

The interpolate command can be used to generate a special function within
Pyxplot’s mathematical environment which interpolates a set of data points sup-
plied from a data file. As with other commands, data can also be supplied from
functions, or from a colon-separated list of vectors (see Section 6.5.3). Either
one- or two-dimensional interpolation is possible. Two-dimensional interpola-
tion is described in the next section.

In the case of one-dimensional interpolation, various different types of in-
terpolation are supported: linear interpolation, power law interpolation, poly-
nomial interpolation, cubic spline interpolation and akima spline interpolation.
Stepwise interpolation returns the value of the datapoint nearest to the re-
quested point in argument space. The use of polynomial interpolation with
large datasets is strongly discouraged, as polynomial fits tend to show severe
oscillations between data points.

Except in the case of stepwise interpolation, extrapolation is not permitted;
if an attempt is made to evaluate an interpolated function beyond the limits of
the data points which it interpolates, Pyxplot returns an error or value of not-
a-number. This behaviour can be configured using the set numeric errors

quiet command (see Section 4.4).
The interpolate command has similar syntax to the fit command:

interpolate (akima | linear | loglinear | polynomial |

spline | stepwise |

2d [(bmp_r | bmp_g | bmp_b)])

[<range specification>] <function name>"()"

’<filename>’

[every <expression> {:<expression}]

[index <value>]

[select <expression>]

[using <expression> {:<expression}]

A very common application of the interpolate command is to perform
arithmetic functions such as addition or subtraction on datasets which are not

74 CHAPTER 5. WORKING WITH DATA

sampled at the same abscissa values. The following example would plot the
difference between two such datasets:

interpolate linear f() ’data1.dat’

interpolate linear g() ’data2.dat’

plot [min:max] f(x)-g(x)

Note that it is advisable to supply a range to the plot command in this example:
because the two datasets have been turned into continuous functions, the plot

command has to guess a range over which to plot them, unless one is explicitly
supplied.

The spline command is an alias for interpolate spline; the following
two statements are equivalent:

spline f() ’data1.dat’

interpolate spline f() ’data1.dat’

Example 9: A demonstration of the linear, spline and akima modes of
interpolation.

In this example, we demonstrate the linear, spline and akima modes of inter-
polation using an example data file with non-smooth data generated using the
tabulate command (see Section 5.5):

f(x) = 0

f(x)[0:1] = 0.5

f(x)[2:4] = cos((x-3)*pi/2)

set samples 20

tabulate [0:4] f(x)

Having set three functions to interpolate these non-smooth data in different
ways, we plot them with a vertical offset of 0.1 between them for clarity. The
interpolated data fileis plotted with points three times to show where each of
the interpolation functions is pinned.

interpolate linear f linear() "interpolation.dat"

interpolate spline f spline() "interpolation.dat"

interpolate akima f akima () "interpolation.dat"

set key top left

plot [0:4][-0.1:1.3] \
"interpolation.dat" using 1:($2+0.0) notitle with points pt 1, \
f linear(x)+0.0 title "Linear", \
"interpolation.dat" using 1:($2+0.1) notitle with points pt 1, \
f spline(x)+0.1 title "Spline", \
"interpolation.dat" using 1:($2+0.2) notitle with points pt 1, \
f akima (x)+0.2 title "Akima"

The resulting plot is shown below:

5.7. DATAFILE INTERPOLATION 75

0 1 2 3 4

0

0.5

1

Linear
Spline
Akima

5.7.1 Two-dimensional interpolation

In the case of two-dimensional interpolation, the type of interpolation to be
used is set using the interpolate modifier to the set samples command, and
may be changed at any time after the interpolation function has been created.
The options available are nearest neighbor interpolation – which is the two-
dimensional equivalent of stepwise interpolation, inverse square interpolation
– which returns a weighted average of the supplied data points, using the in-
verse squares of their distances from the requested point in argument space
as weights, and Monaghan Lattanzio interpolation, which uses the weighting
function (Monaghan & Lattanzio 1985)

w(x) = 1− 3/2v2 + 3/4v3 for 0 ≤ v ≤ 1

= 1/4(2− v)3 for 1 ≤ v ≤ 2

where v = r/h for h =
√
A/n, A is the product (xmax−xmin)(ymax− ymin) and

n is the number of input datapoints. These are selected as follows:

set samples interpolate nearestNeighbor

set samples interpolate inverseSquare

set samples interpolate monaghanLattanzio

The following example creates a function quadrapole(x,y) which interpo-
lates a quadrapole:

set samples interpolate inverseSquare

interpolate 2d quadrapole() ’--’

-1 -1 1

-1 1 -1

1 -1 -1

1 1 1

END

76 CHAPTER 5. WORKING WITH DATA

Finally, data can be imported from graphical images in bitmap (.bmp) format
to produce a function of two arguments returning a value in the range 0 → 1
which represents the data in one of the image’s three color channels. The two
arguments are the horizontal and vertical position within the bitmap image, as
measured in pixels. This is done using syntax of the form:

interpolate 2d bmp_b blue() ’myImg.bmp’

5.8 Fourier transforms

The fft and ifft commands take Fourier transforms and inverse Fourier trans-
forms respectively of data. As with other commands, data can be supplied from
a data file, from functions, or from a colon-separated list of vectors (see Sec-
tion 6.5.3). In each case, a regular grid of abscissa values must be specified on
which to take the discrete Fourier transform, which can extend over an arbitrary
number of dimensions. The following example demonstrates the syntax of these
commands as applied to a two-dimensional top-hat function:

step(x,y) = tophat(x,0.2) * tophat(y,0.4)

fft [0: 1:0.01][0: 1:0.01] f() of step()

ifft [-50:49:1][-50:49:1] g() of f()

In the fft command above, Nx = 100 equally-spaced samples of the function
step(x, y) are taken between limits of xmin = 0 and xmax = 1 for each of
Ny = 100 equally-spaced values of y on an identical raster, giving a total of
104 samples. These are converted into a rectangular grid of 104 samples of the
Fourier transform f(ωx, ωy) at

ωx =
j

∆x
for −Nx

2
≤ j < Nx

2

(
equivalently, for− Nx

2∆x
≤ ωx <

Nx
2∆x

)
,

ωy =
k

∆y
for −Ny

2
≤ k < Ny

2

(
equivalently, for− Ny

2∆y
≤ ωy <

Ny
2∆y

)
.

where ∆x = xmax − xmin and ∆y is analogously defined. These samples are
interpolated stepwise, such that an evaluation of the function f(ωx, ωy) for gen-
eral inputs yields the nearest sample, or zero outside the rectangular grid where
samples are available. In general, even the Fourier transforms of real functions
are complex, and their evaluation when complex arithmetic is not enabled (see
Section 4.5) is likely to fail. For this reason, a warning is issued if complex
arithmetic is disabled when a Fourier transform function is evaluated.

In the example above, we go on to convert this set of samples back into
the function with which we started by instructing the ifft command to take
Nx = 100 equally-spaced samples along the ωx-axis between ωx,min = −Nx/2∆x
and ωx,max = (Nx − 1)/2∆x, with similar sampling along the ωy-axis.

Taking the simpler example of a one-dimensional Fourier transform for clar-
ity, as might be calculated by the instructions

step(x) = tophat(x,0.2)

fft [0: 1:0.01] f() of step()

5.8. FOURIER TRANSFORMS 77

the fft and ifft commands compute, respectively, discrete sets of samples Fm
and In of the functions F (ωx) and I(x), which are given by

Fj =

N−1∑

m=0

Ime
−2πijm/N δx, for − N

2
≤ j < N

2
,

and

Ij =

N−1∑

m=0

Fme
2πijm/N δωx, for − N

2
≤ j < N

2
,

where:

I(x) = Function being Fourier transformed.
F (ωx) = Fourier transform of I().

N = The number of values sampled along the abscissa axis.
δx = Spacing of values sampled along the abscissa axis.
δωx = Spacing of abscissa values sampled along the ωx axis.
i =

√
−1.

It may be shown in the limit that δx becomes small – i.e. when the number of
samples taken becomes very large – that these sums approximate the integrals

F (ωx) =

∫
I(x)e−2πixωx dx, (5.1)

and

I(x) =

∫
F (ωx)e2πixωx dωx. (5.2)

Fourier transforms may also be taken of data stored in data files using syntax
of the form

fft [-10:10:0.1] f() of ’datafile.dat’

In such cases, the data read from the data file for an N -dimensional FFT must
be arranged in N + 1 columns2, with the first N containing the abscissa values
for each of the N dimensions, and the final column containing the data to
be Fourier transformed. The abscissa values must strictly match those in the
raster specified in the fft or ifft command, and must be arranged strictly in
row-major order.

Example 10: The Fourier transform of a top-hat function.

2The using, every, index and select modifiers can be used to arrange it into this form.

78 CHAPTER 5. WORKING WITH DATA

It is straightforward to show that the Fourier transform of a top-hat function
of unit width is the function sinc(x′ = πx) = sin(x′)/x′. If

f(x) =

{
1 |x| ≤ 1/2
0 |x| > 1/2

,

the Fourier transform F (ω) of f(x) is

F (ω) =

∫ ∞

0

f(x) exp (−2πixω) dx =

∫ 1/2

−1/2

exp (−2πixω) dx

=
1

2πω
[exp (πiω)− exp (−πiω)] =

sin(πω)

πω
= sinc(πω).

In this example, we demonstrate this numerically by taking the Fourier
transform of such a step function, and comparing the result against the function
sinc(x) which is pre-defined within Pyxplot:

set numerics complex

step(x) = tophat(x,0.5)

fft [-1:1:0.01] f() of step()

plot [-10:10] Re(f(x)), sinc(pi*x)

Note that the function Re(x) is needed in the plot statement here, since al-
though the Fourier transform of a symmetric function is in theory real, in prac-
tice any numerical Fourier transform will yield a small imaginary component at
the level of the accuracy of the numerical method used. Although the calculated
numerical Fourier transform is defined throughout the range −50 ≤ x < 50, dis-
cretised with steps of size ∆x = 0.5, we only plot the central region in order to
show clearly the stepping of the function:

5.8. FOURIER TRANSFORMS 79

−10 −5 0 5 10

0

0.5

1 Re (f (x))

sinc (π × x)

In the following steps, we take the square of the function sinc(πx) just calculated,
and then plot the numerical inverse Fourier transform of the result:

g(x) = f(x)**2

ifft [-50:49.5:0.5] h(x) of g(x)

plot [-2:2] Re(h(x))

−2 −1 0 1 2
0

0.25

0.5

0.75

1

Re (h (x))

80 CHAPTER 5. WORKING WITH DATA

(a) Bartlett0

0.5

1

(b) Hann (c) Cosine

(d) Gauss0

0.5

1

w
(n

)

(e) Hamming (f) Hann

(g) Lanczos

0 0.5 1

0

0.5

1

(h) Rectangular

0 0.5 1

n/(N − 1)

(i) Triangular

0 0.5 1

Figure 5.1: Window functions available in the fft and ifft commands.

As can be seen, the result is a triangle function. This is the result which
would be expected from the convolution theorem, which states that when the
Fourier transforms of two functions are multiplied together and then inverse
transformed, the result is the convolution of the two original functions. The
convolution of a top-hat function with itself is, indeed, a triangle function.

5.8.1 Window functions

A range of commonly-used window functions may automatically be applied to
data as it is read into the fft and ifft commands; these are listed together
with their algebraic forms in Table 5.3 and shown in Figure 5.1. In each case,
the window functions are given for sample number n, which ranges between 0
and Nx. The window functions may be invoked using the following syntax:

fft [...] <out>() of <in>() window <window_name>

Where multi-dimensional FFTs are performed, window functions are applied to
each dimension in turn. Other arbitrary window functions may be implemented
by pre-multiplying data before entry to the fft and ifft commands.

5.8. FOURIER TRANSFORMS 81

Window Name Algebraic Definition

Bartlett w(n) =

(
2

Nx − 1

)(
Nx − 1

2
−
∣∣∣∣n−

Nx − 1

2

∣∣∣∣
)

BartlettHann w(n) = a0 − a1

∣∣∣∣
n

Nx − 1
− 1

2

∣∣∣∣− a2 cos

(
2πn

Nx − 1

)
, for

a0 = 0.62, a1 = 0.48, a2 = 0.38.

Cosine w(n) = cos

(
πn

Nx − 1
− π

2

)

Gauss w(n) = exp

{
−1

2

[
n− (Nx − 1)/2

σ(Nx − 1)/2

]2
}
, for σ = 0.5

Hamming w(n) = 0.54− 0.46 cos

(
2πn

Nx − 1

)

Hann w(n) = 0.5

[
1− cos

(
2πn

Nx − 1

)]

Lanczos w(n) = sinc

(
2n

Nx − 1
− 1

)

Rectangular w(n) = 1

Triangular w(n) =

(
2

Nx

)(
Nx
2
−
∣∣∣∣n−

Nx − 1

2

∣∣∣∣
)

Table 5.3: Window functions available in the fft and ifft commands.

82 CHAPTER 5. WORKING WITH DATA

5.9 Histograms

The histogram command takes a single column of data and produces a function
that represents the frequency distribution of the supplied data values. The
output function consists of a series of discrete intervals which we term bins.
Within each interval the output function has a constant value, determined such
that the area under each interval – i.e. the integral of the function over each
interval – is equal to the number of datapoints found within that interval. The
following simple example

histogram f() ’input.dat’

produces a frequency distribution of the data values found in the first column
of the file input.dat, which it stores in the function f(x). The value of this
function at any given point is equal to the number of items in the bin at that
point, divided by the width of the bins used. If the input datapoints are not
dimensionless then the output frequency distribution adopts appropriate units,
thus a histogram of data with units of length has units of one over length.

The number and arrangement of bins used by the histogram command can
be controlled by means of various modifiers. The binwidth modifier sets the
width of the bins used. The binorigin modifier controls where their boundaries
lie; the histogram command selects a system of bins which, if extended to
infinity in both directions, would put a bin boundary at the value specified
in the binorigin modifier. Thus, if binorigin 0.1 were specified, together
with a bin width of 20, bin boundaries might lie at 20.1, 40.1, 60.1, and so
on. Alternatively global defaults for the bin width and the bin origin can be
specified using the set binwidth and set binorigin commands respectively.
The example

histogram h() ’input.dat’ binorigin 0.5 binwidth 2

would bin data into bins between 0.5 and 2.5, between 2.5 and 4.5, and so forth.
Alternatively the set of bins to be used can be controlled more precisely

using the bins modifier, which allows an arbitrary set of bin boundaries to be
specified. The example

histogram g() ’input.dat’ bins (1, 2, 4)

would bin the data into two bins, x = 1→ 2 and x = 2→ 4.
A range can be supplied immediately following the histogram command,

using the same syntax as in the plot and fit commands; if such a range is
supplied, only points that fall within that range will be binned. In the same
way as in the plot command, the index, every, using and select modifiers
can be used to specify which subsets of a data file should be used.

Two points about the histogram command are worthy of note. First, al-
though histograms are similar to bar charts, they are not the same. A bar chart
conventionally has the height of each bar equal to the number of points that
it represents, whereas a histogram is a continuous function in which the area
underneath each interval is equal to the number of points within it. Thus, to
produce a bar chart using the histogram command, the end result should be
multiplied by the bin width used.

5.10. RANDOM DATA GENERATION 83

Second, if the function produced by the histogram command is plotted
using the plot command, samples are automatically taken not at evenly spaced
intervals along the abscissa axis, but at the centres of each bin. If the boxes

plot style is used, the box boundaries are conveniently drawn to coincide with
the bins into which the data were sorted.

5.10 Random data generation

Pyxplot has functions for generating random numbers from a variety of common
probability distributions. These functions are in the random module:

• random.random() – returns a random real number between 0 and 1.

• random.binomial(p, n) – returns a random sample from a binomial dis-
tribution with n independent trials and a success probability p.

• random.chisq(ν) – returns a random sample from a χ-squared distribu-
tion with ν degrees of freedom.

• random.gaussian(σ) – returns a random sample from a Gaussian (nor-
mal) distribution of standard deviation σ and centred on zero.

• random.lognormal(ζ, σ) – returns a random sample from the log normal
distribution centred on ζ, and of width σ.

• random.poisson(n) – returns a random integer from a Poisson distribu-
tion with mean n.

• random.tdist(ν) – returns a random sample from a t-distribution with
ν degrees of freedom.

These functions all rely on a common underlying random number generator3,
whose seed may be set using the set seed command, which should be followed
by any integer. The sequence of random samples generated is always the same
after setting any particular seed.

When Pyxplot starts, the seed is implicitly set to zero. This means that
Pyxplot always produces the same series of random numbers when
restarted. This series can be reproduced by typing:

set seed 0

For applications where this repeatability is undesirable, the following command
may help, using the system clock as a random seed:

set seed time.now().toUnix()

This gives a different sequence of random numbers each second. However, the
user is advised to consider carefully whether this is sufficient for the particular
application being implemented.

Example 11: Using random numbers to estimate the value of π.

3The gsl library’s default random number generator, gsl rng default is used. As of ver-
sion 1.15, this maps to gsl rng mt19937 with a default seed of zero. The various probability
distributions above are sampled using the functions gsl ran binomial and similar.

84 CHAPTER 5. WORKING WITH DATA

Pyxplot’s functions for generating random numbers are most commonly used
for adding noise to artificially-generated data. In this example, however, we use
them to implement a rather inefficient algorithm for estimating the value of the
mathematical constant π. The algorithm works by spreading randomly-placed
samples in the square {−1 < x < 1; −1 < y < 1}. The number of these which
lie within the circle of unit radius about the origin are then counted. Since the
square has an area of 4 unit2 and the circle an area of π unit2, the fraction of
the points which lie within the unit circle equals the ratio of these two areas:
π/4.

The following script performs this calculation using N = 5000 randomly
placed samples. Firstly, the positions of the random samples are generated
using the random() function, and written to a file called random.dat using
the tabulate command. Then, the foreach datum command – which will be
introduced in Section 7.4 – is used to loop over these, counting how many lie
within the unit circle.

Nsamples = 500

rand() = random.random()

set samp Nsamples

set output "pi estimation.dat"

tabulate 1-2*rand():1-2*rand() using 0:2:3

n=0

foreach datum i,j in "pi estimation.dat" u 2:3

{
n = n + (hypot(i,j)<1)
}
print "pi=%s"%(n / Nsamples * 4)

On the author’s machine, this script returns a value of 3.1352 when exe-
cuted using the random samples which are returned immediately after starting
Pyxplot. This method of estimating π is well modelled as a Poisson process,
and the uncertainty in this result can be estimated from the Poisson distribution
to be 1/

√
N . In this case, the uncertainty is 0.01, in close agreement with the

deviation of the returned value of 3.1352 from more accurate measures of π.
With a little modification, this script can be adapted to produce a diagram

of the datapoints used in its calculation. Below is a modified version of the
second half of the script, which loops over the data points stored in the data
file random.dat. It uses Pyxplot’s vector graphics commands, which will be
introduced in Chapter 10, to produce such a diagram:

set multiplot ; set nodisplay

5.10. RANDOM DATA GENERATION 85

Draw a unit circle and a unit square

title = "ex pi estimation" ; load "fig init.ppl"

box from -width/2,-width/2 to width/2,width/2

circle at 0,0 radius width/2 with lt 2

Now plot the positions of these random data points andi

count how many lie within a unit circle

n=0

foreach datum i,j in "pi estimation.dat" using 2:3

{
point at width/2*i , width/2*j with ps 0.1

n = n + (hypot(i,j)<1)

}
set display ; refresh

print "pi=%.4f"%(n / Nsamples * 4)

The graphical output from this script is shown below. The number of datapoints
has been reduced to Nsamples= 500 for clarity:

86 CHAPTER 5. WORKING WITH DATA

Chapter 6

Programming: Pyxplot’s
data types

This chapter describes Pyxplot’s built-in object types, which include lists, dic-
tionaries, vectors, matrices and file handles.

All objects in Pyxplot, including numbers, have methods, which act on or
return information about the object. Some methods are common to all objects.
For example, they all have a method str() which returns a string representation
of the object (as used by the print command). All objects also have a method
called methods(), which returns a list of the names of all of methods of that
object. These methods can be called as follows (we don’t show the output, as
it is long):

print pi.str()

print "My son, it’s a wisp of fog.".methods()

Methods are like functions in that printing them returns brief documentation
about them, as we demonstrate below on two methods of string objects:

pyxplot> print "Father, do you not see the Elfking?".upper

upper() converts a string to uppercase.

pyxplot> print "Father, do you not see the Elfking?".upper()

FATHER, DO YOU NOT SEE THE ELFKING?

pyxplot> print "Father, do you not see the Elfking?".methods

methods() returns a list of the methods of an object.

The following sections describe each of Pyxplot’s types in turn, and the
methods that can be applied to each of them. A comprehensive list of all of
Pyxplot’s object types can be found in Chapter 13, which also lists the methods
available in each object type.

6.1 Instantiating objects

A list of all of Pyxplot’s built-in object types can be found in the types module,
which contains the object prototypes for each type. Its contents are as follows:

87

88 CHAPTER 6. PROGRAMMING: PYXPLOT’S DATA TYPES

pyxplot> print types

module {
boolean : <data type: boolean>
color : <data type: color>
date : <data type: date>
dictionary : <data type: dictionary>
exception : <data type: exception>
fileHandle : <data type: fileHandle>
function : <data type: function>
instance : <data type: instance>
list : <data type: list>
matrix : <data type: matrix>
module : <data type: module>
null : <data type: null>
number : <data type: number>
string : <data type: string>
type : <data type: type>
vector : <data type: vector>
}

These object prototypes can be called like functions to produce an instance of
each data type. Each prototype can take various different kinds of argument;
for example, the number prototype can take a number, boolean or a string

from which to create a number. For example:

pyxplot> types.number()

0

pyxplot> types.number(true)

1

pyxplot> types.number(27)

27

pyxplot> types.number("1.2e39")

1.2e+39

Full documentation of the types of inputs supported by each prototype are listed
in the Reference Manual, in Section 12.0.11.

In many cases there are much more succinct ways of creating objects of each
type. For example, lists can be creating by enclosing a comma-separated list of
elements in square brackets:

pyxplot> print [10,colors.green,"bottles"]

[10, cmyk(1,0,1,0), "bottles"]

Dictionaries can be can be creating by enclosing key–value pairs in curly brack-
ets:

pyxplot> s = {"name":"Sophie", "nationality":"British"}
pyxplot> s["hometown"] = "Lode"

pyxplot> s["birthYear"] = 1957

6.2. STRINGS 89

Escape sequence Description
\? Question mark
\’ Apostrophe
\" Double quote
\\ Literal backslash
\a Bell character
\b Backspace
\f Formfeed
\n Newline
\r Carriage return
\t Horizontal tab
\v Vertical tab

Table 6.1: A complete list of Pyxplot’s string escape sequences. These are a
subset of those available in C.

6.2 Strings

Strings can be enclosed either in single (’) or double (") quotes. Strings may also
be enclosed by three quote characters in a row: either ’’’ or """. Special care
needs to be taken when using apostrophes or quotes in single-quote delimited
strings, as these characters may be misinterpreted as string delimiters, as in the
example:

% ’Robert’s data’

This easiest way to avoid such problems is to use three quotes:

" ’’’Robert’s data’’’

Special characters such as tabs and newlines can be inserted into strings
using escape codes such as \t and \n; see Table 6.1 for a list of these. The
following string is split over three lines:

pyxplot> print e'the moon,\nthe moon,\nThey danced by the light of the moon.'

the moon,

the moon,

They danced by the light of the moon.

Sometimes these escape codes can be rather annoying, especially when en-
tering latex control codes, which all begin with backslash characters. Rather
than having to escape every backslash, it is generally easier to prefix the string
with the character r, which turns off all escape codes:

pyxplot> print r'''I escaped the quote by typing \'.'''
I escaped the quote by typing \’.

Once defined, a string variable can be used anywhere in Pyxplot where a
quoted string could have been used, for example in the set title command:

90 CHAPTER 6. PROGRAMMING: PYXPLOT’S DATA TYPES

plotname = "Insert title here"

set title plotname

Strings can be concatenated together using the + operator:

pyxplot> print "pi = " + pi.str()

pi = 3.1415927

6.2.1 The string substitution operator

Most string manipulations are performed using the string substitution operator,
%, which performs a similar role to the sprintf statement in C.

This operator should be preceded by a format string, such as ’x=%f’, in
which tokens such as %f mark places where numbers and strings should be
substituted. The substitution operator is followed by a bracketed list of the
quantities which should be substituted in place of these tokens. This behaviour
is similar to that of the Python programming language’s % operator1

For example, to concatenate the two strings contained in the variables a and
b into a single string variable c, one would issue the command:

c = "%s%s"%(a,b)

One application of this operator might be to label plots with the title of the
data file being plotted, as in the following example:

filename="data_file.dat"

title=r"A plot of the data in {\tt %s}."%filename

set title title

plot filename

The syntax of the substitution tokens placed in the format string is similar to
that used by many other languages (including C and Python). All substitution
tokens begin with a % character, after which there may be placed, in order:

1. An optional minus sign, to specify that the substituted item should be
left-justified.

2. An optional integer specifying the minimum character width of the sub-
stituted item, or a * (see below).

3. An optional decimal point/period (.) separator.

4. An optional integer, or a * (see below), specifying either (a) the maximum
number of characters to be printed from a string, or (b) the number of
decimal places of a floating-point number to be displayed, or (c) the min-
imum number of digits of an integer to be displayed, padded to the left
with zeros.

5. A conversion character.

6.2. STRINGS 91

Character Substitutes
d, i An integer value.
e, E A floating-point value in scientific notation using either the

character e or E to indicate exponentiation.
f A floating-point value without the use of scientific notation.
g, G A floating-point value, either using scientific notation, if

the exponent is greater than the precision or less than −4,
otherwise without the use of scientific notation.

o An integer value in octal (base 8).
s, S, c A string, if a string is provided, or a numerical quantity,

with units, if such is provided.
x, X An integer value in hexadecimal (base 16).
% A literal % sign.

Table 6.2: The conversion characters recognised by the string substitution
operator, %.

The conversion character is a single character which specifies what kind of sub-
stitution should take place. Its possible values are listed in Table 6.2.

Where the character * is specified for either the character width or the
precision of the substitution token, an integer is read from the list of items to
be substituted, as happens in C’s printf command:

pyxplot> print "%.*f"%(3,pi)

3.142

pyxplot> print "%.*f"%(6,pi)

3.141593

6.2.2 Converting strings to numbers

Strings which contain numerical data can be converted to numbers by passing
them to the object types.number(), as in the examples:

pyxplot> print types.number("23")

23

pyxplot> print types.number("1610 1643 1715 1774".split()[2])

1715

pyxplot> print types.number("978-0230200951"[4:])

230200951

It is an error to try to convert a string to a number if it does not contain a
correctly-formatted number:

% types.number("this is not a number")

1As in Python, the brackets are optional when only one item is being substituted. For
example, ’%d’%2 is equivalent to ’%d’%(2).

92 CHAPTER 6. PROGRAMMING: PYXPLOT’S DATA TYPES

6.2.3 Slicing strings

Segments of strings can be cut out by using square brackets to slice the string:

pyxplot> poem = "On the last sabbath day of 1879\n"
pyxplot> poem+= "Which shall be remembered for a very long time."

pyxplot> print poem[10]

t

pyxplot> print poem[10:]

t sabbath day of 1879\nWhich shall be remembered for a very long time.

pyxplot> print poem[:10]

On the las

pyxplot> print poem[5:10]

e las

pyxplot> print poem[-10:]

long time.

If a single number is placed in the square brackets, a single character is taken
out of the string. If two colon-separated numbers are specified, [x:y], then the
substring from character position x up to but not including y is returned. If
either x or y are omitted, then the start or end of the string is used respectively.
If either number of negative, then it counts from the end of the string, −1 being
the last character in the string.

6.2.4 String methods

Strings have many methods for performing simple string manipulations. Here
we list their names using the foreach command, which will be introduced in
the next chapter:

pyxplot> foreach m in "".methods() { print m ; }
append

beginsWith

class

contents

data

endsWith

find

findAll

isalnum

isalpha

isdigit

len

lower

lstrip

methods

rstrip

split

splitOn

str

strip

6.2. STRINGS 93

type

upper

Full documentation of them can be found in Section 13.15. As in Python, the
strip() method removes whitespace characters from the beginning and end of
strings, and the split() method splits a string up into whitespace-separated
words. The splitOn(x) method splits a string on all occurrences of the sub-
string x. The following examples demonstrate the use of some of them:

pyxplot> x="It was the best of times, it was the worst of times"

pyxplot> print x.len()

51

pyxplot> print x.split()[0:5]

["It", "was", "the", "best", "of"]

pyxplot> print x.splitOn(",")

["It was the best of times", " it was the worst of times"]

pyxplot> print x.find("worst")

37

pyxplot> print x[0:24]

It was the best of times

pyxplot> print x[-25:]

it was the worst of times

pyxplot> print x.upper()

IT WAS THE BEST OF TIMES, IT WAS THE WORST OF TIMES

pyxplot> x=" BEAUTIFUL new railway bridge of the Silvery Tay,"

pyxplot> print x.lstrip()

BEAUTIFUL new railway bridge of the Silvery Tay,

6.2.5 Regular expressions

String variables can be modified using the search-and-replace string operator2,
=∼, which takes a regular expression with a syntax similar to that expected
by the shell command sed and applies it to the specified string variable.3 In
the following example, the first instance of the letter s in the string variable
twister is replaced with the letters th:

pyxplot> twister="seven silver soda syphons"

pyxplot> twister =∼ s/s/th/

pyxplot> print twister

theven silver soda syphons

Note that only the s (substitute) command of sed is implemented in Pyxplot.
Any character can be used in place of the / characters in the above example,
for example:

2Programmers with experience of perl will recognise this syntax.
3Regular expression syntax is a massive subject, and is beyond the scope of this manual.

The official GNU documentation for the sed command is heavy reading, but there are many
more accessible tutorials on the web.

94 CHAPTER 6. PROGRAMMING: PYXPLOT’S DATA TYPES

g Replace all matches of the pattern; by default, only the first match is replaced.
i Perform case-insensitive matching, such that expressions like [A-Z] will match

lowercase letters, too.
l Make \w, \W, \b, \B, \s and \S dependent on the current locale.
m When specified, the pattern character ^ matches the beginning of the string and

the beginning of each line immediately following each newline. The pattern char-
acter $ matches at the end of the string and the end of each line immediately
preceding each newline. By default, ^ matches only the beginning of the string,
and $ only the end of the string and immediately before the newline, if present,
at the end of the string.

s Make the . special character match any character at all, including a newline;
without this flag, . will match anything except a newline.

u Make \w, \W, \b, \B, \s and \S dependent on the Unicode character properties
database.

x This flag allows the user to write regular expressions that look nicer. Whitespace
within the pattern is ignored, except when in a character class or preceded by
an un-escaped backslash. When a line contains a #, neither in a character class
nor preceded by an un-escaped backslash, all characters from the left-most such
through to the end of the line are ignored.

Table 6.3: A list of the flags accepted by the =∼ operator. Most are rarely
used, but the g flag is very useful.

twister =~ s’s’th’

Flags can be passed, as in sed or perl, to modify the precise behaviour of the
regular expression. In the following example the g flag is used to perform a
global search-and-replace of all instances of the letter s with the letters th:

pyxplot> twister="seven silver soda syphons"

pyxplot> twister =∼ s/s/th/g

pyxplot> print twister

theven thilver thoda thyphonth

Table 6.3 lists all of the regular expression flags recognised by the =∼ operator.

6.3 Lists

List objects hold ordered sequences of other Pyxplot objects, which may include
lists and dictionaries to create hierarchical data structures. They are created
by enclosing a comma-separated list of objects by square brackets.

For example:

a = [10,colors.green,"bottles"]

Once created, more items can be added to a list using its append(item) and
insert(n,item) methods, where the latter inserts an item at position n:

pyxplot> theFive = ["Cui","Mussorgsky"]

pyxplot> theFive.append("Borodin")

["Cui", "Mussorgsky", "Borodin"]

pyxplot> theFive.insert(0,"Balakirev")

["Balakirev", "Cui", "Mussorgsky", "Borodin"]

6.3. LISTS 95

pyxplot> theFive.insert(-2,"Rimsky-Korsakov")

["Balakirev", "Cui", "Mussorgsky", "Rimsky-Korsakov", "Borodin"]

A complete list of the methods available on lists (itself a list of strings) can be
found by calling the method [].methods(); they are also listed in Section 13.10.
As with string methods, documentation of list methods is returned if the method
object is printed:

pyxplot> print [].append

append(x) appends the object x to a list.

pyxplot> print [].insert

insert(n,x) inserts the object x into a list at position n.

Most methods that operate on lists, for example, append, extend and sort
operations, return the list as their output. Unless this is stored in a variable,
Pyxplot prints this return value to the terminal. In some cases this is useful:
in the example above, it allowed us to see how the list was changing when we
called its append() and insert() methods. Often, however, this terminal spam
is unwanted. The call command allows methods to be called without printing
their output, which is discarded:

pyxplot> a = ["William I"]

pyxplot> call a.extend(["William II","Henry I"])

pyxplot> call a.insert(0,"Edgar II")

pyxplot> call a.insert(0,"Edward the Confessor")

pyxplot> print a

["Edward the Confessor", "Edgar II", "William I", "William II", "Henry I"]

6.3.1 Using lists as stacks

The following example demonstrates the use of a list as a stack; note that the
last item added to the stack is the first one to be popped:

pyxplot> myList = []

pyxplot> myList.append("opening wardrobe")

["opening wardrobe"]

pyxplot> myList.append("opening sock drawer")

["opening wardrobe", "opening sock drawer"]

pyxplot> myList.append("taking of sock")

["opening wardrobe", "opening sock drawer", "taking of sock"]

pyxplot> while (myList.len()>0) { print "Undo "+myList.pop() ; }
Undo taking of sock

Undo opening sock drawer

Undo opening wardrobe

6.3.2 Using lists as buffers

The following example demonstrates the use of a list as a buffer in which the
first item added to the stack is the first one to be popped:

96 CHAPTER 6. PROGRAMMING: PYXPLOT’S DATA TYPES

pyxplot> myList = []

pyxplot> for (i=1; i<12; i++)

pyxplot> {
pyxplot> if prime(i) { call myList.append(i) ; }
pyxplot> }
pyxplot> while (myList) { print myList.pop(0) ; }
2

3

5

7

11

The function prime(x) returns true if x is a prime number, and false otherwise.
In the final line, we make use of the fact that a list tests true if it contains any
items, or false if it is empty.

6.3.3 Sorting lists

Methods are provided for sorting data in lists. The simplest of these is the
sort() method, which sorts the members into order of ascending value.4 The
reverse() method can be used to invert the order of the list afterwards if
descending order is wanted.

pyxplot> a = [8,4,7,3,6,2]

pyxplot> print a.sort()

[2, 3, 4, 6, 7, 8]

pyxplot> print a.reverse()

[8, 7, 6, 4, 3, 2]

Custom sorting

Often, however, a custom ordering is wanted. The sortOn(f) method takes a
function of two arguments as its input. The function f(a,b) should return −1
if a is to be placed before b in the sorted list, 1 if a is to be placed after b in
the sorted list, and zero if the two elements have equal ranking.
The cmp(a,b) function is often useful in making comparison functions for use
with the sortOn(f) method: it returns either −1, 0 or 1 depending on Pyxplot’s
default way of comparing two objects. In the example below, we pass it the
magnitude of a and b to sort a list in order of magnitude.

pyxplot> absCmp(a,b) = cmp(abs(a),abs(b))

pyxplot> a = range(-8,8)

pyxplot> print a

vector(-8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7)

pyxplot> a = a.list()

pyxplot> print a.sortOn(absCmp)

4Non-numeric items are assigned arbitrary but consistent values for the purposes of sorting.
Booleans are always lower-valued than numbers, but numbers are lower-valued than lists.
Longer lists are always higher valued than shorter lists; larger dictionaries are always higher-
valued than smaller dictionaries.

6.3. LISTS 97

[0, -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, -8]

pyxplot> print a.sort()

[-8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7]

In this example, the range(start,end,step) function is used to generate a
raster of values between −8 and 8. It outputs a vector, which is converted into
a list using the vector’s list() method. More information about vectors is in
Section 6.5.

The subroutine command, which is often used to implement more compli-
cated sorting functions, will be covered in Section 7.8. For example, the function
used above could have been written:

subroutine absCmp(a,b)

{

return cmp(abs(a),abs(b))

}

Sorting lists of lists

The sortOnElement(n) method can be used to sort a list of lists on the nth
sub-element of each sublist.

pyxplot> b = []

pyxplot> b.append([1797,1828,"Schubert"])

[[1797, 1828, "Schubert"]]

pyxplot> b.append([1770,1827,"Beethoven"])

[[1797, 1828, "Schubert"], [1770, 1827, "Beethoven"]]

pyxplot> b.append([1756,1791,"Mozart"])

[[1797, 1828, "Schubert"], [1770, 1827, "Beethoven"], [1756, 1791, "Mozart"]]

pyxplot> print b.sortOnElement(0) # Order of birth
[[1756, 1791, "Mozart"], [1770, 1827, "Beethoven"], [1797, 1828, "Schubert"]]

pyxplot> print b.sortOnElement(1) # Order of death
[[1756, 1791, "Mozart"], [1770, 1827, "Beethoven"], [1797, 1828, "Schubert"]]

pyxplot> print b.sortOnElement(2) # Alphabetical order
[[1770, 1827, "Beethoven"], [1756, 1791, "Mozart"], [1797, 1828, "Schubert"]]

6.3.4 Iterating over lists

The foreach command can be used to iterate over the members of a list; it will
be covered in more detail in Section 7.3. The following example iterates over
the words in a sentence:

pyxplot> poem = "An aged thrush, frail, gaunt, and small, "

pyxplot> poem+= "In blast-beruffled plume"

pyxplot> wordList = poem.split()

pyxplot> foreach word in wordList { print word ; }
An

aged

thrush,

98 CHAPTER 6. PROGRAMMING: PYXPLOT’S DATA TYPES

frail,

gaunt,

and

small,

In

blast-beruffled

plume

6.3.5 Calling functions with lists of arguments

The call(f, a) function can be used to call a function with an arbitrary list of
arguments. For example:

pyxplot> print romanNumeral(2012)

MMXII

pyxplot> print call(romanNumeral,[2012])

MMXII

pyxplot> print pow(2,8)

256

pyxplot> print call(pow,[2,8])

256

6.3.6 List mapping and filtering

The methods filter(f), map(f) and reduce(f) can be used to perform actions
on all of the members of a list in turn. filter(f) takes a function of one
argument as its argument, and returns a new list of all of the members x of the
original list for which f(x) tests true. For example:

pyxplot> txt = "once upon a time, there was a"

pyxplot> list = txt.split()

pyxplot> longWord(x) = x.len()>3
pyxplot> print list.filter(longWord)

["once", "upon", "time,", "there"]

The method map(f) also takes a function of one argument as its argument,
and returns a list of the results f(x) for each of the members x of the original
list. In other words, if f were sin, and the original list contained values of x,
the result would be a list of values of sin(x). This example converts a list of
numbers into Roman numerals:

pyxplot> factors = primeFactors(1001)

pyxplot> print factors

[7, 11, 13]

pyxplot> romanFactors = factors.map(romanNumeral)

pyxplot> print romanFactors

["VII", "XI", "XIII"]

The method reduce(f) takes a function of two arguments as its argument.
It first calls f(a, b) on the first two elements of the list, and then continues

6.4. DICTIONARIES 99

through the list calling f(a, b) on the result and the next item in the list. The
final result is returned:

pyxplot> multiply(x,y) = x*y

pyxplot> factors = primeFactors(1001)

pyxplot> print factors.reduce(multiply)

1001

6.3.7 Vectors versus lists

Vectors are similar to lists, except that all of their elements must be real num-
bers, and that all of the elements of any given vector must share common phys-
ical dimensions. Vectors are stored much more efficiently in memory than lists,
since information about the types and physical units of each of the elements
need not be stored. In addition they support a wide range of vector and matrix
arithmetic operations.

Data from lists can also be plotted onto graphs, but the list must first be
converted into a vector. See 6.5 for more information.

6.4 Dictionaries

Dictionaries, also known as associative arrays or content-addressable memories
in other programming languages, store collections of objects, each of which has a
unique name (or key). Objects are addressed by name, rather than by number:

pyxplot> myDict = {'red':colors.red, 'green':colors.green}
pyxplot> myDict['blue'] = colors.blue

pyxplot> print myDict['green']

cmyk(1,0,1,0)

pyxplot> call myDict.delete('green')

pyxplot> call myDict.delete('blue')

pyxplot> myDict['purple'] = colors.purple

pyxplot> print myDict

{"purple":cmyk(0.45,0.86,0,0), "red":cmyk(0,1,1,0)}

As the first line of this example shows, dictionaries can be created by enclos-
ing a list of key–value pairs in curly brackets. As in python, a colon separates
each key from its corresponding value, while the list of key–value pairs are
comma-separated. That is, the general syntax is:

{ key1:value1 , key2:value2 , ... }

It is also possible to generate an empty dictionary, as {}. Items can later
be referenced or assigned by name, where the name is placed in square brackets
after the name of the dictionary. Items can be deleted with the dictionary’s
delete(key) method.

It is not an error to assign an item to a name which is already defined in
the dictionary; the new assignment overwrites the old object with that name.
It is, however, an error to attempt to access a key which is not defined in the

100 CHAPTER 6. PROGRAMMING: PYXPLOT’S DATA TYPES

dictionary. The method hasKey(key) may be used to test whether a key is
defined before attempting to access it.

Unlike in python, keys must be strings.

6.5 Vectors and matrices

Vectors are similar to lists, except that all of their elements must be real num-
bers, and that all of the elements of any given vector must share common phys-
ical dimensions. Vectors are stored much more efficiently in memory than lists,
since information about the types and physical units of each of the elements
need not be stored. In addition they support a wide range of vector and matrix
arithmetic operations.

For example, applying the addition + operator to two lists concatenates the
lists together, meanwhile the same operator applied to two vectors performs
vector addition:

pyxplot> a = [1,2,3]

pyxplot> b = [4,0,6]

pyxplot> print a+b

[1, 2, 3, 4, 0, 6]

pyxplot> av = vector(a)

pyxplot> bv = vector(b)

pyxplot> print av+bv

vector(5, 2, 9)

In fact, whilst vectors do support the same append and extend methods as
lists, to add either a single new element, or a list of new elements, to the end
of the vector, these are very time consuming methods to run. It is much more
efficient to create a vector of the desired length, and then to populate it with
elements:

pyxplot> a = vector(10)*unit(m)

pyxplot> print a

vector(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)*unit(m)

pyxplot> a[5] = unit(inch)

pyxplot> print a

vector(0, 0, 0, 0, 0, 0.0254, 0, 0, 0, 0)*unit(m)

As the above example demonstrates, the vector() prototype can take not
only a list or vector from which to make a vector object copy, but alternatively
a single integer, which creates a zeroed vector of the specified length.

Similarly, the matrix() prototype can create a matrix from a list of lists, a
list of vectors, a series of list arguments, a series of vector arguments, or two
integers. In the final case, a zero matrix with the specified number of rows and
columns is returned. If a matrix is specified as a series of vectors, these are
taken to be the columns of the matrix; but if the matrix is specified as a series
of lists, these are taken to be the rows of the matrix:

pyxplot> print matrix(3,4)

(0, 0, 0, 0)

6.5. VECTORS AND MATRICES 101

(0, 0, 0, 0)

(0, 0, 0, 0)

pyxplot> print matrix([[1,2],[3,4]])

(1, 2)

(3, 4)

pyxplot> print matrix([vector(1,2),vector(3,4)])

(1, 3)

(2, 4)

Like vectors, matrices can have physical units, and adding two matrices
together performs element-wise addition:

pyxplot> a = matrix([1,0],[0,1])*unit(s)

pyxplot> b = matrix([0,-1],[-1,0])*unit(s)

pyxplot> print a+b

(1, -1)

(-1, 1) *unit(s)

6.5.1 Dot and cross products

The dot product of two vectors can be found simply by multiplying the two
vectors together:

pyxplot> a = vector(1,4)

pyxplot> b = vector(2,3)

pyxplot> print a*b

14

The cross product of two vectors, which is only defined for pairs of three-element
vectors, can be found by passing the two vectors to the cross(a,b) function:

pyxplot> a = vector(1,4,1)

pyxplot> b = vector(2,3,2)

pyxplot> print cross(a,b)

vector(5, 0, -5)

6.5.2 Matrix algebra

Matrices can be multiplied by one another and by vectors to perform matrix
arithmetic. This not only allows matrix equations to be solved, but also allows
transformation matrices to be applied to vector positions on the vector graphics
canvas. All of Pyxplot’s vector graphics commands, which will be described in
detail in Chapter 10, can accept positions as either comma-separated numerical
components, or as vector objects. The following example demonstrates the use
of a rotation matrix:

rotate(a) = matrix([[cos(a),-sin(a)], \

[sin(a), cos(a)]])

pos = vector(0,5)*unit(cm)

theta = 30*unit(deg)

102 CHAPTER 6. PROGRAMMING: PYXPLOT’S DATA TYPES

arrow from 0,0 to rotate(theta)*pos with linewidth 3

In addition to matrix multiplication, other arithmetic operations are avail-
able via the methods of matrix objects. Their methods diagonal() and symmetric()

return true or false as appropriate. Their size() method returns the vector
size of the matrix (rows, columns). Their det() method returns the determinate
of the matrix and their transpose() method returns the matrix transpose.

Among more complex operations, inv() returns the inverse of a matrix,
eigenvalues() returns a vector of the matrix’s eigenvalues, and eigenvectors()

returns a list of the matrix’s corresponding eigenvectors.

6.5.3 Plotting data from vectors

Vectors can be used to pass calculated data to the plot command for plotting.
Instead of supplying the name of a data file, or a function to be plotted, a series
of colon-separated vector objects should be passed to the plot command. Each
of the vectors should be the same length; the nth elements of each of the vectors
are put together to form the columns of data for the nth data point.

The following example draws 100 random points on a graph:

N=100

a=vector(N) ; b=vector(N)

for i=0 to 99 { a[i]=random.random() ; }

for i=0 to 99 { b[i]=random.random() ; }

plot [0:1][0:1] a:b

Vectors support the same filter(), map() and reduce() methods as lists
(see Section 6.3.6), and these can prove especially useful for preparing data for
plotting. The following example selects fifty random points along the x-axis,
and uses them to plot sin(x):

N=50

a=vector(N)

for i=0 to 99 { a[i]=random.random() ; }

b=a.map(sin)

plot [0:1][0:1] a:b

6.6 Colors

Most of Pyxplot’s graph plotting and vector graphics commands have settings
for specifying colors. A selection of widely-used colors may be specified by
name, for example red and blue. However, greater freedom in choice of color
is available by passing these commands objects of type color.

Several functions are available for making color objects:

• gray(x) returns a shade of gray. The argument x should be in the range
0–1. If x = 0, black is returned; if x = 1, white is returned.

• rgb(r,g,b) returns a color with the specified RGB components, which
should be in the range 0–1.

6.7. DATES 103

• cmyk(c,m,y,k) returns a color with the specified CMYK components,
which should be in the range 0–1.

• hsb(h,s,b) returns a color with the specified coordinates in hue–saturation–
brightness color space, which should be in the range 0–1.

In addition, color objects corresponding to all of Pyxplot’s built-in named colors
can be found in the colors module.

a = colors.red

b = rgb(0,0.5,0)

box from 0,0 to 3,3 with color a fillcolor b lw 5

Once a color object has been made, various operations are supported. Multi-
plying or dividing a color by a number changes the brightness of the color. When
two colors are compared, brighter colors are greater than darker colors. When
two colors are added together, they are additively mixed in RGB space, so that
adding red and green together produces yellow. When one color is subtracted
from another, the opposite happens, so that yellow minus green is red.
The methods available on color objects are listed in Section 13.3.

6.6.1 Color representations of the electromagnetic spec-
trum

Two functions, in the colors module, provide color objects which approximate
the color of particular wavelengths of light, or of electromagnetic spectra.

colors.wavelength(λ,norm)
The colors.wavelength(λ,norm) function returns a color representation of monochro-
matic light at wavelength λ, normalised to brightness norm. A value of norm =
1 is recommended for plotting the complete span of the electromagnetic spec-
trum without colors clipping to white.

colors.spectrum(spec, norm)
The colors.spectrum(spec, norm) function returns a color representation of the
spectrum spec, normalised to brightness norm. spec should be a function object
that takes a single input (wavelength) with units of length, and may return an
output with arbitrary units.
For an example of the use of these functions, see Section 8.12.

6.7 Dates

Pyxplot has a date object type which simplifies the process of working with
dates and times. Pyxplot provides a range of pre-defined functions, in the time

module, for creating and manipulating date objects. The functions for creating
date objects are as follows:

time.fromCalendar(year,month, day, hour,min, sec)
The time.fromCalendar(year,month, day, hour,min, sec) function creates a date
object from the specified calendar date. It takes six inputs: the year, the month

104 CHAPTER 6. PROGRAMMING: PYXPLOT’S DATA TYPES

number (1–12), the day of the month (1–31), the hour of day (0–24), the num-
ber of minutes (0–59), and the number of seconds (0–59). To enter dates before
AD 1, a year of 0 should be passed to indicate 1 BC, −1 should be passed to
indicate the year 2 BC, and so forth. The set calendar command is used to
change the current calendar.

time.fromJD(t)
The time.fromJD(t) function creates a date object from the specified numerical
Julian date.

time.fromMJD(t)
The time.fromMJD(t) function creates a date object from the specified numer-
ical modified Julian date.

time.fromUnix(t)
The time.fromUnix(t) function creates a date object from the specified numerical
Unix time.

time.now()
The time.now() function creates a date object representing the present time.

The following example creates a date object representing midnight on 1st
January 2000:

pyxplot> print time.fromCalendar(2000,1,1,0,0,0)

Sat 2000 Jan 1 00:00:00 UTC

pyxplot> a = time.fromCalendar(2000,1,1,0,0,0,"Australia/Perth")

pyxplot> print a # Note that this does not use Australian time
Fri 1999 Dec 31 15:59:59 UTC

pyxplot> set timezone "Pacific/Chatham"

pyxplot> print a

Sat 2000 Jan 1 05:45:00 CHADT

pyxplot> set timezone "Antarctica/South Pole"

pyxplot> print a

Sat 2000 Jan 1 05:00:00 NZDT

pyxplot> print a.toYear() # at the south pole
2000

pyxplot> print a.toYear("Europe/London")

1999

Once created, it is possible to add numbers with physical units of time to
dates, as in the following example:

pyxplot> myDate = time.fromCalendar(2012,8,1,0,0,0)

pyxplot> print myDate + unit(7*day)

Wed 2012 Aug 8 00:00:00 UTC

pyxplot> print myDate - unit(2000*day)

Fri 2007 Feb 9 00:00:00 UTC

In addition, if one date is subtracted from another date, the time interval be-
tween the two dates is returned as a number with physical dimensions of time:

6.7. DATES 105

pyxplot> x = time.fromCalendar(-752,4,21,12,0,0)

pyxplot> y = time.fromCalendar(476,9, 4,12,0,0)

pyxplot> print y-x

3.8764483e+10 s

pyxplot> print time.interval(y,x)

3.8764483e+10 s

pyxplot> print (y-x)/unit(year)

1228.3986

Standard string representations of calendar dates can be produced with the
print command. It is also possible to use the string substitution operator,
as in "%s"%(date), or the str method of date objects, as in date.str(). In
addition, the time.string function can be used to choose a custom display
format for the date; for more information, see Section 4.11.

Several functions are provided for converting date objects back into various
numerical forms of timekeeping and components of calendar dates:

toDayOfMonth()
The toDayOfMonth() method returns the day of the month of a date object in
the current calendar.

toDayWeekName()
The toDayWeekName() method returns the name of the day of the week of a
date object.

toDayWeekNum()
The toDayWeekNum() method returns the day of the week (1–7) of a date
object.

toHour()
The toHour() method returns the integer hour component (0–23) of a date
object.

toJD()
The toJD() method converts a date object to a numerical Julian date.

toMinute()
The toMinute() method returns the integer minute component (0–59) of a date
object.

toMJD()
The toMJD() method converts a date object to a modified Julian date.

toMonthName()
The toMonthName() method returns the name of the month in which a date
object falls.

toMonthNum()

106 CHAPTER 6. PROGRAMMING: PYXPLOT’S DATA TYPES

The toMonthNum() method returns the number (1–12) of the month in which
a date object falls.

toSecond()
The toSecond() method returns the seconds component (0–60) of a date object,
including the non-integer component.

toUnix()
The toUnix() method converts a date object to a Unix time.

toYear()
The toYear() method returns the year in which a date object falls in the current
calendar.

For example:

pyxplot> a = time.fromCalendar(2000,1,1,0,0,0)

pyxplot> time.string(a)

Sat 2000 Jan 1 00:00:00 UTC

pyxplot> time.string(a,"%d %B %Y")

1 January 2000

pyxplot> set calendar muslim

pyxplot> time.string(a,"%d %B %Y")

21 Dhu l-Qa’da 1389

More information on the manipulation of date objects can be found in Sec-
tion 4.11.

6.8 Modules and classes

Modules provide a convenient way to group functions and variables together.
Pyxplot’s default functions are grouped into modules such as os and random.
New modules can be created by calling the module object, which is a synonym
for types.module. Once created, a module is like a dictionary, except that
its elements can be accessed both as module[item] and more commonly as
module.item. For example:

pyxplot> myFuncs = module()

pyxplot> myFuncs.squared(x) = x**2

pyxplot> myFuncs.cubed(x) = x**3

pyxplot> print myFuncs

module {
cubed : cubed(x)=x**3

squared : squared(x)=x**2

}
pyxplot> print myFuncs.squared(4)

16

pyxplot> print myFuncs['cubed'](2)

8

Modules can also serve as class prototypes. If a module is called like a

6.9. FILE HANDLES 107

function, the return value is an instance of the module:

pyxplot> oldMan = module()

pyxplot> oldMan.info() = "Barefoot on the ice, \n\
.......> he staggers back and forth"

pyxplot> hurdyGurdyMan = oldMan()

pyxplot> hurdyGurdyMan.moreInfo() = "With numb fingers \n\
.......> he plays the best he can."

pyxplot> print hurdyGurdyMan.moreInfo()

With numb fingers \nhe plays the best he can.

pyxplot> print hurdyGurdyMan.info()

Barefoot on the ice, \nhe staggers back and forth

The module instance inherits all of the functions and variables of its parent
object, but may also contain its own additional functions and variables, some
of which may supersede those in the parent object if they have the same name.
When functions or subroutines of a module instance are called, the special
variable self is defined to equal the module instance object. This allows the
function to store private data in the module instance, or to call other methods
on the instance.

pyxplot> animal = module()

pyxplot> animal.info() = "I am a %s."%self.type

pyxplot> animal.moreInfo() = "My name is %s."%self.name

pyxplot> cat = animal()

pyxplot> cat.type = "cat"

pyxplot> subroutine cat.poke() { print "miaox!" ; }
pyxplot> cat.moreInfo() = "My name is %s."%self.name

pyxplot> tiddles = cat()

pyxplot> tiddles.name = "tiddles"

pyxplot> print tiddles.info()

I am a cat.

pyxplot> print tiddles.moreInfo()

My name is tiddles.

pyxplot> call tiddles.poke()

miaox!

As this example demonstrates, it is also possible to hierarchically instantiate
modules: tiddles is an instance of cat, which is itself an instance of animal.

6.9 File handles

File handles provide a means of reading data directly from text files, or of writing
data or logging information to files. Files are opened using the open() function:

open(x[,y])
The open(x[,y]) function opens the file x with string access mode y, and returns
a file handle object.

The most commonly used access modes are "r", to open a file read-only, "w",

108 CHAPTER 6. PROGRAMMING: PYXPLOT’S DATA TYPES

to open a file for writing, erasing any pre-existing file of the same filename, and
"a", to append data to the end of a file.

Alternatively, if what is wanted is a temporary scratch space, the os.tmpfile()
function should be used:

os.tmpfile()
The os.tmpfile() function returns a file handle for a temporary file. The resulting
file handle is open for both reading and writing.

The following methods are defined for file handles:

close()
The close() method closes a file handle.

dump(x)
The dump(x) method stores a typeable ASCII representation of the object x
to a file. Note that this method has no checking for recursive hierarchical data
structures.

eof()
The eof() method returns a boolean flag to indicate whether the end of a file
has been reached.

flush()
The flush() method flushes any buffered data which has not yet physically been
written to a file.

getPos()
The getPos() method returns a file handle’s current position in a file.

isOpen()
The isOpen() method returns a boolean flag indicating whether a file is open.

read()
The read() method returns the contents of a file as a string.

readline()
The readline() method returns a single line of a file as a string.

readlines()
The readlines() method returns the lines of a file as a list of strings.

setPos(x)
The setPos(x) method sets a file handle’s current position in a file.

write(x)
The write(x) method writes the string x to a file.

6.9. FILE HANDLES 109

6.9.1 Storing data structures in text files

The dump(x) method of file handles is provided as a means of writing a typeable
ASCII representation of the object x to file, for later recovery using the load

command. It is similar to the pickle() function in Python.
There is no limit to the depth to which it will traverse hierarchically nested

data structures, and will produce output of infinite length if there is recursive
nesting.

Note that it is not able to store representations of function definitions or file
handles, which are stored as null objects; class instances lose their relationship
with their parents and are stored as free-standing modules.

110 CHAPTER 6. PROGRAMMING: PYXPLOT’S DATA TYPES

Chapter 7

Programming: flow control

This chapter describes Pyxplot’s facilities for automating repetitive tasks by
using loops. At the end, we turn to Pyxplot’s interaction with the shell and
filing system in which it operates, introducing a simple framework for auto-
matically re-executing Pyxplot scripts whenever they change, allowing plots to
be automatically regenerated whenever the scripts used to produce them are
modified.

7.1 Conditionals

The if statement can be used to conditionally execute a series of commands
only when a certain criterion is satisfied. In its simplest form, its syntax is

if <expression> { }

where the expression can take the form of, for example, x<0 or y==1. Note
that the operator == is used to test the equality of two algebraic expressions;
the operator = is only used to assign values to variables and functions. A full
list of the operators available can be found in Table 3.1. As in many other
programming languages, algebraic expressions are deemed to be true if they
evaluate to any non-zero value, and false if they exactly equal zero. Thus, the
following two examples are entirely legal syntax, and the first print statement
will execute, but the second will not:

if 2*3 {

print "2*3 is True"

}

if 2-2 {

print "2-2 is False"

}

The variables true and false are predefined constants, making the following
syntax legal:

if false {

print "Never gets here"

}

111

112 CHAPTER 7. PROGRAMMING: FLOW CONTROL

As in C, the block of commands which are to be conditionally executed is
enclosed in braces (i.e. { }). The closing brace must be on a line by itself at
the end of the block, or separated from the last command in the block by a
semi-colon.

if (x==0)

{

print "x is zero"

}

if (x==0) { print "x is zero" ; }

After such an if clause, it is possible to string together further conditions
in else if clauses, perhaps with a final else clause, as in the example:

if (x==0)

{

print "x is zero"

} else if (x>0) {

print "x is positive"

} else {

print "x is negative"

}

Here, as previously, the first script block is executed if the first conditional,
x==0, is true. If this script block is not executed, the second conditional, x>0, is
then tested. If this is true, then the second script block is executed. The final
script block, following the else, is executed if none of the preceding conditionals
have been true. Any number of else if statements can be chained one after
another, and a final else statement can always be optionally supplied. The
else and else if statements must always be placed on the same line as the
closing brace of the preceding script block.

The precise way in which a string of else if statements are arranged in
a Pyxplot script is a matter of taste: the following is a more compact but
equivalent version of the example given above:

if (x==0) { print "x is zero" ; } \

else if (x> 0) { print "x is positive" ; } \

else { print "x is negative" ; }

7.2 For loops

For loops may be used to execute a series of commands multiple times. Pyx-
plot allows for loops to follow either the syntax of the BASIC programming
language, or the C syntax:

for <variable> = <start> to <end> [step <step>]

[loopname <loopname>]

<code>

for (<initialise>; <criterion>; <step>)

<code>

7.3. FOREACH LOOPS 113

Here, <code> may be substituted by any block of Pyxplot commands enclosed
in braces {}. The closing brace must be on a new line after the last command
of the block.

The first form is similar to how the for command works in BASIC. The first
time that the script block is executed, variable has the value start. Upon
each iteration of the loop, it is incremented by amount step. The loop finishes
when the value exceeds end. If step is negative, then end is required to be less
than or equal to start. A step size of zero is considered to be an error. The
iterator variable can have any physical dimensions, so long as start, end and
step all have the same dimensions, but the iterator variable must always be a
real number. If no step size is given then a step size of unity is assumed. As an
example, the following script would print the numbers 0, 2, 4, 6 and 8:

for x = 0 to 10 step 2

{

print x

}

In the C form of the for command, three expressions are provided, separated
by semicolons. These are evaluated (a) when the loop initialises, (b) as a boolean
test of whether the loop should continue iterating, and (c) at the end of each
iteration, usually to increment/decrement variables as required. For example:

for (i=1,j=1; i<=256; i*=2,j++) { print "%3d %3d"%(j,i); }

The syntax

for (a; b; c) { ... ; }

is almost equivalent to

a; while (b) { ... ; c ; }

with the single exception that continue statements behave slightly differently.
In the C form of the for command, the continue statement executes the ex-
pression c before the next iteration is started, even though the while loop above
would not.

The optional loopname which can be specified in the for statement is used in
conjunction with the break and continue statements which will be introduced
in Section 7.6.

7.3 Foreach loops

Foreach loops may be used to run a script block once for each item in a list
or dictionary. Alternatively, if a string is supplied, it is treated as a filename
wildcard, and all matching files are returned. For example:

foreach x in [-1,pi,10]

{ print x ; }

foreach x in "*.dat"

114 CHAPTER 7. PROGRAMMING: FLOW CONTROL

{ print x ; }

myDict = { ’a’:1 , ’b’:2 }

foreach x in myDict

{ print x ; }

The first of these loops would iterate three times, with the variable x holding
the values −1, π and 10 in turn. The second of these loops would search for
any data files in the user’s current directory with filenames ending in .dat and
iterate for each of them. As previously, the wildcard character * matches any
string of characters, and the character ? matches any single character. Thus,
foo?.dat would match foo1.dat and fooX.dat, but not foo.dat or foo10.dat.
The effect of the print statement in this particular example would be rather
similar to typing:

!ls *.dat

An error is returned if there are no files in the present directory which match
the supplied wildcard. The following example would produce plots of all of the
data files in the current directory with filenames foo *.dat or bar *.dat as
eps files with matching filenames:

set terminal eps

foreach x in "foo_*.dat" "bar_*.dat"

{

outfilename = x

outfilename =~ s/dat/eps/

set output outfilename

plot x using 1:2

}

If a dictionary is supplied to loop over, then the loop variable iterates over
each of the keys in the dictionary.

7.4 Foreach datum loops

Foreach datum loops are similar to foreach loops in that they run a script block
once for each item in a list. In this case, however, the list in question is the list
of data points in a data file, samples of a function, or values in a vector. The
syntax of the foreach datum command is similar to that of the commands met
in the previous chapter for acting on data files: the standard modifiers every,
index, select and using can be used to select which columns of the data file,
and which subset of the datapoints, should be used:

foreach datum i,j,name in "data.dat" using 1:2:"%s"%($3)

<code>

foreach datum x,y,z in sin(x):cos(x)

<code>

7.5. WHILE AND DO LOOPS 115

foreach datum a,b in vector_a:vector_b

<code>

The foreach datum command is followed by a comma-separated list of the
variable(s) which are to be read from the input data on each iteration of the
loop. The using modifier specifies the columns or rows of data which are to
be used to set the values of each variable. In the first example above, the third
variable, name, is set as a string, indicating that it will be set to equal whatever
string of text is found in the third column of the data file.

Example 12: Calculating the mean and standard deviation of data.

The following Pyxplot script calculates the mean and standard deviation of a
set of data points using the foreach datum command:

N data = 0

sum x = 0

sum x2 = 0

foreach datum x in ’--’

{
N data ++

sum x += x

sum x2 += x**2

}
1.3

1.2

1.5

1.1

1.3

END

mean = sum x / N data

SD = sqrt(sum x2 / N data - mean**2)

print "Mean = %s"%mean

print "SD = %s"%SD

For the data supplied, a mean of 1.28 and a standard deviation of 0.133 are
returned.

7.5 While and do loops

The while command may be used to continue running a script block until some
stopping criterion is met. Two types of while loop are supported:

while <criterion> [loopname <name>]

{

116 CHAPTER 7. PROGRAMMING: FLOW CONTROL

....

}

do [loopname <name>]

{

....

} while <criterion>

In the former case, the enclosed script block is executed repeatedly, and
the algebraic expression supplied to the while command is tested immediately
before each repetition. If it tests false, then the loop finishes. The latter case is
very similar, except that the supplied algebraic expression is tested immediately
after each repetition. Thus, the former example may never actually execute the
supplied script block if the looping criterion tests false on the first iteration, but
the latter example is always guaranteed to run its script block at least once.

The following example would continue looping indefinitely until stopped by
the user, since the value 1 is considered to be true:

while (1)

{

print "Hello, world!"

}

7.6 The break and continue statements

The break and continue statements may be placed within loop structures to
interrupt their iteration. The break statement terminates execution of the
smallest loop currently being executed, and Pyxplot resumes execution at the
next statement after the closing brace which marks the end of that loop struc-
ture. The continue statement terminates execution of the current iteration of
the smallest loop currently being executed, and execution proceeds with the
next iteration of that loop, as demonstrated by the following pair of examples:

pyxplot> for i=0 to 4

pyxplot> {
pyxplot> if (i==2) { break ; }
pyxplot> print i

pyxplot> }
0

1

pyxplot> for i=0 to 4

pyxplot> {
pyxplot> if (i==2) { continue ; }
pyxplot> print i

pyxplot> }
0

1

3

4

7.7. THE CONDITIONAL OPERATOR 117

Note that if several loops are nested, the break and continue statements
only act on the innermost loop. If either statement is encountered outside of
a loop structure, an error results. Optionally, the for, foreach, do and while

commands may be supplied with a name for the loop, prefixed by the word
loopname, as in the examples:

for i=0 to 4 loopname iloop

...

foreach i in "*.dat" loopname DatafileLoop

...

When loops are given such names, the break and continue statements may be
followed by the name of the loop to be broken out of, allowing the user to act
on loops other than the innermost one.

7.7 The conditional operator

The conditional operator provides a compact means of inserting conditional
expressions. Following the syntax of C, it takes three arguments and is written
as a ? b : c. The first argument, a is a truth criterion to be tested. If the
criterion is true, then the operator returns its second argument b as its output.
Otherwise, the function’s third argument c is returned.

pyxplot> f(x) = (x>0)?x:0
pyxplot> print "%s %s %s %s %s"%(f(-2),f(-1),f(0),f(1),f(2))

0 0 0 1 2

pyxplot> x = 2

pyxplot> print "x is %s"%(x>0)?"positive":"negative"
positive

7.8 Subroutines

Subroutines are similar to mathematical functions (see Section 4.3), and once
defined, can be used anywhere in algebraic expressions, just as functions can be.
However, instead of being defined by a single algebraic expression, whenever a
subroutine is evaluated, a block of Pyxplot commands of arbitrary length is exe-
cuted. This gives much greater flexibility for implementing complex algorithms.
Subroutines are defined using the following syntax:

subroutine <name>(<variable1>,...)

{

...

return <value>

}

Where name is the name of the subroutine, variable1 is an argument taken
by the subroutine, and the value passed to the return statement is the value
returned to the caller. Once the return statement is reached, execution of the
subroutine is terminated. The following two examples would produce entirely
equivalent results:

118 CHAPTER 7. PROGRAMMING: FLOW CONTROL

f(x,y) = x*sin(y)

subroutine f(x,y)

{

return x*sin(y)

}

In either case, the function/subroutine could be evaluated by typing:

print f(1,pi/2)

If a subroutine ends without any value being returned using the return state-
ment, then a value of zero is returned.

Subroutines may serve one of two purposes. In many cases they are used to
implement complicated mathematical functions for which no simple algebraic
expression may be given. Secondly, they may be used to repetitively execute a
set of commands whenever they are required. In the latter case, the subroutine
may not have a return value, but may merely be used as a mechanism for
encapsulating a block of commands. In this case, the call command may be
used to execute a subroutine, discarding any return value which it may produce,
as in the example:

pyxplot> subroutine f(x,y) { print "%s - %s = %s"%(x,y,x-y) ; }
pyxplot> call f(2,1)

2 - 1 = 1

pyxplot> call f(5*unit(inch), 10*unit(mm))

127 mm - 10 mm = 117 mm

Example 13: An image of a Newton fractal.

Newton fractals are formed by iterating the equation

zn+1 = zn −
f(zn)

f ′(zn)
,

subject to the starting condition that z0 = c, where c is any complex number
c and f(z) is any mathematical function. This series is the Newton-Raphson
method for numerically finding solutions to the equation f(z) = 0, and with
time usually converges towards one such solution for well-behaved functions.
The complex number c represents the initial guess at the position of the solu-
tion being sought. The Newton fractal is formed by asking which solution the
iteration converges upon, as a function of the position of the initial guess c in
the complex plane. In the case of the cubic polynomial f(z) = z3 − 1, which
has three solutions, a map might be generated with points colored red, green or
blue to represent convergence towards the three roots.

7.8. SUBROUTINES 119

If c is close to one of the roots, then convergence towards that particular
root is guaranteed, but further afield the map develops a fractal structure. In
this example, we define a Pyxplot subroutine to produce such a map as a func-
tion of c = x + iy, and then plot the resulting map using the colormap plot
style (see Section 8.12). To make the fractal prettier – it contains, after all, only
three colors as strictly defined – we vary the brightness of each point depending
on how many iterations are required before the series ventures within a distance
of |zn − ri| < 10−2 of any of the roots ri.

set numerics complex

set unit angle nodimensionless

root1 = exp(i*unit(0*deg))

root2 = exp(i*unit(120*deg))

root3 = exp(i*unit(240*deg))

tolerance = 1e-2

subroutine newtonFractal(x,y)

{
global iter

z = x+i*y

iter = 0

while (1)

{
z = z - (z**3-1)/(3*z**2)

if abs(z-root1)<tolerance { ; return 1 ; }
if abs(z-root2)<tolerance { ; return 2 ; }
if abs(z-root3)<tolerance { ; return 3 ; }
iter = iter + 1

}
}

Plot Newton fractal

set size square

set key below

set xrange [-1.5:1.5]

set yrange [-1.5:1.5]

set sample grid 250x250

set colmap hsb(c1*0.667,0.8+0.2*c2,1.0-0.8*c2)

set nocolkey

set log c2

plot newtonFractal(x,y):iter+2 with colormap

120 CHAPTER 7. PROGRAMMING: FLOW CONTROL

−1 0 1
−1.5

−1

−0.5

0

0.5

1

1.5

newtonFractal (x, y):iter + 2

Example 14: The dynamics of the simple pendulum.

The equation of motion for a pendulum bob may be derived from the rotational
analogue to Newton’s Second Law, G = Iθ̈ where G is torque, I is moment
of inertia and θ is the displacement of the pendulum bob from the vertical.
For a pendulum of length l, with a bob of mass m, this equation becomes
−mgl sin θ = ml2θ̈. In the small-angle approximation, such that sin θ ≈ θ, it
reduces to the equation for simple harmonic motion, with the solution

θapprox = ω sin

(√
g

l
t

)
. (7.1)

A more exact solution requires integration of the second-order differen-
tial equation of motion including the sin θ term. This integral cannot be done
analytically, but the solution can be written in the form

θexact(t) = 2 sin−1

[
k sn

(√
g

l
t, k

)]
. (7.2)

where sn(u,m) is a Jacobi elliptic function and k = sin (ω/2). The Jacobi elliptic
function cannot be analytically computed, but can be numerically approximated
using the jacobi sn(u,m) function in Pyxplot.

7.8. SUBROUTINES 121

Below, we produce a plot of Equations (7.1) and (7.2). The horizontal axis
is demarcated in units of the dimensionless period of the pendulum to eliminate
g and l, and a swing amplitude of ±30◦ is assumed:

set unit angle nodimensionless

theta approx(a,t) = a*sin(2*pi*t)

theta exact (a,t) = 2*asin(sin(a/2)*jacobi sn(2*pi*t,sin(a/2)))

set unit of angle degrees

set key below

set xlabel r’Time / $\sqrt{g/l}$’
set ylabel r’θ’
omega = unit(30*deg)

plot [0:4] theta approx(omega,x) title ’Approximate solution’, \
theta exact (omega,x) title ’Exact solution’

0 1 2 3 4

Time /
√
g/l

−20

−10

0

10

20

θ
/

◦

Approximate solution Exact solution

As is apparent, at this amplitude, the exact solution begins to deviate
noticeably from the small-angle solution within 2–3 swings of the pendulum.
We now seek to quantify more precisely how long the two solutions take to
diverge by defining a subroutine to compute how long T it takes before the two
solutions to deviate by some amount ψ. We then plot these times as a function
of amplitude ω for three deviation thresholds. Because this subroutine takes a
significant amount of time to run, we only compute 40 samples for each value
of ψ:

122 CHAPTER 7. PROGRAMMING: FLOW CONTROL

subroutine pendulumDivergenceTime(omega, deviation)

{
for t=0 to 20 step 0.05

{
approx = theta approx(omega,t)

exact = theta exact (omega,t)

if (abs(approx-exact)>deviation) { ;break; }
}
return t

}

set key top right

set xlabel r’Amplitude of swing’

set ylabel r’Time / $\sqrt{g/l}$ taken to diverge’

set samples 40

plot [unit(5*deg):unit(30*deg)][0:19] \
pendulumDivergenceTime(x,unit(20*deg)) title r"20° deviation", \
pendulumDivergenceTime(x,unit(10*deg)) title r"10° deviation", \
pendulumDivergenceTime(x,unit(5*deg)) title r"$ 5^\circ$ deviation"

5 10 15 20 25

Amplitude of swing / ◦

0

5

10

15

T
im

e
/
√
g
/l

ta
ke

n
to

d
iv

er
g
e

20◦ deviation
10◦ deviation
5◦ deviation

7.9 Macros

The @ operator can be used for literal substitution of the content of a string
variable into the command line. The name of the string variable follows the @
sign, and its content is expanded to the command line, as in this example

mac = "with lines lw 2 lt 1"

plot sin(x) @mac

which is equivalent to

plot sin(x) with lines lw 2 lt 1

The macro, being a string, can contain any characters, but as with other
variable names, the name of the macro can contain only alphanumeric characters

7.10. THE EXEC COMMAND 123

and the underscore sign. This also means that any operator, with the exception
of the and and or operators, can signify the end of the macro name, without
the need for a trailing white space. Therefore, in the example

foo = "50"

print @foo*3

the end result is 150; 50*3 is passed to the command line interpreter.

7.10 The exec command

The exec command can be used to execute Pyxplot commands contained within
string variables. For example:

terminal="eps"

exec "set terminal %s"%(terminal)

It can also be used to write obfuscated Pyxplot scripts, and its use should be
minimized wherever possible.

7.11 Assertions

The assert command can be used to assert that a logical expression, such as
x>0, is true. An error is reported if the expression is false, and optionally a
string can be supplied to provide a more informative error message to the user:

assert x>0

assert y<0 "y must be less than zero."

The assert command can also be used to test the version number of Pyxplot.
It is possible to test either that the version is newer than or equal to a specific
version, using the >= operator, or that it is older than a specific version, using
the < operator, as demonstrated in the following examples:

assert version >= 0.8.2

assert version < 0.8 "This script is designed for Pyxplot 0.7"

7.12 Raising exceptions

Pyxplot’s raise(e,s) function is used to raise exceptions when error conditions
are met. Its first argument e specifies the type of exception, and should be an
object of type exception. The second argument should be an error message
string. Pyxplot has a range of default exception types, which can be found
as exception objects in the module exceptions. Alternatively, the object
types.exception may be called with a single string argument to make a new
exception type. For example:

raise(exceptions.syntax , "Input could not be parsed")

a=types.exception("user error")

raise(a, "The user made a mistake")

124 CHAPTER 7. PROGRAMMING: FLOW CONTROL

Alternatively, exception objects have a method raise(s) which can be
called as follows:

a=types.exception("user error")

a.raise("The user made a mistake")

7.13 Shell commands

Shell commands may be executed directly from within Pyxplot by prefixing
them with an ! character. The remainder of the line is sent directly to the
shell, for example:

!ls -l

Semi-colons cannot be used to place further Pyxplot commands after a shell
command on the same line.

% !ls -l ; set key top left

It is also possible to substitute the output of a shell command into a Pyxplot
command. To do this, the shell command should be enclosed in back-quotes (‘),
as in the following example:

a=‘ls -l *.ppl | wc -l‘

print "The current directory contains %d Pyxplot scripts."%(a)

It should be noted that back-quotes can only be used outside quotes. For
example,

% set xlabel ’‘ls‘’

will not work. One way to do this would be

set xlabel ‘echo "’" ; ls ; echo "’"‘

a better way would be to use the os.system or os.popen functions:

" fileList = os.popen("ls","r").read()

set xlabel fileList

Note that it is not possible to change the current working directory by send-
ing the cd command to a shell, as this command would only change the working
directory of the shell in which the single command is executed:

% !cd ..

Pyxplot has its own cd command for this purpose, as well as its own pwd com-
mand:

" cd ..

7.14. SCRIPT WATCHING: PYXPLOT WATCH 125

7.14 Script watching: pyxplot watch

Pyxplot includes a simple tool for watching command script files and execut-
ing them whenever they are modified. This may be useful when developing a
command script, if one wants to make small modifications to it and see the
results in a semi-live fashion. This tool is invoked by calling the pyxplot watch

command from a shell prompt. The command-line syntax of pyxplot watch is
similar to that of Pyxplot itself, for example:

pyxplot_watch script.ppl

would set pyxplot watch to watch the command script file script.ppl. One
difference, however, is that if multiple script files are specified on the command
line, they are watched and executed independently, not sequentially, as Pyxplot
itself would do. Wildcard characters can also be used to set pyxplot watch to
watch multiple files.1

This is especially useful when combined with ghostview’s watch facility. For
example, suppose that a script foo.ppl produces PostScript output foo.ps.
The following two commands could be used to give a live view of the result of
executing this script:

gv --watch foo.ps &

pyxplot_watch foo.ppl

1Note that pyxplot watch *.script and pyxplot watch *.script will behave differently
in most UNIX shells. In the first case, the wildcard is expanded by your shell, and a
list of files passed to pyxplot watch. Any files matching the wildcard, created after run-
ning pyxplot watch, will not be picked up. In the latter case, the wildcard is expanded by
pyxplot watch itself, which will pick up any newly created files.

126 CHAPTER 7. PROGRAMMING: FLOW CONTROL

Part II

Plotting and vector
graphics

127

Chapter 8

Plotting: a complete guide

This part of the manual provides a complete description of Pyxplot’s commands
for producing graphs and vector graphics. This chapter extends the overview
of the plot command in Chapter 3, providing a systematic description of how
the appearance of plots can be configured. Subsequent chapters describe how
to produce graphical output in a range of image formats (Chapter 9), how
to produce galleries of multiple plots side-by-side, and how to produce more
sophisticated vector graphics (Chapter 10).

8.1 The with modifier

In Chapter 3 an overview of the syntax of the plot command was provided,
including the every, index, select and using modifiers, which can be used
to control which data should be plotted. The with modifier controls how data
should be plotted. For example, the statement

plot "data.dat" index 1 using 4:5 with lines

specifies that data should be plotted with lines connecting each data point to
its neighbors. We term the keyword lines a plot style. The with modifier can
also be followed by a variety of settings which fine-tune aspects of how data are
displayed. For example, the statement

plot "data.dat" with lines linewidth 2.0

would connect data points with a line of twice the default width.
The next section will provide a complete list of all of Pyxplot’s plot styles

– i.e. the words which may be used in place of lines. First we list all of the
modifiers such as linewidth which may be used to alter the exact appearance
of these plot styles. These are as follows:

• color – used to select the color in which the dataset is to be plotted. It
should be followed either by a number, to select a color from the present
palette (see Section 8.1.1); by a recognised color name, a complete list
of which can be found in Section 19.4; or by a color object, such as
may be created by the functions gray(g), rgb(r,g,b), cmyk(c,m,y,k)
or hsb(h,s,b). This modifier may also be spelt colour.

129

130 CHAPTER 8. PLOTTING: A COMPLETE GUIDE

• fillcolor – used to select the color in which the dataset is filled. The
color may be specified using any of the styles listed for color. May also
be spelt fillcolour.

• linetype – used to numerically select the type of line – for example, solid,
dotted, dashed, etc. – which should be used by line-based plot styles. A
complete list of Pyxplot’s numbered line types can be found in Chapter 18.
May be abbreviated lt.

• linewidth – used to select the width of line which should be used by
line-based plot styles, where unity represents the default width. May be
abbreviated lw.

• pointlinewidth – used to select the width of line which should be used to
stroke points in point-based plot styles, where unity represents the default
width. May be abbreviated plw.

• pointsize – used to select the size of drawn points, where unity represents
the default size. May be abbreviated ps.

• pointtype – used to numerically select the type of point – for example,
crosses, circles, etc. – used by point-based plot styles. A complete list
of Pyxplot’s numbered point types can be found in Chapter 18. May be
abbreviated pt.

Any number of these modifiers may be placed sequentially after the keyword
with, as in the following examples:

plot ’datafile’ using 1:2 with points pointsize 2

plot ’datafile’ using 1:2 with lines color red linewidth 2

plot ’datafile’ using 1:2 with lp col 1 lw 2 ps 3

Where modifiers take numerical values, expressions of the form $2+1, similar to
those supplied to the using modifier, may be used to read numbers from the
supplied data set. In this case, each datapoint will be displayed in a different
style or in a different color (in the example given, depending on the values in
the second column of the supplied data).

The following example would plot a data file with points, drawing the
position of each point from the first two columns of the supplied data file and
the size of each point from the third column:

plot ’datafile’ using 1:2 with points pointsize $3

Not all of these modifiers are applicable to all of Pyxplot’s plot styles. For
example, the linewidth modifier has no effect on plot styles which do not draw
lines between datapoints. Where modifiers are applied to plot styles for which
they have no defined effect, the modifier has no effect, but no error results.
Table 8.1 lists which modifiers act on which plot styles.

8.1. THE WITH MODIFIER 131

Plot Styles

 # # # #
 # # # #
 # # # #
 # # #
#
 # # # #
 # # # # #
 # # #
 # # # #
 # # # #
 # # # #
 # # # #
 #
 # # # #
 # # #
 # # #
 # # # #
 # # #
 # # # #
 # # #
 # # # #
 # # # #
 # # # #
 # # # #
 # # # #
 # # # #
 # # # #
 # # # #
 # # # #
 # # # #
 # # #
 # # # #
 # # # #
 # # # #
 # # # #

color

fillcolor

linetype

linewidth

pointlinewidth

pointsize

pointtype

Style Modifiers

arrows head

arrows nohead

arrows twohead

boxes

colormap

contourmap

dots

filledRegion

fsteps

histeps

impulses

lines

linesPoints

lowerLimits

points

stars

steps

surface

upperLimits

wboxes

xErrorBars

xErrorRange

xyErrorBars

xyErrorRange

xyzErrorBars

xyzErrorRange

xzErrorBars

xzErrorRange

yErrorBars

yErrorRange

yErrorShaded

yzErrorBars

yzErrorRange

zErrorBars

zErrorRange

Table 8.1: A list of the plot styles affected by each style modifiers.

132 CHAPTER 8. PLOTTING: A COMPLETE GUIDE

8.1.1 The palette

Wherever Pyxplot takes a color as an input to a command, the user has three
options for how it may be specified. A selection of widely-used colors may be
specified by name, for example red and blue. A complete list of such colors
may be found in Section 19.4. Alternatively, an object of type color may be
provided, such as rgb(0,1,0), hsb(0.5,0.5,0.5), gray(0.2), colors.green
+ colors.red, or colors.yellow - colors.green.

The third option is to specify a numbered color from Pyxplot’s palette. By
default, this contains a series of visually distinctive colors which are, insofar as
possible, also distinctive to users with most common forms of color blindness:

1
black

2
red

3
blue

4
magenta

5
cyan

6
brown

7
salmon

8
gray

9
green

10
navyBlue

11
periwinkle

12
pineGreen

13
seaGreen

14
greenYellow

15
orange

16
carnationPink

17
plum

The first color is number 1, the second number 2, and so forth. As well
as being accessible by number, these colors also form the default series which
Pyxplot chooses for successive datasets when their colors are not individually
specified.

The current palette may be queried using the show palette command, and
changed using the set palette command, which takes a comma-separated list
of colors, as in the example:

set palette brickRed, limeGreen, cadetBlue

The palette is treated as a cyclic list, and so in the above example, color num-
ber 4 would map to brickRed, as would color numbers 1 and 8. The default
palette which Pyxplot uses on startup may be changed by setting up a config-
uration file, as described in Chapter 19.

If a non-integer color is requested from the palette, for example color 1.5,
then a color is returned which is half-way in between colors 1 and 2 in RGB
space; in this case, brown. This can be used to produce custom color gradients,
as the following example demonstrates (the colormap plot style will be described
in Section 8.12):

set multiplot

set width 8

set xformat ’’

set key xcenter

plot [-0.9:0.9] legendreP(6,x)

set size 8 ratio 0.2

set origin 0,-1.6

set nokey

set noytics

unset xformat

set xlabel ’x’

set palette red , green , blue , purple

set colmap 3*c1+1

8.1. THE WITH MODIFIER 133

set c1tics -1,0.25

set sample grid 200x2

plot [-0.9:0.9] legendreP(6,x) with colormap

−0.5

−0.25

0

0.25
legendreP (6, x)

−0.5 0 0.5

x

−0.25

0

0.25

8.1.2 Default settings

In addition to setting these parameters on a per-dataset basis, the linewidth,
pointlinewidth and pointsize settings can also have their default values
changed for all datasets as in the following examples:

set linewidth 1

set pointlinewidth 2

set pointsize 3

plot "datafile"

In each case, the normal default values of these settings are 1. The default
values of the color, linetype and pointtype settings depend whether the
current graphic output device is set to produce color or monochrome output
(see Chapter 9.1).

In the case of color output, the colors of each of the comma-separated
datasets plotted on a graph are drawn sequentially from the currently-selected
palette, and all lines are drawn as solid lines (linetype 1). The symbols used to
draw each dataset are drawn sequentially from Pyxplot’s available point types.
In the case of monochrome output, all datasets are plotted in black and both
the line types and point types used to draw each dataset are drawn sequentially
from Pyxplot’s available options.

The following simple example demonstrates this:

set terminal color

plot [][6:0] 1 with lp, 2 with lp, 3 w lp, 4 w lp, 5 w lp

set terminal monochrome

replot

134 CHAPTER 8. PLOTTING: A COMPLETE GUIDE

0

2

4

6

color

0

2

4

6

monochrome

8.2 Pyxplot’s plot styles

This section provides a complete list of Pyxplot’s plot styles, arranged into
groups for clarity. Table 8.2 summarises the columns of data expected by each
plot style when used on two- and three-dimensional plots. The following sections
describe each of these plot styles in turn.

8.2.1 Lines and points

The following is a list of Pyxplot’s simplest plot styles, all of which take two
columns of input data on 2D plots (three columns on 3D plots), which represent
the x-, y- (and z-)coordinates of the positions of each point:

• dots – places a small dot at each datum.

• lines – connects adjacent data points with straight lines.

• linespoints – a combination of both lines and points.

• lowerlimits – places a lower-limit sign () at each datum.

• points – places a marker symbol at each datum.

• stars – similar to points, but uses a different set of marker symbols,
based on the stars drawn in Johann Bayer’s highly ornate star atlas Ura-
nometria of 1603.

• upperlimits – places an upper-limit sign () at each datum.

Example 15: A Hertzsprung-Russell diagram.

8.2. PYXPLOT’S PLOT STYLES 135

Style Columns (2D plots) Columns (3D plots)
arrows head (x1, y1, x2, y2) (x1, y1, z1, x2, y2, z2)

arrows nohead (x1, y1, x2, y2) (x1, y1, z1, x2, y2, z2)
arrows twohead (x1, y1, x2, y2) (x1, y1, z1, x2, y2, z2)

boxes (x, y) (x, y)
colormap (x, y, c1, . . .) (x, y, c1, . . .)

contourmap (x, y, c1, . . .) (x, y, c1, . . .)
dots (x, y) (x, y, z)

FilledRegion (x, y) (x, y)
fsteps (x, y) (x, y)

histeps (x, y) (x, y)
impulses (x, y) (x, y, z)

lines (x, y) (x, y, z)
LinesPoints (x, y) (x, y, z)
LowerLimits (x, y) (x, y, z)

points (x, y) (x, y, z)
stars (x, y) (x, y, z)
steps (x, y) (x, y)

surface (x, y, z) (x, y, z)
UpperLimits (x, y) (x, y, z)

wboxes (x, y, w) (x, y, w)
XErrorBars (x, y, σx) (x, y, z, σx)
XErrorRange (x, y, xmin, xmax) (x, y, z, xmin, xmax)
XYErrorBars (x, y, σx, σy) (x, y, z, σx, σy)
XYErrorRange (x, y, xmin, xmax, ymin, ymax) (x, y, z, xmin, xmax, ymin, ymax)
XYZErrorBars (x, y, z, σx, σy, σz) (x, y, z, σx, σy, σz)

XYZErrorRange (x, y, z, xmin, xmax, ymin, – (x, y, z, xmin, xmax, ymin, –
– ymax, zmin, zmax) – ymax, zmin, zmax)

XZErrorBars (x, y, z, σx, σz) (x, y, z, σx, σz)
XZErrorRange (x, y, z, xmin, xmax, zmin, zmax) (x, y, z, xmin, xmax, zmin, zmax)
YErrorBars (x, y, σy) (x, y, z, σy)
YErrorRange (x, y, ymin, ymax) (x, y, z, ymin, ymax)
YErrorShaded (x, ymin, ymax) (x, ymin, ymax)
YZErrorBars (x, y, z, σy, σz) (x, y, z, σy, σz)
YZErrorRange (x, y, z, ymin, ymax, zmin, zmax) (x, y, z, ymin, ymax, zmin, zmax)
ZErrorBars (x, y, z, σz) (x, y, z, σz)
ZErrorRange (x, y, z, zmin, zmax) (x, y, z, zmin, zmax)

Table 8.2: A summary of the columns of data expected by each of Pyxplot’s
plot styles when used on two- and three-dimensional plots.

136 CHAPTER 8. PLOTTING: A COMPLETE GUIDE

Hertzsprung-Russell (HR) diagrams are scatter-plots of the luminosities of stars
plotted against their colors, on which most normal stars lie along a tight line
called the main sequence, whilst unusual classes of stars – giants and dwarfs –
can be readily identified on account of their not lying along this main sequence.
The principal difficulty in constructing accurate HR diagrams is that the lumi-
nosities L of stars can only be calculated from their observed brightnesses F ,
using the relation L = Fd2 if their distances d are known. In this example,
we construct an HR diagram using observations made by the European Space
Agency’s Hipparcos spacecraft, which accurately measured the distances of over
a million stars between 1989 and 1993.

The Hipparcos catalogue can be downloaded for free from ftp://cdsarc.

u-strasbg.fr/pub/cats/I/239/hip_main.dat.gz; a description of the cata-
logue can be found at http://cdsarc.u-strasbg.fr/viz-bin/Cat?I/239. In
summary, though the data is arranged in a non-standard format which Pyxplot
cannot read without a special input filter, the following Python script gener-
ates a text file with four columns containing the magnitudes m, B − V colors
and parallaxes p of the stars, together with the uncertainties in the parallaxes.
From these values, the absolute magnitudes M of the stars – a measure of their
luminosities – can be calculated using the expression M = m + 5 log10

(
102p

)
,

where p is measured in milli-arcseconds:

for line in open("hip main.dat"):

try:

Vmag = float(line[41:46])

BVcol = float(line[245:251])

parr = float(line[79:86])

parre = float(line[119:125])

print "%s,%s,%s,%s"%(Vmag, BVcol, parr, parre)

except ValueError: pass

The resultant four columns of data can then be plotted in the dots style using
the following Pyxplot script. Because the catalogue is very large, and many
of the parallax datapoints have large errorbars producing large uncertainties in
their vertical positions on the plot, we use the select statement to pick out
those datapoints with parallax signal-to-noise ratios of better than 20.

set nokey

set size square

set xlabel ’$B-V$ color’

set ylabel ’Absolute magnitude M’

plot [-0.4:2][14:-4] ’hrdiagram.dat.gz’ w d ps 3

ftp://cdsarc.u-strasbg.fr/pub/cats/I/239/hip_main.dat.gz
ftp://cdsarc.u-strasbg.fr/pub/cats/I/239/hip_main.dat.gz
http://cdsarc.u-strasbg.fr/viz-bin/Cat?I/239

8.2. PYXPLOT’S PLOT STYLES 137

0 0.5 1 1.5 2

B − V color

−2.5

0

2.5

5

7.5

10

12.5

A
b
so

lu
te

m
a
g
n
it
u
d
e
M

8.2.2 Error bars

The following pair of plot styles allow datapoints to be plotted with errorbars
indicating the uncertainties in either their vertical or horizontal positions:

• yerrorbars

• xerrorbars

Both of these take three columns of input data on 2D plots (or four on 3D
plots). The first two (or three) of these represent the x-, y- (and z-) coordinates
of the central position of each errorbar, while the last represents the uncer-
tainty in either the x- and y-coordinate. The plot style errorbars is an alias
for yerrorbars. Additionally, the following plot style allows datapoints to be
plotted with both horizontal and vertical errorbars:

• xyerrorbars

This plot style takes four (or five) columns of data as input, the first two (or
three) of which represent the x-, y- (and z-) coordinates of the central position
of each errorbar. The last but one column gives the uncertainty in the x-
coordinate, and the last column gives the uncertainty in the y-coordinate.

Each of the plot styles listed above has a corresponding partner which takes
minimum and maximum limits for each errorbar, equivalent to writing 5+2

−3, in
place of a single symmetric uncertainty:

• xerrorrange – takes four (or five) columns of data.

138 CHAPTER 8. PLOTTING: A COMPLETE GUIDE

• yerrorrange – takes four (or five) columns of data.

• xyerrorrange – takes six (or seven) columns of data.

The plot style errorrange is an alias of yerrorrange.
Corresponding plot styles also exist to plot data with errorbars along the

z-axes of three-dimensional plots: zerrorbars, zerrorrange, xzerrorbars,
xzerrorrange, yzerrorbars, yzerrorrange, xyzerrorbars, xyzerrorrange.
Though it does not make sense to use these on two-dimensional plots, it is not
an error to do so; they expect the same number of columns of input data on
both two- and three-dimensional plots.

8.2.3 Shaded regions

The following plot styles allow regions of graphs to be shaded with color:

• yerrorshaded

• shadedregion

Both fill specified regions of graphs with the selected fillcolor and draw a
line around the boundary of the region with the selected color, linetype and
linewidth.

They differ in the format in which they expect the input data to be ar-
ranged. The yerrorshaded plot style is similar to the yerrorrange plot style:
it expects three columns of data, specifying the x-coordinate and the minimum
and maximum extremes of the vertical errorbar on each data point. The region
contained between the upper and lower limits of these error bars is filled with
color. Note that the data points must be sorted in order of either increasing or
decreasing x-coordinate for sensible behaviour.

The shadedregion plot style takes only two columns of input data, speci-
fying the x- and y-coordinates of a series of data points which are to be joined
in a join-the-dots fashion. At the end of each dataset, the drawn path is closed
and filled.

The use of these plot styles on three-dimensional graphs may produce unex-
pected results.

8.2.4 Barcharts and histograms

The following plot styles allow barcharts to be produced:

• boxes

• impulses

• wboxes

These styles differ in where the horizontal interfaces between the bars are placed
along the abscissa axis and how wide the bars are. In the boxes plot style, the
interfaces between the bars are at the midpoints between the specified data
points by default (see, for example, Figure 8.1a). Alternatively, the widths of
the bars may be set using the set boxwidth command. In this case, all of the
bars will be centered on their specified x-coordinates, and have total widths

8.2. PYXPLOT’S PLOT STYLES 139

(c)

5 10

x

0

0.5

1

y

(a)

0

0.5

1

y

(d)

5 10

x

(b)

Figure 8.1: A gallery of the various bar chart styles which Pyxplot can produce.
See the text for more details.

equalling that specified in the set boxwidth command. Consequently, there
may be gaps between them, or they may overlap, as seen in Figure 8.1(b).

Having set a fixed box width, the default behaviour of scaling box widths
automatically may be restored either with the unset boxwidth command, or
by setting the boxwidth to a negative width.

In the wboxes plot style, the width of each bar is specified manually as an
additional column of the input data file. This plot style expects three columns
of data to be provided: the x- and y-coordinates of each bar in the first two,
and the width of the bars in the third. Figure 8.1(c) shows an example of this
plot style in use.

Finally, in the impulses plot style, the bars all have zero width; see Fig-
ure 8.2(c) for an example.

In all of these plot styles, the bars originate from the line y = 0 by default,
as is normal for a histogram. However, should it be desired for the bars to start
from a different vertical line, this may be achieved by using the set boxfrom

command, for example:

set boxfrom 5

In this case, all of the bars would now originate from the line y = 5. Figure 8.2(b)
shows the kind of effect that is achieved; for comparison, Figure 8.2(a) shows
the same bar chart with the boxes starting from their default position of y = 0.

The bars may be filled using the with fillcolor modifier, followed by the
name of a color:

plot ’data.dat’ with boxes fillcolor blue

plot ’data.dat’ with boxes fc 4

140 CHAPTER 8. PLOTTING: A COMPLETE GUIDE

(e) fsteps

0 10 20

x

0

0.05

0.1 (f) histeps

0 10 20

x

(c) impulses

0

0.05

0.1

p
oi

ss
on

P
D

F
(x
,1

8) (d) steps

(a) boxes

0

0.05

0.1 (b) boxes

Figure 8.2: A second gallery of the various bar chart styles which Pyxplot can
produce. See the text for more details. The script and data file used to produce
this image are available on the Pyxplot website at http://www.pyxplot.org.

uk/examples/Manual/03barchart1/.

http://www.pyxplot.org.uk/examples/Manual/03barchart1/
http://www.pyxplot.org.uk/examples/Manual/03barchart1/

8.2. PYXPLOT’S PLOT STYLES 141

Figures 8.1(b) and (d) demonstrate the use of filled bars.
The boxes and wboxes plot styles expect identically-formatted data when

used on two- and three-dimensional plots; in the latter case, all bars are drawn
in the plane z = 0. The impulses plot style takes an additional column of data
on three-dimensional plots, specifying the z-coordinate at which each impulse
should be drawn.

Stacked bar charts

If multiple data points are supplied to the boxes or wboxes plot styles at a com-
mon x-coordinate, then the bars are stacked one above another into a stacked
barchart. Consider the following data file:

1 1

2 2

2 3

3 4

The second bar at x = 2 would be placed on top of the first, spanning the range
2 < y < 5, and having the same width as the first. If plot colors are being
automatically selected from the palette, then a different palette color is used to
plot the upper bar.

8.2.5 Steps

The following plot styles allow data to be plotted with a series of horizontal
steps associated with each supplied data point:

• steps

• fsteps

• histeps

Each of these styles takes two columns of data, containing the x- and y-coordinates
of each data point. They expect identically-formatted data regardless of whether
they are used on two- and three-dimensional plots; in the latter case, the steps
are drawn in the plane z = 0.

An example of their appearance is shown in Figures 8.2(d), (e) and (f); for
clarity, the positions of each of the supplied data points are marked by red
crosses.

These plot styles differ in their placement of the edges of each of the hori-
zontal steps. The steps plot style places the right-most edge of each step on
the data point it represents. The fsteps plot style places the left-most edge of
each step on the data point it represents. The histeps plot style centers each
step on the data point it represents.

8.2.6 Arrows

The following plot styles allow arrows or lines to be drawn on graphs with
positions dictated by a series of data points:

• arrows head

142 CHAPTER 8. PLOTTING: A COMPLETE GUIDE

• arrows nohead

• arrows twohead

The plot style of arrows is an alias for arrows head. Each of these plot styles
take four columns of data on two-dimensional plots – x1, y1, x2 and y2 – or
six columns of data on three-dimensional plots with additional z-coordinates.
Each data point results in an arrow being drawn from the point (x1, y1, z1)
to the point (x2, y2, z2). The three plot styles differ in the kinds of arrows
that they draw: arrows head draws an arrow head on each arrow at the point
(x2, y2, z2); arrows nohead draws simple lines without arrow heads on either
end; arrows twohead draws arrow heads on both ends of each arrow.

Example 16: A diagram of fluid flow around a vortex.

In this example we produce a velocity map of fluid circulating in a vortex. For
simplicity, we assume that the fluid in the core of the vortex, at radii r < 1, is
undergoing solid body rotation with velocity v ∝ r, and that the fluid outside
this core is behaving as a free vortex with velocity v ∝ 1/r. First of all, we use
a simple python script to generate a data file with the four columns:

from math import *

for i in range(-19,20,2):

for j in range(-19,20,2):

x = float(i)/2

y = float(j)/2

r = sqrt(x**2 + y**2) / 4

theta = atan2(y,x)

if (r < 1.0): v = 1.3*r

else : v = 1.3/r

vy = v * cos(theta)

vx = v * -sin(theta)

print "%7.3f %7.3f %7.3f %7.3f"%(x,y,vx,vy)

This data can then be plotted using the following Pyxplot script:

set size square

set width 9

set nokey

set xlabel ’x’

set ylabel ’y’

set trange [0:2*pi]

plot \
’vortex.dat’ u 1:2:($1+$3):($2+$4) w arrows, \
parametric 4*sin(t):4*cos(t) w lt 2 col black

8.3. LABELLING DATAPOINTS 143

−10 0 10

x

−10

−5

0

5

10
y

8.2.7 Color maps, contour maps and surface plots

The following plot styles differ from those above in that, regardless of whether
a three-dimensional plot is being produced, they read in datapoints with x, y
and z coordinates in three columns. The first two are useful for producing two-
dimensional representations of (x, y, z) surfaces using colors or contours to show
the magnitude of z, while the third is useful for producing three-dimensional
graphs of such surfaces:

• colormap

• contourmap

• surface

They are discussed in detail in Sections 8.12, 8.13 and 8.14.1 respectively.

8.3 Labelling datapoints

The label modifier to the plot command may be used to add text labels next
to datapoints, as in the following examples:

set samples 8

plot [2:5] x**2 label "$x=%.2f$"%($1) with points

plot ’datafile’ using 1:2 label "%s"%($3)

144 CHAPTER 8. PLOTTING: A COMPLETE GUIDE

Note that if a particular column of a data file contains strings which are to
be used as labels, as in the second example above, syntax such as "%s"%($3)

must be used to explicitly read the data as strings rather than as numerical
quantities. As Pyxplot treats any whitespace as separating columns of data,
such labels cannot contain spaces, though latex’s ∼ character (a non-breaking
space) can be used to achieve a space.

Data points can be labelled when plotted in any of the following plot styles:
arrows (and similar styles), dots, errorbars (and similar styles), errorrange
(and similar styles), impulses, linespoints, lowerlimits, points, stars and
upperlimits. It is not possible to label datapoints plotted in other styles.
Labels are rendered in the same color as the datapoints with which they are
associated.

8.4 The style keyword

At times, the string of style keywords placed after the with modifier in plot

commands can grow rather unwieldy in its length. For clarity, frequently used
plot styles can be stored as numbered plot styles. The syntax for setting a
numbered plot style is:

set style 2 points pointtype 3

where the 2 is the identification number of the style. In a subsequent plot

statement, this style can be recalled as follows:

plot sin(x) with style 2

8.5 Plotting functions in exotic styles

The use of plot styles which take more than two columns of input data to plot
functions requires more than one function to be supplied. When functions are
plotted with syntax such as

plot sin(x) with lines

two columns of data are generated: the first contains values of x – plotted
against the horizontal axis – and the second contains values of sin(x) – plotted
against the vertical axis. Syntax such as

plot f(x):g(x) with yerrorbars

generates three columns of data. As before, the first contains values of x. The
second and third contain samples from the colon-separated functions f(x) and
g(x). Specifically, in this example, g(x) provides the uncertainty in the value of
f(x). The using modifier may also be used in combination with such syntax,
as in

plot f(x):g(x) using 2:3

8.6. PLOTTING PARAMETRIC FUNCTIONS 145

though this example is not sensible. g(x) would be plotted on the y-axis, against
f(x) on the x-axis. However, this is unlikely to be sensible because the range
of values of x substituting into these expressions would correspond to the range
of the plot’s horizontal axis. The result might be particularly unexpected if the
above were attempted with an autoscaling horizontal axis – Pyxplot would find
itself autoscaling the x-axis range to the spread of values of f(x), but find that
this itself changed depending on the range of the x-axis. In this case, the user
should have used the parametric plot option described in the next section.

8.6 Plotting parametric functions

Parametric functions are functions expressed in forms such as

x = r sin(t)

y = r cos(t),

where separate expressions are supplied for the ordinate and abscissa values
as a function of some free parameter t. The above example is a parametric
representation of a circle of radius r. Before Pyxplot can usefully plot parametric
functions, it is generally necessary to stipulate the range of values of t over
which the function should be sampled. This may be done using the set trange

command, as in the example

set trange [unit(0*rad):unit(2*pi*rad)]

or in the plot command itself. By default, values in the range 0 ≤ t ≤ 1 are
used. Note that the set trange command differs from other commands for
setting axis ranges in that auto-scaling is not an allowed behaviour; an explicit
range must be specified for t.

Having set an appropriate range for t, parametric functions may be plotted
by placing the keyword parametric before the list of functions to be plotted,
as in the following simple example which plots a circle:

set trange [unit(0*rev):unit(1*rev)]

plot parametric sin(t):cos(t)

Optionally, a range for t can be specified on a plot-by-plot basis immediately
after the keyword parametric, and thus the effect above could also be achieved
using:

plot parametric [unit(0*rev):unit(1*rev)] sin(t):cos(t)

The only difference between parametric function plotting and ordinary function
plotting – other than the change of dummy variable from x to t – is that one
fewer column of data is generated. Thus, whilst

plot f(x)

generates two columns of data, with values of x in the first column,

plot parametric f(t)

generates only one column of data.

Example 17: Spirograph patterns.

146 CHAPTER 8. PLOTTING: A COMPLETE GUIDE

Spirograph patterns are produced when a pen is tethered to the end of a rod
which rotates at some angular speed ω1 about the end of another rod, which is
itself rotating at some angular speed ω2 about a fixed central point. Spirographs
are commonly implemented mechanically as wheels within wheels – epicycles
within deferents, mathematically speaking – but in this example we implement
them using the parametric functions

x = r1 sin(t) + r2 sin(tr1/r2)

y = r1 cos(t) + r2 cos(tr1/r2)

which are simply the sum of two circular motions with angular velocities in-
versely proportional to their radii. The complexity of the resulting spirograph
pattern depends on how rapidly the rods return to their starting configuration;
if the two chosen angular speeds for the rods have a large lowest common mul-
tiple, then a highly complicated pattern will result. In the example below, we
pick a ratio of 8 : 15:

set nogrid

set nokey

r1 = 1.5

r2 = 0.8

set size square

set trange[0:40*pi]

set samples 2500

plot parametric r1*sin(t) + r2*sin(t*(r1/r2)) : \
r1*cos(t) + r2*cos(t*(r1/r2))

8.6. PLOTTING PARAMETRIC FUNCTIONS 147

−2 −1 0 1 2

−2

−1

0

1

2

Other ratios of r1:r2 such as 7 : 19 and 5 : 19 also produce intricate patterns.

8.6.1 Two-dimensional parametric surfaces

Pyxplot can also plot datasets which can be parameterised in terms of two free
parameters u and v. This is most often useful in conjunction with the surface

plot style, allowing any (u, v)-surface to be plotted (see Section 8.14.1 for details
of the surface plot style). However, it also works in conjunction with any other
plot style, allowing, for example, (u, v)-grids of points to be constructed.

As in the case of parametric lines above, the range of values that each free pa-
rameter should take must be specified. This can be done using the set urange

and set vrange commands. These commands also act to switch Pyxplot be-
tween one- and two-dimensional parametric function evaluation; whilst the set

trange command indicates that the next parametric function should be eval-
uated along a single raster of values of t, the set urange and set vrange

commands indicate that a grid of (u, v) values should be used. By default, the
range of values used for u and v is 0→ 1.

The number of samples to be taken can be specified using a command of the
form

set sample grid 20x50

which specifies that 20 different values of u and 50 different values of v should be
used, yielding a total of 1000 datapoints. The following example uses the lines

plot style to generate a sequence of cross-sections through a two-dimensional
Gaussian surface:

set num err quiet

set nokey

148 CHAPTER 8. PLOTTING: A COMPLETE GUIDE

set size 7 square

set sample grid 20x20

set urange [-1:1] ; set vrange [-1:1]

set xrange [-1.1:1.1]

f(u,v) = 0.4*exp(-(u**2+v**2)/0.2)

plot parametric u:v+f(u,v) with l

−1 0 1
−1

−0.5

0

0.5

1

The ranges of values to use for u and v may alternatively be specified on a
dataset-by-dataset basis within the plot command, as in the example

plot parametric [0:1][0:1] u:v , \

parametric [0:1] sin(t):cos(t)

Example 18: A three-dimensional view of a torus.

In this example we plot a torus, which can be parametrised in terms of two free
parameters u and v as

x = (R+ r cos(v)) cos(u)

y = (R+ r cos(v)) sin(u)

z = r sin(v),

where u and v both run in the range [0 : 2π], R is the distance of the tube’s
center from the center of the torus, and r is the radius of the tube.

R = 3

r = 0.5

f(u,v) = (R+r*cos(v))*cos(u)

g(u,v) = (R+r*cos(v))*sin(u)

h(u,v) = r*sin(v)

8.6. PLOTTING PARAMETRIC FUNCTIONS 149

set urange [0:2*pi]

set vrange [0:2*pi]

set zrange [-2.5:2.5]

set nokey

set size 8 square

set grid

set sample grid 50x20

plot 3d parametric f(u,v):g(u,v):h(u,v) with surf fillcol blue

−2.5

0

2.5

−2

−1

0

1

2

−2.5

0

2.5

Example 19: A three-dimensional view of a trefoil knot.

150 CHAPTER 8. PLOTTING: A COMPLETE GUIDE

In this example we plot a trefoil knot, which is the simplest non-trivial knot
in topology. Simply put, this means that it is not possible to untie the knot
without cutting it. The knot follows the line

x = (2 + cos(3t)) cos(2t)

y = (2 + cos(3t)) sin(2t)

z = sin(3t),

but in this example we construct a tube around this line using the following
parameterisation:

x = cos(2u) cos(v) + r cos(2u)(1.5 + sin(3u)/2)

y = sin(2u) cos(v) + r sin(2u)(1.5 + sin(3u)/2)

z = sin(v) +R cos(3u),

where u and v run in the ranges [0 : 2π] and [−π : π] respectively, and r and R
determine the size and thickness of the knot as in an analogous fashion to the
previous example.

r = 5

R = 2

f(u,v) = cos(2*u)*cos(v) + r*cos(2*u)*(1.5+sin(3*u)/2)

g(u,v) = sin(2*u)*cos(v) + r*sin(2*u)*(1.5+sin(3*u)/2)

h(u,v) = sin(v)+R*cos(3*u)

set urange [0:2*pi]

set vrange [-pi:pi]

set nokey

set size 8 square

set grid

set sample grid 150x20

plot 3d parametric f(u,v):g(u,v):h(u,v) with surf fillcol blue

8.7. GRAPH LEGENDS 151

−10

0

10

−2.5

0

2.5

−10

0

10

8.7 Graph legends

By default, plots are displayed with legends in their top-right corners. The
textual description of each dataset is auto-generated from the command used to
plot it. Alternatively, the user may specify his own description for each dataset
by following the plot command with the title modifier, as in the following
examples:

plot sin(x) title ’A sine wave’

plot cos(x) title ’’

In the latter case a blank title is specified, which indicates to Pyxplot that no
entry should be made for the dataset in the legend. This allows for legends which
contain only a subset of the datasets on a plot. Alternatively, the production of
the legend can be completely turned off for all datasets using the command set

nokey. Having issued this command, the production of keys can be resumed
using the set key command.

The set key command can also be used to dictate how legends should be
positioned on graphs, using a syntax along the lines of:

set key top right

The following recognised positional keywords are self-explanatory: top, bottom,
left, right, xcenter and ycenter. Any single instance of the set key com-
mand can be followed by one horizontal alignment keyword and one vertical

152 CHAPTER 8. PLOTTING: A COMPLETE GUIDE

alignment keyword; these keywords also affect the justification of the legend –
for example, the keyword left aligns the legend with its left edge against the
left edge of the plot.

Alternatively, the position of the legend can be indicated using one of the
keywords outside, below or above. These cannot be combined with the hori-
zontal and vertical alignment keywords above, and are used to indicate that the
legend should be placed, respectively, outside the plot on its right side, centered
beneath the plot, and centered above the plot.

Two comma-separated positional offset coordinates may be specified follow-
ing any of the named positions listed above to fine-tune the position of the
legend – the first value is assumed to be a horizontal offset and the second a
vertical offset. Either may have units of length, or, if they are dimensionless, are
assumed to be measured in centimeters, as the following examples demonstrate:

set key bottom left 0.0 -2

set key top xcenter 2*unit(mm),2*unit(mm)

By default, entries in the legend are automatically sorted into an appropriate
number of columns. The number of columns to be used, can, instead, be stip-
ulated using the set keycolumns command. This should be followed by either
the integer number of desired columns, or by the keyword auto to indicate that
the default behaviour of automatic formatting should be resumed:

set keycolumns 2

set keycolumns auto

8.8 Configuring axes

8.8.1 Adding additional axes

By default, plots have only one horizontal x-axis and one vertical y-axis. Addi-
tional axes may be added parallel to these and are referred to as, for example, the
x2 axis, the x3 axis, and so forth up to a maximum of x127. In keeping with this
nomenclature, the first axis in each direction can be referred to interchangeably
as, for example, x or x1, or as y or y1. Further axes are automatically generated
when statements such as the following are issued:

set x2label ’A second horizontal axis’

Such axes may alternatively be created explicitly using the set axis command,
as in the example

set axis x3

or removed explicitly using the unset axis command, as in the example

unset axis x3

In either case, multiple axes can be created or removed in a single statement,
as in the examples

8.8. CONFIGURING AXES 153

unset axis x3x5x6 y2

set axis x2y2

The first axes x1 and y1 – and z1 on three-dimensional plots – are unique in
that they cannot be removed; all plots must have at least one axis in each
perpendicular direction. Thus, the command unset axis x1 does not remove
this first axis, but merely returns it to its default configuration. It should be
noted that if the following two commands are typed in succession, the second
may not entirely negate the first:

set x3label ’foo’

unset x3label

If an x3-axis did not previously exist, then the first will have implicitly created
one. This would need to be removed with the unset axis x3 command if it
was not desired.

8.8.2 Selecting which axes to plot against

The axes against which data are plotted can be selected by passing the axes

modifier to the plot command. By default, data is plotted against the first
horizontal axis and the first vertical axis. In the following plot command the
second horizontal axis and the third vertical axis would be used:

plot f(x) axes x2y3

It is also possible to plot data using a vertical axis as the abscissa axis using
syntax such as:

plot f(x) axes y3x2

Similar syntax is used when plotting three-dimensional graphs, except that three
perpendicular axes should be specified.

8.8.3 Plotting quantities with physical units

When data with non-dimensionless physical units are plotted against an axis,
for example using any of the statements

plot [0:10] x*unit(m)

plot [0:10] x using 1:$2*unit(m)

plot [0*unit(m):1*unit(m)] x**2

set unit angle nodimensionless ; plot [0:1] asin(x)

the axis is set to share the particular physical dimensions of that unit, and
thereafter no data with any other physical dimensions may be plotted against
that axis. When the axis comes to be drawn, Pyxplot makes a decision about
which physical unit should be used to label the axis. For example, in the
default SI system and with no preferred unit of length set, axes with units
of length might be displayed in millimeters, meters or kilometers depending on
their scales.

The chosen unit is indicated in one of three styles in the axis label, selected
using the set axisunitstyle command:

154 CHAPTER 8. PLOTTING: A COMPLETE GUIDE

set axisunitstyle ratio

set axisunitstyle bracketed

set axisunitstyle squarebracketed

The effect of these three options, respectively, is shown below for an axis with
units of momentum. In each case, the axis label was set simply using

set xlabel "Momentum"

and the subsequent text was appended automatically by Pyxplot:

0 2.5 5 7.5 10

Momentum / kg m s−1

0 2.5 5 7.5 10

Momentum (kg m s−1)

0 2.5 5 7.5 10

Momentum [kg m s−1]

When the set xformat command is used (see Section 8.8.8), no indication of
the units associated with axes are appended to axis labels, as the set xformat

command can be used to hard-code this information. The user must include
this information in the axis label manually if it is needed.

8.8.4 Specifying the positioning of axes

By default, the x1-axis is placed along the bottom of graphs and the y1-axis is
placed up the left-hand side of graphs. On three-dimensional plots, the z1-axis
is placed at the front of the graph. The second set of axes are placed opposite
the first: the x2-, y2- and z2-axes are placed respectively along the top, right
and back sides of graphs. Higher-numbered axes are placed alongside the x1-,
y1- and z1-axes.

However, the position of any axis can be explicitly set using syntax of the
form:

set axis x top

set axis y right

set axis z back

Horizontal axes can be set to appear either at the top or bottom; vertical axes
can be set to appear either at the left or right; and z-axes can be set to
appear either at the front or back.

8.8.5 Configuring the appearance of axes

The set axis command also accepts the following keywords alongside the po-
sitional keywords listed above, which specify how the axis should appear:

8.8. CONFIGURING AXES 155

• arrow – Specifies that an arrowhead should be drawn on the right/top
end of the axis. [Not default].

• atzero – Specifies that rather than being placed along an edge of the plot,
the axis should mark the lines where the perpendicular axes x1, y1 and/or
z1 are zero. [Not default].

• automirrored – Specifies that an automatic decision should be made be-
tween the behaviour of mirrored and nomirrored. If there are no axes
on the opposite side of the graph, a mirror axis is produced. If there are
already axes on the opposite side of the graph, no mirror axis is produced.
[Default].

• fullmirrored – Similar to mirrored. Specifies that this axis should have
a corresponding twin placed on the opposite side of the graph with mir-
roring ticks and labelling. [Not default; see automirrored].

• invisible – Specifies that the axis should not be drawn; data can still
be plotted against it, but the axis is unseen. See Example 24 for a plot
where all of the axes are invisible.

• linked – Specifies that the axis should be linked to another axis; see
Section 8.8.9.

• mirrored – Specifies that this axis should have a corresponding twin
placed on the opposite side of the graph with mirroring ticks but with
no labels on the ticks. [Not default; see automirrored].

• noarrow – Specifies that no arrowheads should be drawn on the ends of
the axis. [Default].

• nomirrored – Specifies that this axis should not have any corresponding
twins. [Not default; see automirrored].

• notatzero – Opposite of atzero; the axis should be placed along an edge
of the plot. [Default].

• notlinked – Specifies that the axis should no longer be linked to any
other; see Section 8.8.9. [Default].

• reversearrow – Specifies that an arrowhead should be drawn on the
left/bottom end of the axis. [Not default].

• twowayarrow – Specifies that arrowheads should be drawn on both ends
of the axis. [Not default].

• visible – Specifies that the axis should be displayed; opposite of invisible.
[Default].

The following simple examples demonstrate the use of some of these config-
uration options:

set axis x atzero twoway

set axis y atzero twoway

plot [-2:8][-10:10]

156 CHAPTER 8. PLOTTING: A COMPLETE GUIDE

0 2.5 5 7.50 2.5 5 7.5

−10

−5

5

10

−10

−5

5

10

set axis x atzero arrow

set axis y atzero twoway

plot [0:10][-10:10]

2.5 5 7.5 102.5 5 7.5 10

−10

−5

0

5

10

−10

−5

0

5

10

set axis x notatzero arrow nomirror

set axis y notatzero arrow nomirror

plot [0:10][0:20]

0 2.5 5 7.5 10
0

5

10

15

20

8.8.6 Setting the color of axes

The colors of axes can be controlled via the set axescolor. The following
example would set axes to be drawn in blue:

8.8. CONFIGURING AXES 157

set axescolor blue

Any of the color names listed in Section 19.4 can be used, as can any object of
type color, e.g. rgb(0.2,0.1,0.8).

8.8.7 Specifying where ticks should appear along axes

By default, Pyxplot places a series of tick marks at significant points along each
axis, with the most significant points being labelled. Labelled tick marks are
termed major ticks, and unlabelled tick marks are termed minor ticks. The
position and appearance of the major ticks along the x-axis can be configured
using the set xtics command, which has the following syntax:

set xtics

[(axis | border | inward | outward | both)]

[(autofreq

| [<minimum>,] <increment> [, <maximum>]

| \({ ’<label>’ <position> } \)

])

The corresponding set mxtics command, which has the same syntax as
above, configures the appearance of the minor ticks along the x-axis. Analogous
commands such as set ytics and set mx2tics configure the major and minor
ticks along other axes.

The keywords inward, outward and both are used to configure how the ticks
appear – whether they point inward, towards the plot, as is default, or outwards
towards the axis labels, or in both directions. The keyword axis is an alias for
inward, and border an alias for outward.

The remaining options are used to configure where along the axis ticks
are placed. If a series of comma-separated values <minimum>, <increment>,

<maximum> are specified, then ticks are placed at evenly spaced intervals be-
tween the specified limits. The <minimum> and <maximum> values are optional;
if only one value is specified then it is taken to be the step size between ticks.
If two values are specified, then the first is taken to be <minimum>. In the case
of logarithmic axes, <increment> is applied as a multiplicative step size, and
should be dimensionless. For example:

set xtics 0,1,10 # Ticks at 0,1,2,...,10

set log x

set xtics 2,2 # Ticks at 2,4,8,16 ...

Alternatively, if a bracketed list of quoted tick labels and tick positions are
provided, then ticks can be placed on an axis manually and each given its own
textual label. The quoted tick labels may be omitted, in which case they are
automatically generated:

set xtics ("a" 1, "b" 2, "c" 3)

set xtics (1,2,3)

The keyword autofreq overrides any manual selection of ticks which may have
been placed on an axis and resumes the automatic placement of ticks along it.
The show xtics command, together with its companions such as show x2tics

158 CHAPTER 8. PLOTTING: A COMPLETE GUIDE

and show ytics, may be used to query the current ticking options. The set

noxtics command may be used to stipulate that no ticks should appear along
a particular axis:

set noxtics

show xtics

Example 20: A plot of the function exp(x) sin(1/x).

In this example we produce a plot illustrating some of the zeroes of the function
exp(x) sin(1/x). We set the x-axis to have tick marks at x = 0.05, 0.1, 0.2 and
0.4. The x2-axis has custom labelled ticks at x = 1/π, 2/π, etc., pointing out-
wards from the plot. The left-hand y-axis has tick marks placed automatically
whereas the y2-axis has no tics at all.

set log x1x2

set xrange [0.05:0.5]

set axis x2 top linked x

set xtics 0.05, 2, 0.4

set x2tics border \
(r"$\frac{1}{\pi}$" 1/pi, r"$\frac{1}{2\pi}$" 1/(2*pi), \
r"$\frac{1}{3\pi}$" 1/(3*pi), r"$\frac{1}{4\pi}$" 1/(4*pi), \
r"$\frac{1}{5\pi}$" 1/(5*pi), r"$\frac{1}{6\pi}$" 1/(6*pi))

set grid x2

set nokey

set xlabel ’x’

set ylabel ’$\\exp(x)\sin(1/x)$’
plot exp(x)*sin(1/x), 0

0.05 0.1 0.2 0.4

x

1
π

1
2π

1
3π

1
4π

1
5π

1
6π

−1

0

1

ex
p
(x

)
si

n
(1
/x

)

8.8. CONFIGURING AXES 159

8.8.8 Configuring how tick marks are labelled

By default, the major tick marks along axes are labelled with representations of
the values represented at each point, each accurate to the number of significant
figures specified using the set numerics sigfig command. These labels may
appear as decimals, such as 3.142, in scientific notion, as in 3 × 108, or, on
logarithmic axes where a base has been specified for the logarithms, using syntax
such as1

set log x1 2

in a format such as 1.5× 28.
The set xformat command – together with its companions such as set

yformat2 – is used to manually specify an explicit format for the axis labels to
take, as demonstrated by the following pair of examples:

set xformat "%.2f"%(x)

set yformat "%s$^\prime$"%(y/unit(feet))

The first example specifies that ordinate values should be displayed to two
decimal places along the x-axis; the second specifies that distances should be
displayed in feet along the y-axis. Note that the dummy variable used to rep-
resent the ordinate value is x, y or z depending on the direction of the axis,
but that the dummy variable used in the set x2format command is still x.
The following pair of examples both have the equivalent effect of returning the
x2-axis to its default system of tick labels:

set x2format auto

set x2format "%s"%(x)

The following example specifies that ordinate values should be displayed as
multiples of π:

set xformat "%sπ"%(x/pi)

plot [-pi:2*pi] sin(x)

-1π -0.2π 0.6π 1.4π
−1

−0.5

0

0.5

1

sin (x)

Note that where possible, Pyxplot intelligently changes the positions along
axes where it places the ticks to reflect significant points in the chosen labelling

1Note that the x axis must be referred to as x1 here to distinguish this statement from set

log x2.
2There is no set mxformat command since minor axis ticks are never labelled unless labels

are explicitly provided for them using the syntax set mxtics (...).

160 CHAPTER 8. PLOTTING: A COMPLETE GUIDE

system. The extent to which this is possible depends on the format string
supplied. It is generally easier when continuous-varying numerical values are
substituted into strings, rather than discretely-varying values or strings. Thus,
rather than

% set xformat "%d"%(floor(x))

the following is preferred

" set xformat "%d"%(x)

and rather than

% set xformat "%s"%date.str()

the following is preferred

" set xformat "%d/%02d/%d"%(date.toDayOfMonth(), \
date.toMonthNum(), date.toYear())

Changing the slant of axis labels

The set xformat command and its companions may also be followed by key-
words which control the angle at which tick labels are drawn. By default, all
tick labels are written horizontally, a behaviour which may be reproduced by
issuing the command:

set xformat auto horizontal

Alternatively, tick labels may be set to be written vertically, by issuing the
command

set xformat auto vertical

or to be written at any clockwise rotation angle from the horizontal using com-
mands of the form

set xformat auto rotate 10

Axis labels may also be made to appear at arbitrary rotations using com-
mands such as

set unit angle nodimensionless

set xlabel "I’m upside down" rotate unit(0.5*revolution)

Removing axis tick labels

Axes may be set to have no textual labels associated with the ticks along them
using the command:

set xformat ""

This is particularly useful when compiling galleries of plots using linked axes
(see the next section) and the multiplot environment (see Chapter 10).

8.8. CONFIGURING AXES 161

8.8.9 Linked axes

Often it may be desired that multiple axes on a graph share a common range, or
be related to one another by some algebraic expression. For example, a plot with
wavelength λ of light as one axis may usefully also have parallel axes showing
frequency of light ν = c/λ or photon energy E = hc/λ. The following example
sets the x2 axis to share a common range with the x axis:

set axis x2 linked x

An algebraic relationship between two axes may be set by stating the algebraic
relationship after the keyword using, as in the following example which imple-
ment the formulae shown above for the frequency and energy of photons of light
as a function of their wavelength:

set xrange [200*unit(nm):unit(800*nm)]

set axis x2 linked x1 using phy.c/x

set axis x3 linked x2 using phy.h*x

As in the set xformat command, a dummy variable of x, y or z is used in the
linkage expression depending on the direction of the axis being linked to, but a
dummy variable of x is still used when linking to, for example, the x2 axis.

As these examples demonstrate, the functions used to link axes need not be
linear. In fact, axes with any arbitrary mapping between position and value can
be produced by linked in a non-linear fashion to another linear axis, which, if
desired, can then be hidden using the set axis invisible command. Multi-
valued mappings are also permitted. Any data plotted against the following
x2-axis for a suitable range of x-axis

set axis x2 linked x1 using x**2

would appear twice, symmetrically on either side of x = 0.
Insofar as is possible, linked axes autoscale intelligently when no range is

set. Thus, if the x2-axis is linked to the x-axis, and no range to set for the
x-axis, the x-axis will autoscale to include all of the data plotted against both
itself and the x2-axis. Similarly, if the x2-axis is linked to the x-axis by means
of some algebraic expression, the x-axis will attempt to autoscale to include
the data plotted against the x2-axis, though in some cases – especially with
non-monotonic linking functions – this may prove too difficult. Where Pyxplot
detects that it has failed, a warning is issued recommending that a hard range
be set for – in this example – the x-axis.

Example 21: A plot of many blackbodies demonstrating the use of linked axes.

162 CHAPTER 8. PLOTTING: A COMPLETE GUIDE

In this example we produce a plot of blackbody spectra for five different tem-
peratures T , using the Planck formula

Bν(ν, T) =

(
2h3

c2

)
ν3

exp(hν/kT)− 1

which is evaluated in Pyxplot by the system-defined mathematical function
Bv(nu,T). We use the axis linkage commands listed as an example in the text
of Section 8.8.9 to produce three parallel horizontal axes showing wavelength of
light, frequency of light and photon energy.

set numeric display latex

set unit angle nodimensionless

set log x y

set key bottom right

set ylabel "Flux density" ; set unit preferred W/Hz/m**2/sterad

set x1label "Wavelength"

set x2label "Frequency" ; set unit of frequency Hz

set x3label "Photon Energy" ; set unit of energy eV

set axis x2 linked x1 using phy.c/x

set axis x3 linked x2 using phy.h*x

set xtics unit(0.1*um),10

set x2tics 1e12*unit(Hz),10

set x3tics 0.01*unit(eV),10

set xrange [80*unit(nm):unit(mm)]

set yrange [1e-20*unit(W/Hz/m**2/sterad):]

bb(wlen,T) = phy.Bv(phy.c/wlen,T)

plot bb(x, 30) title r"$T= 30$\,K", \
bb(x, 100) title r"$T= 100$\,K", \
bb(x, 300) title r"$T= 300$\,K", \
bb(x,1000) title r"$T=1000$\,K", \
bb(x,3000) title r"$T=3000$\,K"

8.8. CONFIGURING AXES 163

0.1 1 10 100 1000

Wavelength / µm

1012101310141015

Frequency / Hz

0.010.1110

Photon Energy / eV

10−20

10−15

10−10

F
lu

x
d
en

si
ty

/
W

H
z−

1
st

er
ad

−
1
m

−
2

T = 30K
T = 100K
T = 300K
T = 1000K
T = 3000K

Example 22: A plot of the temperature of the CMBR as a function of redshift
demonstrating non-linear axis linkage.

In this example we produce a plot of the temperature of the cosmic microwave
background radiation (CMBR) as a function of time t since the Big Bang, on the
x-axis, and equivalently as a function of redshift z, on the x2-axis. The specialist
cosmology function ast Lcdm z(t,H0,ΩM,ΩΛ) is used to make the highly non-
linear conversion between time t and redshift z, adopting some standard values
for the cosmological parameters H0, ΩM and ΩΛ. Because the temperature of
the CMBR is most easily expressed as a function of redshift as T = 2.73 K/(1 +
z), we plot this function against axis x2.

h0 = 70

omega m = 0.27

omega l = 0.73

age = ast.Lcdm age(h0,omega m,omega l)

set xrange [0.01*age:0.99*age]

set xtics (unit(1*Gyr),unit(4*Gyr),unit(7*Gyr),unit(10*Gyr),unit(13.6*Gyr))

set unit of time Gyr

set axis x2 linked x using ast.Lcdm z(age-x,h0,omega m,omega l)

set xlabel "Time since Big Bang t"

set ylabel "CMBR Temperature T"

set x2label "Redshift z"

plot unit(2.73*K)*(1+x) ax x2y1

164 CHAPTER 8. PLOTTING: A COMPLETE GUIDE

1 4 7 10 13.6

Time since Big Bang t / Gyr

10 1 0.1

Redshift z

0

10

20

30

40

50

60

C
M

B
R

T
em

p
er

at
u
re

T
/

K

8.9 Gridlines

Gridlines may be placed on a plot and subsequently removed via the statements:

set grid

set nogrid

respectively. The following commands are also valid:

unset grid

unset nogrid

By default, gridlines are drawn from the major and minor ticks of the default
horizontal and vertical axes (which are the first axes in each direction unless set
otherwise in the configuration file; see Chapter 19). However, the axes which
should be used may be specified after the set grid command:

set grid x2y2

set grid x x2y2

The top example would connect the gridlines to the ticks of the x2- and y2-axes,
whilst the lower would draw gridlines from both the x- and the x2-axes.

If one of the specified axes does not exist, then no gridlines will be drawn
in that direction. Gridlines can subsequently be removed selectively from some
axes via:

set nogrid x2x3

The colors of gridlines can be controlled via the set gridmajcolor and set

gridmincolor commands, which control the gridlines emanating from major
and minor axis ticks respectively. The following example would set the minor
grid lines on a graph to be drawn in blue:

set gridmajcolor gray70

set gridmincolor blue

Any of the color names listed in Section 19.4 can be used, as can any object of
type color.

8.10. CLIPPING BEHAVIOUR 165

8.10 Clipping behaviour

The treatment of datapoints close to the edges of plots may be specified using
the set clip command, which provides two options. Either datapoints close
to the axes can be clipped and not allowed to overrun the axes – specified by
set clip – or such datapoints may be allowed to extend over the lines of the
axes – specified by set noclip and the default behaviour.

8.11 Labelling graphs

The set arrow and set label commands allow arrows and text labels to be
added to graphs to label significant points or to add simple vector graphics to
them.

8.11.1 Arrows

The set arrow command may be used to draw arrows on top of graphs; its
syntax is illustrated by the following simple example:

set arrow 1 from 0,0 to 1,1

Optionally, a third coordinate may be specified. On 2D plots, this is ignored.
If no third coordinate is supplied then a value of z = 0 is substituted when the
arrow is plotted on 3D graphs. The number 1 immediately following set arrow

specifies an identification number for the arrow, allowing it to be subsequently
removed via the command

unset arrow 1

or equivalently, via

set noarrow 1

or to be replaced with a different arrow by issuing a new command of the form
set arrow 1 The set arrow command may be followed by the keyword
with to specify the style of the arrow. The keywords nohead, head and twohead,
placed after the keyword with, can be used to generate arrows with no arrow
heads, normal arrow heads, or with two arrow heads. twoway is an alias for
twohead, as in the following example:

set arrow 1 from 0,0 to 1,1 with twoway

Line types, line widths and colors can also be specified after the keyword with,
as in the example:

set arrow 1 from 0,0 to 1,1 with nohead \

linetype 1 c blue

The coordinates for the start and end points of the arrow can be specified
in a range of coordinate systems. The coordinate system to be used should be
specified immediately before the coordinate value. The default system, first
measures the graph using the x- and y-axes. The second system uses the x2-

166 CHAPTER 8. PLOTTING: A COMPLETE GUIDE

and y2-axes. axis<n> specifies that the position is to be measured along the
n th horizontal or vertical axis – for example, axis3. This allows the graph to be
measured with reference to any arbitrary axis on plots which make use of large
numbers of parallel axes (see Section 8.8.1). The page and graph systems both
measure in centimeters from the origin of the graph. In the following example,
we use these specifiers, and specify coordinates using variables rather than doing
so explicitly:

x0 = 0.0

y0 = 0.0

x1 = 1.0

y1 = 1.0

set arrow 1 from first x0, first y0 \

to screen x1, screen y1 \

with nohead

8.11.2 Text labels

Text labels may be placed on plots using the set label command. As with all
textual labels in Pyxplot, these are rendered in latex:

set label 1 ’Hello World’ at 0,0

As in the previous section, the number 1 is a reference number, which allows
the label to be removed by either of the following two commands:

set nolabel 1

unset label 1

The positional coordinates for the text label, placed after the at keyword, can be
specified in any of the coordinate systems described for arrows above. As above,
either two or three coordinates may be supplied. A rotation angle may optionally
be specified after the keyword rotate, to rotate text counter-clockwise by a
given angle, measured in degrees. For example, the following would produce
upward-running text:

set label 1 ’Hello World’ at axis3 3.0, axis4 2.7 rotate 90

A color can also be specified, if desired, using the with color modifier. For
example, the following would produce a green label at the origin:

set label 2 ’This label is green’ at 0, 0 with color green

The size of the text can be set using the with fontsize modifier:

set label 3 ’A Big Blue Label’ at 0,0 with col blue fontsize 4

Alternatively, it may be set globally using the set fontsize command. This
applies not only to the set label command, but also to plot titles, axis labels,
keys, etc. The value supplied should be a multiplicative factor greater than
zero; a value of 2 would cause text to be rendered at twice its normal size, and
a value of 0.5 would cause text to be rendered at half its normal size.

8.11. LABELLING GRAPHS 167

The set textcolor command can be used to globally set the color of all text
output, and applies to all of the text that the set fontsize command does.
It is especially useful when producing plots to be embedded in presentation
slideshows, where bright text on a dark background may be desired. It should
be followed either by an integer, to set a color from the present palette, or by a
color name. A list of the recognised color names can be found in Section 19.4.
For example:

set textcolor 2

set textcolor blue

By default, each label’s specified position corresponds to its bottom left
corner. This alignment may be changed with the set texthalign and set

textvalign commands. The former takes the options left, center or right,
and the latter takes the options bottom, center or top, for example:

set texthalign right

set textvalign top

Example 23: A diagram of the atomic lines of hydrogen.

The wavelengths of the spectral lines of atomic hydrogen are given by the Ry-
dberg formula,

1

λ
= RH

(
1

n2
− 1

m2

)
,

where λ is wavelength, RH is the Rydberg constant, predefined in Pyxplot as
the variable phy Ry, and n and m are positive non-zero integers such that m>n.
The first few series are called the Lyman series (n= 1), the Balmer series (n= 2),
the Paschen series (n= 3) and the Brackett series (n= 4). Within each series,
the lines are given Greek letter designations – α for m=n+1, β for m=n+2, and
so forth.

In the following example, we produce a diagram of the lines in the first four
series, drawing the first 20 lines within each. At the bottom of the diagram,
we overlay indications of the wavelengths of ten color filters commonly used
by astronomers (data taken from Binney & Merrifield, Galactic Astronomy,
Princeton, 1998).

set numeric display latex

set width 20

set size ratio 0.4

set numerics sf 4

set log x

set x1label "Wavelength"

set x2label "Frequency" ; set unit of frequency Hz

set x3label "Photon Energy" ; set unit of energy eV

set axis x2 linked x1 using phy.c/x

set axis x3 linked x2 using phy.h*x

set noytics ; set nomytics

168 CHAPTER 8. PLOTTING: A COMPLETE GUIDE

Draw lines of first four series of hydrogen lines

an=2

n=1

foreach SeriesName in ["Ly","Ba","Pa","Br"]

{
for m=n+1 to n+21

{
wl = 1/(phy.Ry*(1/n**2-1/m**2))

set arrow an from wl,0.3 to wl,0.6 with nohead col n

if (m-n==1) { ; GreekLetter = r"\alpha" ; }
if (m-n==2) { ; GreekLetter = r"\beta" ; }
if (m-n==3) { ; GreekLetter = r"\gamma" ; }
if (m-n<4)
{
set label an r"\parbox{5cm}{\footnotesize\center{\
%s-$%s$\newline $%d\to%d$\newline %s\newline}}" \
%(SeriesName,GreekLetter,m,n,wl) at wl,0.55+0.2*(m-n) \
hal center val center

}
an = an+1

}
n=n+1

}

Label astronomical photometric colors

foreach datum i,name,wl c,wl w in "--" using \
1:"%s"%($2):($3*unit(nm)):($4*unit(nm))

{
arry = 0.12+0.1*(i%2) # Vertical positions for arrows

laby = 0.07+0.1*(i%2) # Vertical positions for labels

x0 = (wl c-wl w/2) # Shortward end of passband

x1 = wl c # Centre of passband

x2 = (wl c+wl w/2) # Longward end of passband

set arrow an from x0,arry to x2,arry with nohead

set label an name at x1,laby hal center val center

an = an+1

}
1 U 365 66

2 B 445 94

3 V 551 88

4 R 658 138

5 I 806 149

6 J 1220 213

7 H 1630 307

8 K 2190 390

9 L 3450 472

10 M 4750 460

END

8.11. LABELLING GRAPHS 169

Draw a marker for the Lyman limit

ll = 91.1267*unit(nm)

set arrow 1 from ll,0.12 to ll,0.22

set label 1 "Lyman Limit: %s"%(ll) at 95*unit(nm),0.17 \
hal left val center

Finally produce plot

plot [80*unit(nm):5500*unit(nm)][0:1.25]

Lyman Limit: 91.13 nm

Ly-α
2 → 1
121.5 nm

Ly-β
3 → 1
102.5 nm

Ly-γ
4 → 1
97.2 nm

Ba-α
3 → 2
656.1 nm

Ba-β
4 → 2
486 nm

Ba-γ
5 → 2
433.9 nm

Pa-α
4 → 3
1.875µm

Pa-β
5 → 3
1.281µm

Pa-γ
6 → 3
1.094µm

Br-α
5 → 4
4.05µm

Br-β
6 → 4
2.624µm

Br-γ
7 → 4
2.165µm

U

B

V

R

I

J

H

K

L

M

100 200 300 400 600 1000 2000 3000 4000

Wavelength / nm

2 × 1015 1015 5 × 1014 2 × 1014 1014

Frequency / Hz

10 5 2 1 0.5

Photon Energy / eV

170 CHAPTER 8. PLOTTING: A COMPLETE GUIDE

Example 24: A map of Australia.

In this example, we use Pyxplot to plot a map of Australia, using a coastal
outline obtained from http://www.maproom.psu.edu/dcw/. We use the set

label command to label the states and major cities. The files ex map 1.dat.gz

and ex map 2.dat can be found in the Pyxplot installation tarball in the direc-
tory doc/examples/.

set size 20 ratio (45-10)/(154-112)*cos(25*unit(deg))

set xrange [112:154]

set yrange [-45:-10]

We want a plot without axes or key

set nokey

set axis x invisible

set axis y invisible

Labels for the states

set label 1 r’{\large \sf \slshape Western Australia}’ 117, -28

set label 2 r’{\large \sf \slshape South Australia}’ 130, -29.5

set label 3 r’{\large \sf \slshape Northern Territory}’ 129.5, -20.5

set label 4 r’{\large \sf \slshape Queensland}’ 141,-24

set label 5 r’{\large \sf \slshape New South Wales}’ 142,-32.5

set label 6 r’{\large \sf \slshape Victoria}’ 139,-41

set arrow 6 from 141,-40 to 142, -37 with nohead

set label 7 r’{\large \sf \slshape Tasmania}’ 149,-42

set arrow 7 from 149, -41.5 to 146.5, -41.75 with nohead

set label 8 r’{\large \sf \slshape Capital Territory}’ 151,-37

set arrow 8 from 151, -36.25 to 149, -36 with nohead

Labels for the cities

set label 10 r’{\sf Perth}’ 116.5, -32.4

set label 11 r’{\sf Adelaide}’ 136, -38

set arrow 11 from 137.5,-37.2 to 138.601, -34.929

set label 12 r’{\sf Darwin}’ 131, -13.5

set label 13 r’{\sf Brisbane}’ 149, -27.5

set label 14 r’{\sf Sydney}’ 151.5, -34.5

set label 15 r’{\sf Melbourne}’ 143, -37.3

set label 16 r’{\sf Hobart}’ 147.5, -44.25

set label 17 r’{\sf Canberra}’ 145, -35.25

A big label saying "Australia"

set label 20 r’{\Huge \sf \slshape Australia}’ 117,-42

Plot the coastline and cities

plot ’map 1.dat.gz’ every ::1 with lines, \
’map 2.dat’ with points pointtype 17 pointsize 2

http://www.maproom.psu.edu/dcw/

8.12. COLOR MAPS 171

Western Australia

South Australia

Northern Territory

Queensland

New South Wales

Victoria
Tasmania

Capital Territory

Perth

Adelaide

Darwin

Brisbane

Sydney

Melbourne

Hobart

Canberra

Australia

8.12 Color maps

Color maps provide a graphical means of producing two-dimensional representa-
tions of (x, y, z) surfaces, or equivalently of producing maps of the values z(x, y)
of functions of two variables. Each point in the (x, y) plane is assigned a color
which indicates the value z associated with that point. In this section, we refer
to the third coordinate as c1 rather than z, to distinguish it from the third axes
of three-dimensional plots3.

In the following simple example, a color map of the complex argument of
the Riemann zeta function ζ(z) is produced, taking the (x, y) plane to be an
Argand plane, with x being the real axis, and y being the imaginary axis. Each
point in the plane has an associated value of c1.

set numerics complex

set nokey

set size 8 square

set samples grid 400x400

set c1range[-pi:pi]

set c1format r"$%s\pi$"%(c/pi)
plot [-20:6][-13:13] arg(zeta(x+i*y)) with colormap

3When color maps are plotted on three-dimensional graphs, they appear in a flat plane on
one of the back faces of the plot selected using the axes modifier to the plot command, and
the c1-axis associated with each are entirely independent of the plot’s z-axis.

172 CHAPTER 8. PLOTTING: A COMPLETE GUIDE

−20 −10 0

−10

−5

0

5

10

−1π

−0.6π

−0.2π

0.2π

0.6π

1π

The set c1range command sets the range of values of c1 to be assigned
colors between black and white. By default, the lowest and highest values of c1
found in the color map is assigned to black and white.

The set c1format command controls the format of the axis labels placed
along the color scale bar on the right-hand side of the plot. In this case, they
are marked as multiples of π.

The set samples grid command sets the dimensions of the grid of samples
– or pixels – used to render the color map. If either value is replaced with
an asterisk (*) then the current number of samples set in the set samples

command is substituted.

If a data file is supplied to the colormap plot style, then the datapoints need
not lie on the specified regular grid, but are first re-sampled onto this grid using
the interpolation method specified using the set samples interpolate com-
mand (see Section 5.7). Three methods are available. nearestNeighbor uses
the value of c1 associated with the datapoint closest to each grid point, produc-
ing color maps which look like Voronoi diagrams. inverseSquare interpolation
returns a weighted average of the supplied data points, using the inverse squares
of their distances from each grid point as weights. monaghanLattanzio inter-
polation uses the weighting function of Monaghan & Lattanzio (1985) which is
described further in Section 5.7).

In the following example, a color map of a quadrupole is produced using four
input datapoints:

set nokey

set size 8 square

set samples grid 200x200 interpolate inverseSquare

plot [-4:4][-4:4] ’--’ with colormap

-1 -1 1

-1 1 -1

1 -1 -1

1 1 1

END

8.12. COLOR MAPS 173

−2.5 0 2.5
−4

−2

0

2

4

−0.5

0

0.5

8.12.1 Custom color mappings

The default mapping used between values of c1 and color is a grayscale mapping.
This is scaled such that the smallest value of c1 in the map corresponds to black,
and largest value corresponds to white.

Alternatively, the user can supply any algebraic expressions for converting
values of c1 into colors. Moreover, these custom color mappings need not be
one-parameter mappings depending only on a single variable c1, but can depend
on up to four quantities c1, c2, c3 and c4. This makes it possible, for example,
to represent both the amplitude and complex phase of a quantity in a single
color map.

Pyxplot’s colormap plot style takes between three and seven columns of
data, which may be supplied either from one or more function(s), or from a
data file. If data is read from a data file, then the first two columns of output
data are assumed to contain the respective positions of each datapoint along
the x-axis and the y-axis. The next column contains the value c1, and may be
followed by up to three further optional values c2, c3 and c4.

In the case where one or more function(s) are supplied, they are assumed to
be functions of both x and y, and are sampled at a grid of points in the (x, y)
plane; the first supplied function returns the value c1, and may be followed by
up to three further optional functions for c2, c3 and c4..

The color mapping is set using the set colormap command, which takes an
algebraic expression which should be a function of the variables c1, c2, c3 and
c4. This should evaluate either to a color object or a number (in which case a
color is drawn from the current palette).

set colormap <expr> [mask <expr>]

If the optional mask expression is supplied, then any areas in a color map where
this expression evaluates to false (e.g. zero) are made transparent. The following
color mapping, which is the default, produces a grayscale color mapping of the
third column of data supplied to the colormap plot style; further columns of
data, if supplied, are not used:

174 CHAPTER 8. PLOTTING: A COMPLETE GUIDE

set c1range [*:*] renormalise noreverse

set colormap gray(c1)

The set c<n>range command command specifies how the values of cn are
processed before being used in the expressions supplied to the set colormap

command. It has the following syntax:

set c<n>range [<range>]

[reversed | noreversed]

[renormalise | norenormalise]

If the renormalise option is specified, then the values of cn at each point in the
data grid are first scaled into the range zero to one. This is often useful, since
the color components passed to the rgb(), gray(), hsb() and cmyk() functions
must be in this range. Thus, in the example given above, the lowest value of
c1 corresponds to black (i.e. brightness 0), and the highest value corresponds to
white (i.e. brightness 1). If an explicit range is specified to the set c<n>range

command, then the upper limit of this range maps to the value one, and the lower
limit maps to the value zero. An asterisk (*) means that the lowest or highest
value found in the map is substituted. The mapping is inverted if the reverse

option is specified, such that the upper limit maps to zero, and the lower limit
maps to one. Intermediate values are scaled either linearly or logarithmically,
and these behaviours can be selected with the following commands:

set logscale c1

set linearscale c1

In the example below, a color map of the function f(z) = 3x2/(x3 + 1) is
made, using hue to represent the magnitude of f(z) and saturation to represent
the complex argument of f(z):

set numerics complex

set sample grid 400x400

set nogrid

set size square

set key below

set c1range[0:2]

set colmap hsb(c1,c2*0.7+0.3,1)

f(x) = 3*x**2 / (x**3+1)

plot [-3:3][-3:3] abs(f(x+i*y)):arg(f(x+i*y)) with colormap

8.12. COLOR MAPS 175

−2.5 0 2.5
−3

−2

−1

0

1

2

3

abs (f (x + i× y)) :arg (f (x + i× y))

In the next example, three circular pools of red, green, and blue illumination
are overlapped to show how colors mix together:

set size square

set nokey

set nocolkey

set numeric errors quiet

set noxtics ; set noytics

set axis x invisible

set axis y invisible

d = 0.5

t(x) = max(0,2-exp(x**8))

set colmap rgb(t(hypot(c1 ,c2-d/sqrt(2))), \
t(hypot(c1+d,c2+d)), \
t(hypot(c1-d,c2+d)))

set sample grid 250x250

set c1range norenorm

set c2range norenorm

plot [-1.5:1.5][-1.5:1.5] x:y with colormap

176 CHAPTER 8. PLOTTING: A COMPLETE GUIDE

The same is possible with CMYK colors, to demonstrate how substractive
color mixing works:

set size square

set nokey

set nocolkey

set numeric errors quiet

set noxtics ; set noytics

set axis x invisible

set axis y invisible

d = 0.5

t(x) = max(0,2-exp(x**8))

set colmap cmyk(t(hypot(c1 ,c2-d/sqrt(2))), \
t(hypot(c1+d,c2+d)), \
t(hypot(c1-d,c2+d)), \
0)

set sample grid 250x250

set c1range norenorm

set c2range norenorm

plot [-1.5:1.5][-1.5:1.5] x:y with colormap

8.12. COLOR MAPS 177

The function colors.wavelength(wlen,normalisation) provides a color
representation of any given wavelength of light, useful for producing represen-
tations of the electromagnetic spectrum:

set nokey

set nocolkey

set size ratio 0.2

set noytics

set xlabel ’Wavelength’

set noylabel

set linear x y

set colmap colors.wavelength(c1,1)

set sample grid 200x2

set c1range norenorm

set title ’The electromagnetic spectrum’

plot [unit(350*nm):unit(700*nm)][0:1] x with colormap

400 500 600 700

Wavelength / nm

The electromagnetic spectrum

The function colors.spectrum(spectrum,normalisation) takes a func-
tion as its first input, which should return a spectral energy distribution (in
arbitrary units) as a function of wavelength. In this example, we show the col-
ors of blackbodies of different temperatures. We renormalise their brightnesses
by T−4 to avoid saturating hot blackbodies to white:

set log x

178 CHAPTER 8. PLOTTING: A COMPLETE GUIDE

set linear y

set nokey

set nocolkey

set size ratio 0.2

set noytics

set xlabel ’Temperature’

set noylabel

f(lambda) = phy.Bv(phy.c/lambda,c1) / (c1 / unit(6000*K))**4

set colmap colors.spectrum(f,3e3)

set sample grid 200x2

set c1range norenorm

set title ’Colors of blackbodies of different temperatures’

plot [unit(2000*K):unit(20000*K)] x with colormap

2000 3000 6000 10000 20000

Temperature / K

Colors of blackbodies of different temperatures

As a final example, we use this function to plot the interference pattern
seen when a wedge of stressed plastic, a birefrigent material, is viewed between
crossed polars:

set nokey

set nocolkey

set size ratio 0.2

set noytics

set noylabel

spec(wl) = cos(2*pi*c1 / wl) * 1.25

set unit of length nm

set xlabel ’Optical path difference’

set colmap colors.spectrum(spec,1)

set sample grid 400x2

set c1range norenorm

set title ’Colors of a wedge of stressed plastic between crossed polars’

plot [unit(0*m):unit(2e-6*m)][0:1] x with colormap

0 400 800 1200 1600

Optical path difference / nm

Colors of a wedge of stressed plastic between crossed polars

8.12.2 Color scale bars

By default, plots with color maps with single-parameter color mappings are
accompanied by color scale bars, which appear by default on the right-hand

8.12. COLOR MAPS 179

side of the plot. Such scale bars may be configured using the set colorkey

command. Issuing the command

set colorkey

by itself causes such a scale to be drawn on graphs in the default position, usually
along the right-hand edge of the graphs. The converse action is achieved by:

set nocolorkey

The command

unset colorkey

causes Pyxplot to revert to its default behaviour, as specified in a configuration
file, if present. A position for the key may optionally be specified after the set

colorkey command, as in the example:

set colorkey bottom

Recognised positions are top, bottom, left and right. above is an alias
for top; below is an alias for bottom and outside is an alias for right.

The format of the ticks along such scale bars may be set using the set

c1format command command, which is similar in syntax to the set xformat

command (see Section 8.8.8), but which uses c as its dummy variable.
The positions of the ticks along color scale bars may be set using the set

c1tics command command, which has similar syntax to the set xtics com-
mand.

Example 25: An image of the Mandelbrot set.

The Mandelbrot set is a set of points in the complex plane whose boundary
forms a fractal with a Hausdorff dimension of two. A point c in the complex
plane is defined to lie within the Mandelbrot set if the complex sequence of
numbers

zn+1 = z2
n + c,

subject to the starting condition z0 = 0, remains bounded.
The map of this set of points has become a widely-used image of the power

of chaos theory to produce complicated structure out of simple algorithms. To
produce a more pleasing image, points in the complex plane are often colored
differently, depending on how many iterations n of the above series are required
for |zn| to exceed 2. This is the point of no return, beyond which it can be shown
that |zn+1| > |zn| and that divergence is guaranteed. In numerical implemen-
tations of the above iteration, in the absence of any better way to prove that
the iteration remains bounded for a certain value of c, some maximum number
of iterations m is chosen, and the series is deemed to have remained bounded if
|zm| < 2. This is implemented in Pyxplot by the built-in mathematical function
fractal mandelbrot(z,m), which returns an integer in the range 0 ≤ i ≤ m.

180 CHAPTER 8. PLOTTING: A COMPLETE GUIDE

set numerics complex

set sample grid 500x500

set size square

set nokey

set nocolkey

set log c1

plot [-2:2][-2:2] fractals.mandelbrot(x+i*y,70)+1 with colormap

−2 −1 0 1 2
−2

−1

0

1

2

8.13 Contour maps

Contour maps are similar to color maps, but instead of coloring the whole (x, y)
plane, lines are drawn to indicate paths of constant c(x, y). The number of
contours drawn, and the values c1 that they correspond to, is set using the set

contour command, which has the following syntax:

set contours [(<number> |

\({ <value> } \))]

[(label | nolabel)]

If <number> is specified, as in the example

set contours 8

then the specified number of contours are drawn at evenly spaced intervals.
Whether the contours are linearly or logarithmically spaced can be changed
using the commands

8.13. CONTOUR MAPS 181

set logscale c1

set linearscale c1

By default, the range of values spanned by the contours is automatically scales
to the range of the data provided. However, it may also be set manually using
the set c1range command as in the example

set c1range [0:10]

The default autoscaling behaviour can be restored using the command

set c1range [*:*]

Alternatively, an explicit list of the values of c for which contours should
be drawn may be specified to the set contour command as a ()-bracketed
comma-separated list. For example:

set contours (0,5,10,20,40)

If the option label is specified to the set contour command, then each
contour is labelled with the value of c that it corresponds to. If the option
nolabel is specified, then the contours are left unlabelled.

In the following example, a contour map is overlaid on top of a color map of
the function x3/20 + y2:

set nokey

set size 8 square

plot [-10:10][-10:10] x**3/20+y**2 with colormap, \
x**3/20+y**2 with contours col green lw 2 lt 1

−10 0 10
−10

−5

0

5

10

0

50

100

150

The contourmap plot style differs from other plot styles in that it is not per-
mitted to take expressions such as $2+1 for style modifiers such as linetype (see
Section 8.1) which use additional columns of input data to plot different points

182 CHAPTER 8. PLOTTING: A COMPLETE GUIDE

in different styles. However, the variable c1 may be used in such expressions to
define different styles for different contours:

% plot ’datafile’ with contourmap linetype $5

" plot ’datafile’ with contourmap linetype c1/10

8.14 Three-dimensional plotting

Three-dimensional graphs may be produced by placing the modifier 3d immedi-
ately after the plot command, as demonstrated by the following simple example
which draws a helix:

set key below

set size 8 ratio 0.6 zratio 0.6

set grid

plot 3d sin(x):cos(x) with lw 3 col hsb(x/20+0.5,0.9,0.8)

−10

0

10

−1

0

1

0

sin (x) :cos (x)

Many plot styles take additional columns of data when used on three-dimen-
sional plots, reading in three values for the x, y and z coordinates of each dat-
apoint, where previously only x and y coordinates were required. In the above

8.14. THREE-DIMENSIONAL PLOTTING 183

example, the lines plot style is used, which takes three columns of input data
when used on three-dimensional plots, as compared to two on two-dimensional
plots. The descriptions of each plot style in Section 8.2 includes information on
the number of columns of data required for two- and three-dimensional plots.

The example above also demonstrates that the set size command takes an
additional aspect ratio zratio which affects three-dimensional plots; whereas
the aspect ratio ratio determines the ratio of the lengths of the y-axes of plots
to their x-axes, the aspect ratio zratio determines the ratio of the lengths of
the z-axes of plots to their x-axes.

The angle from which three-dimensional plots are viewed can be set using
the set view command. This should be followed by two angles, which can
either be expressed in degrees, as dimensionless numbers, or as quantities with
physical units of angle:

set view 60,30

set unit angle nodimensionless

set view unit(0.1*rev),unit(2*rad)

The orientation (0, 0) corresponds to having the x-axis horizontal, the z-axis
vertical, and the y-axis directed into the page. The first angle supplied to the
set view command rotates the plot in the (x, y) plane, and the second angle
tips the plot up in the plane containing the z-axis and the normal to the user’s
two-dimensional display.

The replot command command may be used to add additional datasets
to three-dimensional plots in an entirely analogous fashion to two-dimensional
plots.

8.14.1 Surface plotting

The surface plot style is similar to the colormap and contourmap plot styles,
but produces maps of the values z(x, y) of functions of two variables using three-
dimensional surfaces. The surface is displayed as a grid of four-sided elements,
whose number may be specified using the set samples command, as in the
example

set samples grid 40x40

If data is supplied from a data file, then it is first re-sampled onto a regular grid
using one of the methods described in Section 8.12.

The example below plots a surface indicating the magnitude of the imaginary
part of log(x+ iy):

set numerics complex

set xlabel r"Re(z)"

set ylabel r"Im(z)"

set zlabel r"$\mathrm{Im}(\mathrm{log}[z])$"
set key below

set size 8 square

set grid

set view -30,30

184 CHAPTER 8. PLOTTING: A COMPLETE GUIDE

plot 3d [-10:10][-10:10] Im(log(x+i*y)) \
with surface col black fillcol blue

−10

0

10

Im
(z)

−10

0

10

Re(z)

−4

−2

0

2

4

Im
(l
og

[z
])

Im (log (x + i× y))

Example 26: A surface plotted above a contour map.

In this example, we plot a surface showing the value of the expression x3/20+y2,
and project below it a series of contours in the (x, y) plane.

set nokey

set size 8 square

plot 3d x**3/20+y**2 with surface col black fillc red, \
x**3/20+y**2 with contours col black

8.14. THREE-DIMENSIONAL PLOTTING 185

−10

0

10

−50

0

50

100

150

−10

0

10

Example 27: The sinc(x) function represented as a surface.

In this example, we produce a surface showing the function sinc(r) where r =√
x2 + y2. To produce a prettier result, we vary the color of the surface such

that the hue of the surface varies with azimuthal position, its saturation varies
with radius r, and its brightness varies with height z.

186 CHAPTER 8. PLOTTING: A COMPLETE GUIDE

set numerics complex

set xlabel "x"

set ylabel "y"

set zlabel "z"

set xformat r"%sπ"%(x/pi)
set yformat r"%sπ"%(y/pi)
set xtics 3*pi ; set mxtics pi

set ytics 3*pi ; set mytics pi

set ztics

set key below

set size 8 square

set grid

plot 3d [-6*pi:6*pi][-6*pi:6*pi][-0.3:1] sinc(hypot(x,y)) \
with surface col black \
fillcol hsb(atan2($1,$2)/(2*pi)+0.5,hypot($1,$2)/30+0.2,$3*0.5+0.5)

-6π

-3π

0π

3π

6π

x

0

0.5

1

z

-6π

-3π

0π

3π

6π

y

sinc (hypot (x, y))

Chapter 9

Producing image files

Pyxplot is able to produce graphical output in a wide range of image formats,
including both vector graphic formats such as PostScript and scalable vector
graphics (svg), and rasterised formats such as bitmap (bmp) and jpeg. Addi-
tionally, it can produce graphical output for immediate preview on screen. In
this chapter we describe how to select and control which image format should
be used.

9.1 The set terminal command

The set terminal command is used to select the image format in which output
should be produced, and also to specify a range of fine controls such as whether
output should be in color or black-and-white. In its simplest usage, the com-
mand is followed by the name of the output image format which is to be used,
which may be any of the options listed in Table 9.1.

9.1.1 Previewing graphs on the screen

Three output terminal produce immediate previews to the screen: X11 single-

Window, X11 persist, X11 multiWindow. The default of these options – i.e.
the default terminal when Pyxplot is started up in interactive mode – is X11 -

singleWindow. In this terminal, each time a new plot is generated, if the
previous plot is still open on the display, the old plot is replaced with the new
one. This way, only one plot window is open at any one time. This behaviour
is intended to prevent the desktop from becoming flooded with plot windows.

The alternative X11 multiWindow terminal is similar in all respects except
that each new plot is generated in a new window, regardless of whether any
previous plots are still open on the display. This is especially useful when
multiple plots are to be compared side-by-side:

set terminal X11_singleWindow

plot ’data1.dat’

plot ’data2.dat’ <-- first plot window disappears

c.f.:

187

188 CHAPTER 9. PRODUCING IMAGE FILES

Image formats

#
#
†

#
#
#
#
#
 # #
 # #
 # #

Live display

Vector graphics

Rasterised graphics

Lossy format

Properties

bmp

eps

gif

jpeg

pdf

png

postscript

svg‡

tif

X11 multiWindow

X11 persist

X11 singleWindow

† – Although the gif image format is not lossy in the traditional
sense, it reduces the number of colors to a palette of no more than
256 unique colors. Thus, whilst it is lossless for images which only
contain small numbers of unique colors, some color distortion may
occur in colorful images.

‡ – The svg terminal is experimental and may be unstable. It
relies upon the use of the svg output device in ghostscript, which
may not be present on all systems.

Table 9.1: A list of the properties of the graphical output formats supported
by Pyxplot.

9.1. THE SET TERMINAL COMMAND 189

set terminal X11_multiWindow

plot ’data1.dat’

plot ’data2.dat’ <-- first plot window remains

The third of these terminals, X11 persist, is similar to X11 multiWindow

but keeps plot windows open after Pyxplot terminates in distinction from the
above two terminals, which close all plot windows upon exit.

9.1.2 Producing images on disk

The remaining terminals listed in Table 9.1 direct graphical output to disk in a
selection of rasterised and vector graphics formats. The filename of the resulting
image file may be set using the set output command, as in the example:

set output ’my_plot.eps’

Use of rasterised image formats inevitably results in some loss of image
quality since the plot has to be rasterised into a bitmapped graphic image. By
default, this rasterisation is performed at a resolution of 300 dpi, though this may
be changed using the set terminal dpi command, which should be followed
by a numerical value. Alternatively, the resolution may be changed using the
DPI option in the settings section of a configuration file (see Chapter 19).

9.1.3 The complete syntax of the set terminal command

In addition to being used to select the graphical format in which output should
be produced, the set terminal command takes many options for fine-tuning
the behaviours of particular terminals. Its complete syntax is:

set terminal (X11_singleWindow | X11_multiWindow | X11_persist |

bmp | eps | gif | jpeg | pdf | png | postscript |

svg | tiff)

(color | colour | monochrome)

(dpi <value>)

(portrait | landscape)

(invert | noinvert)

(transparent | solid)

(antialias | noantialias)

(enlarge | noenlarge)

The following table lists the effects which each of these settings has:

X11 singleWindow Displays plots on the screen (in X11 windows, using
ghostviewor other viewing application selected using the
set viewer command). Each time a new plot is gener-
ated, it replaces the old one, to prevent the desktop from
becoming flooded with old plots.1 [default when run-
ning interactively; see below]

1The authors are aware of a bug, that this terminal can occasionally go blank when a new
plot is generated. This is a known bug in ghostview, and can be worked around by selecting
File → Reload within the ghostview window.

190 CHAPTER 9. PRODUCING IMAGE FILES

X11 multiWindow As above, but each new plot appears in a new window,
and the old plots remain visible. As many plots as may be
desired can be left on the desktop simultaneously.

X11 persist As above, but plot windows remain open after Pyxplot
closes.

bmp Sends output to a Windows bitmap (.bmp) file. The file-
name for this file should be set using set output. This is
a bitmap graphics terminal.

eps As above, but produces Encapsulated PostScript.
gif As above, but produces a gif image. This is a bitmap graph-

ics terminal.
jpeg As above, but produces a jpeg image. This is a bitmap

graphics terminal.
pdf As above, but produces pdf output.
png As above, but produces a png image. This is a bitmap

graphics terminal.
postscript As above, but sends output to a PostScript file. [default

when running non-interactively; see below]
svg As above, but produces an svg image.2

tiff As above, but produces a tiff image. This is a bitmap graph-
ics terminal.

color Allows datasets to be plotted in color. Automatically they
will be displayed in a series of different colors, or alterna-
tively colors may be specified using the with color plot
modifier (see below). [default]

color Equivalent US spelling of the above.
monochrome Opposite to the above; all datasets will be plotted in black

by default.
dpi Sets the number of dots per inch at which rasterised graphic

output should be sampled (i.e. the output image resolution)
portrait Sets plots to be displayed in upright (normal) orientation.

[default]
landscape Opposite of the above; produces side-ways plots. Not very

useful when displayed on the screen, but you fit more on a
sheet of paper that way around.

invert Modifier for the bitmap output terminals identified above
– i.e. the bmp, gif, jpeg, png and tiff terminals – which
produces output with inverted colors.3

noinvert Modifier for the bitmap output terminals identified above;
opposite to the above. [default]

transparent Modifier for the gif and png terminals; produces output
with a transparent background.

solid Modifier for the gif and png terminals; opposite to the
above. [default]

2The svg output terminal is experimental and may be unstable. It relies upon the use of
the svg output device in Ghostscript, which may not be present on all systems.

3This terminal setting is useful for producing plots to embed in talk slideshows, which
often contain bright text on a dark background. It only works when producing bitmapped
output, though a similar effect can be achieved in PostScript using the set textcolor and
set axescolor commands (see Section 8.9).

9.2. THE DEFAULT TERMINAL 191

antialias Modifier for the bitmap output terminals identified
above; produces antialiased output, with color boundaries
smoothed to disguise the effects of pixelisation [default]

noantialias Modifier for the bitmap output terminals identified above;
opposite to the above

enlarge Enlarge or shrink contents to fit the current paper size.
noenlarge Do not enlarge output; opposite to the above. [default]

9.2 The default terminal

The default terminal is normally X11 singleWindow. There are two exceptions
to this. When Pyxplot is not called from within an X11 session4, and it therefore
cannot open graphical display windows, the default terminal changes to eps.
When Pyxplot is used non-interactively – i.e. one or more command scripts are
specified on the command line, and Pyxplot exits as soon as it finishes executing
them – the X11 persist terminal becomes default, since it does not close plot
windows when Pyxplot exits.

9.3 PostScript output

If the enlarge modifier is used with the set terminal command then the whole
plot is enlarged, or, in the case of large plots, shrunk, to the current paper size,
minus a small margin. The aspect ratio of the plot is preserved.

9.3.1 Paper sizes

By default, the postscript terminal, and the enlarge terminal option, read
the paper size for their output from the user’s system locale settings. It may be
changed, however, with set papersize command, which may be followed either
by the name of a recognised paper size, or by the dimensions of a user-defined
size, specified as a height, width pair, both being measured in millimetres. For
example:

set papersize a4

set papersize 100,100

A complete list of recognised paper size names can be found in Appendix 16.5

9.4 Backing up over-written files

By default, when graphical output is sent to a file – i.e. a PostScript file or a
bitmap image – any pre-existing file is overwritten if its filename matches that
of the file which Pyxplot generates. This behaviour may be changed with the
set backup command, which has the syntax:

4i.e. the environment variable DISPLAY is not set.
5Marcus Kuhn has written a very complete treatise on international paper sizes, which can

be downloaded from: http://www.cl.cam.ac.uk/~mgk25/iso-paper.html. Further details on
the Swedish extensions to this system, and the Japanese B-series, can be found on Wikipedia:
http://en.wikipedia.org/wiki/Paper_size.

http://www.cl.cam.ac.uk/~mgk25/iso-paper.html
http://en.wikipedia.org/wiki/Paper_size

192 CHAPTER 9. PRODUCING IMAGE FILES

set backup

set nobackup

When this switch is turned on, pre-existing files will be renamed with a tilde
(∼) appended to their filenames, rather than being overwritten.

9.5 Changing font

The font used by Pyxplot can be changed using the set preamble command.
In latex, fonts are changed by adding a header to a document, and the set

preamble command specifies text that should be passed to latex before render-
ing any of the text labels on the present canvas. For example, the following
command changes the default font to sans-serif:

set preamble r"\renewcommand{\familydefault}{\sfdefault}"

Chapter 10

Producing vector graphics

This chapter provides a systematic description of how Pyxplot can be used
to produce general-purpose vector graphics. It also describes how to produce
galleries of multiple graphs side-by-side, together with how graphs may be anno-
tated with text or arrows. For more information about how to produce graphical
output in various image formats, see Section 9.1. For more information about
graph plotting, see Chapter 8.

10.1 Adding other vector graphics objects

In addition to graphs, a range of other objects can be placed on graphics canvas:

• Rectangular boxes (the box command).

• Circles and arcs (the arc and circle commands).

• Ellipses and elliptical arcs (the ellipse command).

• Graphical images in bmp, eps, gif, jpeg or png formats (the eps and
image commands).

• Lines and arrows (the arrow and line commands).

• Piecharts (the piechart command).

• Points labelled by crosses and other symbols (the point command).

• Polygons (the polygon command).

• Text labels (the text command).

Put together, these commands can be used to produce a wide range of vector
graphics. The remainder of this chapter describes each of these commands in
turn, providing a variety of examples of their use.

These commands all interface with Pyxplot’s maths environment in common
ways. For example, vector positions on the graphics canvas may be specified in
three ways:

193

194 CHAPTER 10. PRODUCING VECTOR GRAPHICS

• Two comma-separated dimensionless numbers, taken to be in centimetres,
e.g. 4,5.

• Two comma-separated numbers with dimensions of length, e.g. 45*unit(mm),
13*unit(cm).

• As a vector, either dimensionless, or with units of length, e.g. vector(4,5)
or vector(13,25)*unit(mm).

Many of these commands take rotation angles as inputs: these may be spec-
ified either as dimensionless numbers, taken to be in degrees, or as values with
physical units of angle, e.g. 0.25*unit(rev).

Where these commands take colors as inputs, as elsewhere in Pyxplot, the
color may be specified in one of three ways:

• As a number, referred to a color from a present palette; see Section 8.1.1.

• As a recognised named color, e.g. red; see Section 19.4 for a list of these.

• As an object of type color, for example, rgb(0,1,0), hsb(0.5,0.5,0.5),
gray(0.2), colors.green + colors.red, colors.yellow - colors.green.

10.2 Multiplot mode

Pyxplot has two modes in which it can produce graphical output. In singleplot
mode, the default, each time the plot command is issued, the canvas is wiped
clean and the new plot is placed alone on a blank page. In multiplot mode, vector
graphics objects accumulate on the canvas. Each time the plot command is
issued, the new graph is placed on top of any other objects which were already
on the canvas, and many plots can be placed side-by-side.

The user can switch between these two modes of operation by issuing the
commands set multiplot and set nomultiplot. The set origin command
is required for multiplot mode to be useful when placing plots side-by-side: it
sets the position on the page of the lower-left corner of the next plot. It takes
a comma-separated (x, y) coordinate pair, which may have units of length, or,
if dimensionless, are assumed to be measured in centimetres. The following
example plots a graph of sin(x) to the left of a plot of cos(x):

set multiplot

set width 8

plot sin(x)

set origin 10,0

plot cos(x)

10.3 The text command

Text labels may be added to multiplot canvases using the text command. This
has the following syntax:

text ’This is some text’ at x,y

10.4. THE ARROW AND LINE COMMANDS 195

In this case, the string ‘This is some text’ would be rendered at position (x, y)
on the multiplot. As with the set label command, a color may optionally be
specified with the with color modifier, as well as a rotation angle to rotate
text labels through any given angle, measured in degrees counter-clockwise. For
example:

text ’This is some text’ at x,y rotate r with color red

The commands set textcolor, set texthalign and set textvalign can
be used to set the color and alignment of the text produced with the text

command. Alternatively, the text command takes three modifiers to control
the alignment of the text which override these set commands. The halign

and valign modifiers may be followed by any of the settings which may follow
the set texthalign and set textvalign commands respectively, as in the
following examples:

text ’This is some text’ at 0,0 halign left valign top

text ’This is some text’ at 0,0 halign right valign centre

The gap modifier allows a gap to be inserted in the alignment of the text.
For example, the string halign left gap 3*unit(mm) would cause text to be
rendered with its left side 3 mm to the right of the position specified for the
text. This is useful for labelling points on diagrams, where the labels should be
slightly offset from the points that they are associated with. If the gap modifier
is followed by a dimensionless number, rather than one with dimensions of
lengths, then it is assumed to be measured in centimetres.

It should be noted that the text command can also be used outside of the
multiplot environment, to render a single piece of short text instead of a graph.
One obvious application is to produce equations rendered as graphical files which
can subsequently be imported into documents, slideshows or webpages.

10.4 The arrow and line commands

Arrows may also be added to multiplot canvases using the arrow command,
which has syntax:

arrow from x,y to x,y

The arrow command may be followed by the with keyword to specify to style
of the arrow. The line type, line width and color of the arrow, may be speci-
fied using the same syntax as used in the plot command, using the linetype,
linewidth and color modifiers after the word with, as in the example:

arrow from 0,0 to 10,10 \

with linetype 2 linewidth 5 color red

The style of the arrow may also be specified after the word with, and three
options are available: head (the default), nohead, which produces line segments
with no arrowheads on them, and twoway, which produces bidirectional arrows
with heads on both ends.

196 CHAPTER 10. PRODUCING VECTOR GRAPHICS

The arrow command has a twin, the line command, which has the same
syntax but with a different style setting of nohead.

Example 28: A simple notice generated with the text and arrow commands.

In this example script, we use Pyxplot’s arrow and text commands to produce
a simple notice advertising that a lecture has moved to a different seminar room:

set multiplot ; set nodisplay

w = unit(20*cm) # Width of notice

h = w/sqrt(2) # Height of notice

Put a rectangular box around notice

line from 0,0 to w,0 with linewidth 5

line from w,0 to w,h with linewidth 5

line from w,h to 0,h with linewidth 5

line from 0,h to 0,0 with linewidth 5

Write text of notice

set texthalign center ; set fontsize 3

text r"\bf Astrophysical Fluids Lecture" at w/2,3/4*h

text r"\bf MOVED to Seminar Room 3" at w/2, h/2

arrow from w/4, h/4 to 3/4*w, h/4 with linewidth 8

Display notice

set display ; refresh

Astrophysical Fluids Lecture

MOVED to Seminar Room 3

10.5. EDITING ITEMS ON THE CANVAS 197

10.5 Editing items on the canvas

All objects on a multiplot canvas have a unique identification number. By
default, these count up from one, such that the first item placed on the canvas
is number one, the next is number two, and so forth. Alternatively, the user may
specify a particular number for a particular object by supplying the modifier
item to the plot command, followed by an integer identification number, as in
the following example:

plot item 6 ’data.dat’

If there were already an object on the canvas with identification number 6, this
object would be deleted and replaced with the new object.

A list of all of the objects on the current multiplot canvas can be obtained
using the list command, which produces output in the following format:

ID Command

1 plot item 1 ’data1.dat’

2 plot item 2 ’data2.dat’

3 [deleted] plot item 3 ’data3.dat’

A multiplot canvas can be wiped clean by issuing the clear command, which
removes all items currently on the canvas. Alternatively, individual items may
be removed using the delete command, which should be followed by a comma-
separated list of the identification numbers of the objects to be deleted. Deleted
items may be restored using the undelete command, which likewise takes a
comma-separated list of the identification numbers of the objects to be restored,
e.g.:

delete 1,2

undelete 2

Once a canvas has been cleared using the clear command, however, there is no
way to restore it. Objects may be moved around on the canvas using the move

command. For example, the following would move item 23 to position (8, 8)
measured in inches:

move 23 to 8*unit(in), 8*unit(in)

10.5.1 Settings associated with multiplot items

Of the settings which can be set with the set command, some refer to Pyxplot’s
global environment and whole multiplot canvases. Others, such as set width

and set origin refer specifically to individual graphs and vector graphics items.
For this reason, whenever a new multiplot graphics item is produced, it takes a
copy of the settings which are specific to it, allowing these settings to be changed
by the user before producing other multiplot items, without affecting previous
items. The settings associated with a particular multiplot item can be queried
by passing the modifier item to the show command, followed by the integer
identification number of the item, as in the examples:

show item 3 width # Shows the width of item 3

show item 3 settings # Shows all settings associated with item 3

198 CHAPTER 10. PRODUCING VECTOR GRAPHICS

The settings associated with a particular multiplot item can be changed by
passing the same item modifier to the set command, as in the example, which
sets the width of item 3 to be 10 cm:

set item 3 width 10*unit(cm)

After making such changes, the refresh command is useful: it produces a new
graphical image of the current multiplot to reflect any settings which have been
changed. The following example would produce a pair of plots, and then change
the color of the text on the first plot:

set multiplot

plot f(x)

set origin 10,0

plot g(x)

set item 1 textcolor red

refresh

Another common use of the refresh command is to produce multiple copies
of an image in different graphical formats. For example, having just developed a
multiplot canvas interactively in the X11 singlewindow, copies can be produced
as eps and jpeg images using the following commands:

set terminal eps

set output ’figure.eps’

refresh

set terminal jpeg

set output ’figure.jpg’

refresh

10.5.2 Reordering multiplot items

Items on multiplot canvases are drawn in order of increasing identification num-
ber, and thus items with low identification numbers are drawn first, at the back
of the multiplot, and items with higher identification numbers are later, to-
wards the front of the multiplot. When new items are added, they are given
higher identification numbers than previous items and appear at the front of
the multiplot.

If this is not the desired ordering, then the swap command may be used
to rearrange items. It takes the identification numbers of two multiplot items
and swaps their identification numbers and hence their positions in the ordered
sequence. Thus, if, for example, the corner of item 3 disappears behind the
corner of item 5, when the converse effect is actually desired, the following
command should be issued:

swap 3 5

10.5.3 The construction of large multiplots

By default, whenever an item is added to a multiplot, or an existing item moved
or replotted, the whole multiplot is replotted to show the change. This can be
a time consuming process on large and complex multiplots. For this reason, the

10.5. EDITING ITEMS ON THE CANVAS 199

set nodisplay command is provided, which stops Pyxplot from producing any
output. The set display command can subsequently be issued to return to
normal behaviour.

This can be especially useful in scripts which produce large multiplots. There
is no point in producing output at each step in the construction of a large
multiplot, and a great speed increase can be achieved by wrapping the script
with:

set nodisplay

[...prepare large multiplot...]

set display

refresh

Example 29: A diagram from Euclid’s Elements.

In this more extended example script, we use Pyxplot’s arrow and text com-
mands to reproduce a diagram illustrating the 47th Proposition from Eu-
clid’s First Book of Elements, better known as Pythagoras’ Theorem. A full
text of the proof which accompanies this diagram can be found at http:

//www.gutenberg.org/etext/21076.

set unit angle nodimensionless

set multiplot ; set nodisplay

Lengths of three sides of triangle

AB = 2*unit(cm)

AC = 4*unit(cm)

BC = hypot(AC, AB) # Hypotenuse

CBA = atan2(AC, AB) # Angle CBA

Positions of three corners of triangle

Bx = 0*unit(cm) ; By = 0*unit(cm) # The origin

Cx = Bx + BC ; Cy = By

Ax = Bx + AB*cos(CBA) ; Ay = By + AB*sin(CBA)

Positions of constructed points

Dx = Bx ; Dy = -BC

Lx = Ax ; Ly = Dy

Ex = Cx ; Ey = Dy

Hx = Bx + (AB + AC) * cos(CBA)

Hy = By + (AB + AC) * sin(CBA)

Kx = Cx + (AC) * cos(CBA)

Ky = Cy + (AC) * sin(CBA)

Fx = Bx + AB*cos(CBA+90*unit(deg))

Fy = By + AB*sin(CBA+90*unit(deg))

Gx = Ax + AB*cos(CBA+90*unit(deg))

Gy = Ay + AB*sin(CBA+90*unit(deg))

http://www.gutenberg.org/etext/21076
http://www.gutenberg.org/etext/21076

200 CHAPTER 10. PRODUCING VECTOR GRAPHICS

Construct diagram

box from Dx,Dy to Cx,Cy with fillcol gray50

box at Ax,Ay width AC height AC rot CBA-90*unit(deg) with fillcol gray50

box at Bx,By width AB height AB rot CBA with fillcol gray50

line from Bx,By to Kx,Ky

line from Fx,Fy to Cx,Cy

line from Ax,Ay to Dx,Dy

line from Ax,Ay to Lx,Ly

line from Ax,Ay to Ex,Ey

Label diagram

set fontsize 1.3

TG = 0.5*unit(mm) # Gap left between labels and figure

text "A" at Ax,Ay gap TG*5 hal c val b

text "B" at Bx,By gap TG hal r val t

text "C" at Cx,Cy gap TG hal l val t

text "D" at Dx,Dy gap TG hal c val t

text "E" at Ex,Ey gap TG hal c val t

text "F" at Fx,Fy gap TG hal r val c

text "G" at Gx,Gy gap TG hal c val b

text "H" at Hx,Hy gap TG hal c val b

text "K" at Kx,Ky gap TG hal l val c

text "L" at Lx,Ly gap TG hal c val t

Display diagram

set display ; refresh

10.5. EDITING ITEMS ON THE CANVAS 201

A

B C

D E

F

G

H

K

L

Example 30: A diagram of the conductivity of nanotubes.

In this example we produce a diagram of the irreducible wedge of possible carbon
nanotube configurations, highlighting those configurations which are electrically
conductive. We use Pyxplot’s loop constructs to automate the production of
the hexagonal grid which forms the basis of the diagram.

basisAngleX = 0*unit(deg)

basisAngleY = 120*unit(deg)

lineLen = 5*unit(mm)

Set up a transformation matrix

transformMat = matrix([[sin(basisAngleX),sin(basisAngleY)], \
[cos(basisAngleX),cos(basisAngleY)]])

transformMat *= lineLen

subroutine line(p1,p2,lw)

{
line from transformMat*p1 to transformMat*p2 with linewid lw

}

202 CHAPTER 10. PRODUCING VECTOR GRAPHICS

subroutine hexagon(p,lw)

{
call line(p+vector([0, 0]),p+vector([0,-1]),lw)

call line(p+vector([0,-1]),p+vector([1,-1]),lw)

call line(p+vector([1,-1]),p+vector([2, 0]),lw)

call line(p+vector([2, 0]),p+vector([2, 1]),lw)

call line(p+vector([2, 1]),p+vector([1, 1]),lw)

call line(p+vector([1, 1]),p+vector([0, 0]),lw)

}

set multiplot ; set nodisplay

for x=0 to 10

{
for y=0 to x+1

{
p = vector([x+2*y , 2*x+y])

call hexagon(p, ((x-y)%3==0)?4:1)

text ’%d,%d’%(x,y) at transformMat*(p+vector([1,0])) \
hal cen val cen

}
}

set display ; refresh

0,0

0,1

1,0

1,1

1,2

2,0

2,1

2,2

2,3

3,0

3,1

3,2

3,3

3,4

4,0

4,1

4,2

4,3

4,4

4,5

5,0

5,1

5,2

5,3

5,4

5,5

5,6

6,0

6,1

6,2

6,3

6,4

6,5

6,6

6,7

7,0

7,1

7,2

7,3

7,4

7,5

7,6

7,7

7,8

8,0

8,1

8,2

8,3

8,4

8,5

8,6

8,7

8,8

8,9

9,0

9,1

9,2

9,3

9,4

9,5

9,6

9,7

9,8

9,9

9,10

10,0

10,1

10,2

10,3

10,4

10,5

10,6

10,7

10,8

10,9

10,10

10,11

10.6 Linked axes and galleries of plots

In the previous chapter (Section 8.8.9), linked axes were introduced as a mecha-
nism by which several axes on a single plot could be set to have the same range,
or to be algebraically related to one another. Another common use for them
is to make several plots on a multiplot canvas share common axes. Just as the
following statement links two axes on a single plot to one another

set axis x2 linked x

10.6. LINKED AXES AND GALLERIES OF PLOTS 203

axes on the current plot can be linked to those of previous plots which are
already on the multiplot canvas using syntax of the form:

set axis x2 linked item 2 x

A common reason for doing this is to produce galleries of side-by-side plots.
The following series of commands would produce a 2×2 grid of plots, with axes
only labelled along the bottom and left sides of the grid:

set multiplot

set nodisplay

width=5.4

set width width

set xrange [0:23.999]

set yrange [0:0.11]

set nokey

set texthalign left

set textvalign center

Plot 1 (bottom left)

set xlabel "x"

set ylabel ""

set label 1 "(c) fsteps" at graph width*0.03 , graph width/goldenRatio*0.9

plot "barchart1.dat" with fsteps, "" with points

set axis x linked item 1 x

set axis y linked item 1 y

Plot 2 (bottom right)

set origin 1*width, 0*width/goldenRatio

set yformat ""

set label 1 "(d) histeps" at graph width*0.03 , graph width/goldenRatio*0.9

plot "barchart1.dat" with histeps, "" with points

Plot 3 (top left)

set origin 0*width, 1*width/goldenRatio

set xformat "" ; set xlabel ""

unset yformat ; set ylabel texify("poissonPDF(x,18)")

set label 1 "(a) impulses" at graph width*0.03 , graph width/goldenRatio*0.9

plot "barchart1.dat" with impulses, "" with points

Plot 4 (top right)

set origin 1*width, 1*width/goldenRatio

set yformat "" ; set ylabel ""

set label 1 "(b) steps" at graph width*0.03 , graph width/goldenRatio*0.9

plot "barchart1.dat" with steps, "" with points

Now that we are finished preparing multiplot, turn display on

set display

refresh

204 CHAPTER 10. PRODUCING VECTOR GRAPHICS

(c) fsteps

0 10 20

x

0

0.05

0.1 (d) histeps

0 10 20

x

(a) impulses

0

0.05

0.1

p
oi

ss
on

P
D

F
(x
,1

8) (b) steps

10.6.1 The replot command revisited

In multiplot mode, the replot command can be used to modify the last plot
added to the page. For example, the following would change the title of the
latest plot to ‘foo’, and add a plot of the function g(x) to it:

set title ’foo’

replot cos(x)

Additionally, it is possible to modify any plot on the page by adding an item

modifier to the replot statement to specify which plot should be replotted. The
following example would produce two plots, and then add an additional function
to the first plot:

set multiplot

plot f(x)

set origin 10,0

plot g(x)

replot item 1 h(x)

If no item number is specified, then the replot command acts by default
upon the most recent plot to have been added to the multiplot canvas.

10.7 The polygon command

Example 31: A simple polygon.

In this simple example, we use Pyxplot’s polygon command to generate a geo-
metric shape from a list of points.

10.7. THE POLYGON COMMAND 205

points = [[0,-1], [0, 1], [2, 2], [2,1], [8,1], \
[8,-1], [2,-1], [2,-2]]

polygon points with fillcol gray50 col black

Example 32: The first eight regular polygons.

This example uses Pyxplot’s flow control commands, together with its list meth-
ods and the polygon command, to generate a diagram of the first eight regular
polygons.

rotate(a) = matrix([cos(a), -sin(a)], \
[sin(a), cos(a)])

subroutine makePolygon(Nsides, centre)

{
points = []

for i=0 to Nsides

{
call points.append(centre + \
rotate(i/Nsides*unit(rev)) * vector(1,0))

}
polygon points with fillcol gray50 col black

}

set nodisplay ; set multiplot

set texthalign center

set textvalign top

206 CHAPTER 10. PRODUCING VECTOR GRAPHICS

foreach datum x,y,Nsides,name in "--"

{
call makePolygon(Nsides,vector(x,y))

text name at x,y-1.25

}
0 0 3 Triangle

3 0 4 Square

6 0 5 Pentagon

0 4 6 Hexagon

3 4 7 Heptagon

6 4 8 Octagon

END

set display ; refresh

Triangle Square Pentagon

Hexagon Heptagon Octagon

10.8 The image command

Graphical images in bmp, gif, jpeg or png format may be placed on multiplot
canvases using the image command1. In its simplest form, this has the syntax:

image ’filename’ at x,y width w

As an alternative to the width keyword the height of the image can be
specified, using the analogous height keyword. An optional angle can also
be specified using the rotate keyword; this causes the included image to be
rotated counter-clockwise by a specified angle, measured in degrees. The key-
word smooth may optionally be supplied to cause the pixels of the image to be
interpolated2.

1To maintain compatibility with historic versions of Pyxplot, the image command may also
be spelt jpeg, with the identical syntax thereafter.

2Many commonly-used PostScript display engines, including Ghostscript, do not support
this functionality.

10.9. THE EPS COMMAND 207

Images which include transparency are supported. The optional keyword
notransparent may be supplied to the image command to cause transparent
regions to be filled with the image’s default background color. Alternatively,
an RGB color may be specified in the form rgb<r>:<g>: after the keyword
transparent to cause that particular color to become transparent; the three
components of the RGB color should be in the range 0 to 255.

10.9 The eps command

Vector graphic images in eps format may be placed on multiplot canvases using
the eps command, which has a syntax analogous to the image command. How-
ever neither height nor width need be specified; in this case the image will be
included at its native size. For example:

eps ’filename’ at 3,2 rotate 5

will place the eps file with its bottom-left corner at position (3, 2) cm from the
origin, rotated counter-clockwise through 5 degrees.

10.10 The box and circle commands

Rectangular boxes and circles may be placed on multiplot canvases using the
box and circle commands, as in:

box from 0*unit(mm),0*unit(mm) to 25*unit(mm),70*unit(mm)

circle at 0*unit(mm),0*unit(mm) radius 70*unit(mm)

In the former case, two corners of the rectangle are specified, meanwhile in the
latter case the centre of the circle and its radius are specified. The box command
may also be invoked by the synonym rectangle. Boxes may be rotated using
an optional rotate modifier, which may be followed by a counter-clockwise
rotational angle which may either have dimensions of angle, or is assumed to be
in degrees if dimensionless. The rotation is performed about the centre of the
rectangle:

box from 0,0 to 10,3 rotate 45

The positions and dimensions of boxes may also be specified by giving the
position of one of the corners of the box, together with its width and height.
The specified corner is assumed to be the bottom-left corner if both the specified
width and height are positive; other corners may be specified if the supplied
width and/or height are negative. If such boxes are rotated, the rotation is
about the specified corner:

box at 0,0 width 10 height 3 rotate 45

The line type, line width, and color of line with which the outlines of boxes
and circles are drawn may be specified as in the arrow command, for example:

circle at 0,0 radius 5 with linetype 1 linewidth 2 color red

208 CHAPTER 10. PRODUCING VECTOR GRAPHICS

The shapes may be filled by specifying a fillcolor:

circle at 0,0 radius 5 with lw 10 color red fillcolor yellow

Example 33: A simple no-entry sign.

In this example script, we use Pyxplot’s box and circle commands to produce
a no-entry sign warning passers by that code monkeys can turn nasty when
interrupted from their work.

set multiplot ; set nodisplay

w = 10 # Width of sign / cm

Make no-entry sign

circle at 0,0 radius w with col null fillcol red

box from -(0.8*w),-(0.2*w) to (0.8*w),(0.2*w) \
with col null fillcol white

Put a warning beneath the sign

set fontsize 3

set texthalign center ; set textvalign center

text r"\bf Keep Out! Code Monkey at work!" at 0,-1.2*w

Display sign

set display ; refresh

Keep Out! Code Monkey at work!

10.11 The arc command

Partial arcs of circles may be drawn using the arc command. This has similar
syntax to the circle command, but takes two additional angles, measured
clockwise from the upward vertical direction, which specify the extent of the
arc to be drawn. The arc is drawn clockwise from start to end, and hence the

10.11. THE ARC COMMAND 209

following two instructions draw two complementary arcs which together form a
complete circle:

set multiplot

arc at 0,0 radius 5 from -90 to 0 with lw 3 col red

arc at 0,0 radius 5 from 0 to -90 with lw 3 col green

If a fillcolor is specified, then a pie-wedge is drawn:

arc at 0,0 radius 5 from 0 to 30 with lw 3 fillcolor red

Example 34: Labelled diagrams of triangles.

In this example, we make a subroutine to draw labelled diagrams of the interior
angles of triangles, taking as its inputs the lengths of the three sides of the
triangle to be drawn and the position of its lower-left corner. The subroutine
calculates the positions of the three vertices of the triangle and then labels
them. We use Pyxplot’s automatic handling of physical units to generate the
latex strings required to label the side lengths in centimetres and the angles in
degrees. We use Pyxplot’s arc command to draw angle symbols in the three
corners of a triangle.

set unit angle nodimensionless

set unit of length cm # Display lengths in cm

set unit of angle degree # Display angles in degrees

set numeric sigfig 3 display latex # Correct to 3 significant figure

cm = unit(cm) # Shorthand to save space

deg = unit(deg)

turn(a) = matrix([cos(a),-sin(a)], \
[sin(a), cos(a)])

Define subroutine for drawing triangles

subroutine triangleDraw(B,AB,AC,BC)

{
Use cosine rule to find interior angles

ABC = acos((AB**2 + BC**2 - AC**2) / (2*AB*BC))

BCA = acos((BC**2 + AC**2 - AB**2) / (2*BC*AC))

CAB = acos((AC**2 + AB**2 - BC**2) / (2*AC*AB))

Positions of three corners of triangle

C = B + vector(BC,0*cm)

A = B + turn(ABC)*vector(AB,0*cm)

Draw triangle

polygon [A,B,C]

210 CHAPTER 10. PRODUCING VECTOR GRAPHICS

Draw angle symbols

arcRad = 0.4*cm # Radius of angle arcs

arc at B radius arcRad from 90*deg-ABC to 90*deg

arc at C radius arcRad from -90*deg to -90*deg+BCA

arc at A radius arcRad from 90*deg+BCA to 270*deg-ABC

Label lengths of sides

textGap = 0.1*cm

text "%s"%(BC) at (B+C)/2 gap textGap hal c val t

text "%s"%(AB) at (A+B)/2 gap textGap rot ABC hal c val b

text "%s"%(AC) at (A+C)/2 gap textGap rot -BCA hal c val b

Label angles

arcRad2 = vector(1.4*arcRad , 0*cm)

text "%s"%CAB at A+turn(-90*deg+ABC-BCA)*arcRad2 hal c val t

text "%s"%ABC at B+turn(ABC/2)*arcRad2 hal l val c

text "%s"%BCA at C+turn(180*deg - BCA/2)*arcRad2 hal r val c

Label points ABC

text "A" at A gap textGap hal c val b

text "B" at B gap textGap hal r val c

text "C" at C gap textGap hal l val c

}

Display diagram with three triangles

set multiplot ; set nodisplay

call triangleDraw(vector([2.8,3.2])*cm, 3*cm, 4*cm, 4*cm)

call triangleDraw(vector([0.0,0.0])*cm, 3*cm, 4*cm, 5*cm)

call triangleDraw(vector([6.5,0.0])*cm, 3*cm, 3*cm, 3*cm)

set display ; refresh

4 cm

3
cm

4 cm

68 ◦

68 ◦
44 ◦

A

B C

5 cm

3
cm

4 cm
90 ◦

53.1 ◦
36.9 ◦

A

B C
3 cm

3
cm

3
cm

60 ◦

60 ◦ 60 ◦

A

B C

10.11. THE ARC COMMAND 211

Example 35: A labelled diagram of a converging lens forming a real image.

In this example, we make a subroutine to draw labelled diagrams of converging
lenses forming real images.

Define subroutine for drawing lens diagrams

subroutine lensDraw(x0,y0,u,h,f)

{
Use the thin-lens equation to find v and H

v = 1/(1/f - 1/u)

H = h * v / u

Draw lens

lc = 5.5*unit(cm) # Radius of curvature of lens

lt = 0.5*unit(cm) # Thickness of lens

la = acos((lc-lt/2)/lc) # Angular size of lens from center of curvature

lh = lc*sin(la) # Physical height of lens on paper

arc at x0-(lc-lt/2),y0 radius lc from 90*unit(deg)-la to 90*unit(deg)+la

arc at x0+(lc-lt/2),y0 radius lc from 270*unit(deg)-la to 270*unit(deg)+la

set texthalign right ; set textvalign top

point at x0-f,y0 label "f"

set texthalign left ; set textvalign bottom

point at x0+f,y0 label "f"

Draw object and image

arrow from x0-u,y0 to x0-u,y0+h with lw 2

arrow from x0+v,y0 to x0+v,y0-H with lw 2

text "h" at x0-u,y0+h/2 hal l val c gap unit(mm)

text "H" at x0+v,y0-H/2 hal l val c gap unit(mm)

Draw construction lines

line from x0-u,y0 to x0+v,y0 with lt 2 # Optic axis

line from x0-u,y0+h to x0+v,y0-H # Undeflected ray through origin

line from x0-u,y0+h to x0,y0+h

line from x0,y0+h to x0+v,y0-H

line from x0+v,y0-H to x0,y0-H

line from x0,y0-H to x0-u,y0+h

Label distances u and v

ylabel = y0-lh-2*unit(mm)

arrow from x0-u,ylabel to x0,ylabel with twoway lt 2

arrow from x0+v,ylabel to x0,ylabel with twoway lt 2

text "u" at x0-u/2,ylabel hal c val t gap unit(mm)

text "v" at x0+v/2,ylabel hal c val t gap unit(mm)

}

212 CHAPTER 10. PRODUCING VECTOR GRAPHICS

Display diagram of lens

set unit angle nodimensionless

set multiplot ; set nodisplay

call lensDraw(0*unit(cm),0*unit(cm), 5*unit(cm),1.5*unit(cm),2*unit(cm))

set display ; refresh

f
f

h

H

u v

10.12 The point command

The point command places a single point on a multiplot canvases, in the same
style which would be used when plotting a dataset on a graph with the points

plotting style. It is useful for marking significant points on technical diagrams
with crosses or other motifs.

The point command that the position of the point to be marked be specified
after the at modifier. A text label to be attached next to the point may option-
ally be specified using the same label modifier as taken by the plot command.
A with modifier may then be supplied, followed by any of the style modifiers:
color, pointlinewidth, pointsize, pointtype, style.

The following example labels the origin as such:

set texthalign left

set textvalign centre

point at 0,0 label "The Origin" with ps 2

10.13 The ellipse command

Ellipses may be placed on multiplot canvases using the ellipse command. The
shape of the ellipse may be specified in many different ways, by specifying

(i) the position of two corners of the smallest rectangle which can enclose
the ellipse when its major axis is horizontal, together with an optional
counter-clockwise rotation angle, applied about the centre of the ellipse.
For example:

ellipse from 0,0 to 4,1 rot 70

(ii) the position of both the centre and one of the foci of the ellipse, together
with any one of the following additional pieces of information: the ellipse’s
major axis length, its semi-major axis length, its minor axis length, its

10.13. THE ELLIPSE COMMAND 213

semi-minor axis length, its eccentricity, its latus rectum, or its semi-latus
rectum. For example:

ellipse focus 0,0 centre 2,2 majoraxis 4

ellipse focus 0,0 centre 2,2 minoraxis 4

ellipse focus 0,0 centre 2,2 ecc 0.5

ellipse focus 0,0 centre 2,2 LatusRectum 6

ellipse focus 0,0 centre 2,2 slr 3

(iii) the position of either the centre or one of the foci of the ellipse, together
with any two of the following additional pieces of information: the el-
lipse’s major axis length, its semi-major axis length, its minor axis length,
its semi-minor axis length, its eccentricity, its latus rectum, or its semi-
latus rectum. An optional counter-clockwise rotation angle may also be
specified, applied about either the centre or one of the foci of the ellipse,
whichever is specified. If no rotation angle is given, then the major axis of
the ellipse is horizontal. For example:

ellipse centre 0,0 majoraxis 4 minoraxis 4

The line type, line width, and color of line with which the outlines of ellipses
are drawn may be specified after the keyword with, as in the box and circle

commands above. Likewise, ellipses may be filled in the same manner.

Example 36: A labelled diagram of an ellipse.

In this example script, we illustrate the text of Section 10.13 by using Pyxplot’s
ellipse command, together with arrows and text labels, to produce a labelled
diagram of an ellipse. We label the semi-major axis a, the semi-minor axis b,
the semi-latus rectum L, and the distance between the centre of the ellipse and
one of its foci with the length ae, where e is the eccentricity of the ellipse.

set multiplot ; set nodisplay

a = 6.0 # Semi-major axis

b = 4.0 # Semi-minor axis

e = sqrt(1-(b/a)**2) # Eccentricity

slr = a*(1-e**2) # Length of semi-latus rectum

fd = a*e # Distance of focus from center

Draw ellipse

ellipse center 0,0 semiMajor a semiMinor b with lw 3

Draw points at center and focus

set texthalign center ; set textvalign top

set fontsize 1.5

point at 0,0 label "Centre" with pointsize 2 plw 2

point at -fd,0 label "Focus" with pointsize 2 plw 2

214 CHAPTER 10. PRODUCING VECTOR GRAPHICS

Draw arrows and dotted lines on ellipse

arrow from 0,0 to 0,b with twohead lw 2 lt 3 # Semi-minor axis

arrow from 0,0 to a,0 with twohead lw 2 lt 3 # Semi-major axis

arrow from -fd,0 to -fd,slr with tw lw 2 lt 3 # SLR

arrow from 0,0 to -fd,0 with twohead lw 2 lt 3 # Focus <-> Centre

Label ellipse

set texthalign center ; set textvalign center

text ’ae’ at -fd/2,-0.3

text ’a’ at a/2,+0.3

text ’b’ at 0.3,b/2

set texthalign left ; set textvalign center

text ’$L=a(1-e^2)$’ at 0.2-fd,slr/2

Display diagram

set display ; refresh

CentreFocus ae
a

b

L = a(1 − e2)

10.14 The piechart command

The piechart command produces piecharts based upon single columns of data
read from data files, which are taken to indicate the sizes of the pie wedges.
The piechart command has the following syntax:

piechart (’<filename>’|<function>)

[using <using specifier>]

[select <select specifier>]

[index <index specifier>]

[every <every specifier>]

[label <auto|key|inside|outside> <label>]

[format <format string>]

[with <style> [<style modifier> ...]]

Immediately after the piechart keyword, the file (or indeed, function) from
which the data is to be taken should be specified; any of the modifiers taken
by the plot command – i.e. using, index, etc. – may be used to specify which

10.14. THE PIECHART COMMAND 215

data from this data file should be used. The label modifier should be used to
specify how a name for each pie wedge should be drawn from the data file, and
has a similar syntax to the equivalent modifier in the plot command, except
that the name string may be prefixed by a keyword to specify how the pie wedge
names should be positioned. Four options are available:

• auto – specifies that the inside positioning mode should be used on wide
pie wedges, and the outside positioning mode should be used on narrow
pie wedges. [default]

• key – specifies that all of the labels should be arranged in a vertical list
to the right-hand side of the piechart.

• inside – specifies that the labels should be placed within the pie wedges
themselves.

• outside – specifies that the labels should be arranged around the circum-
ference of the pie chart.

Having specified a name for each wedge using the label modifier, the format
modifier determines the final text which is printed along side each wedge. For
example, a wedge with name ‘Europe’ might be labelled as ‘27% Europe’, ap-
plying the default format string:

"%.1d\%% %s"%(percentage,label)

Three variables may be used in format strings: label contains the name of the
wedge as specified by the label modifier, percentage contains the numerical
percentage size of the wedge, and wedgesize contains the absolute unnormalised
size of the wedge, as read from the input data file, before the sizes were renor-
malised to sum to 100%.

The with modifier may be followed by the keywords color, linewidth,
style, which all apply to the lines drawn around the circumference of the
piechart and between its wedges. The fill color of the wedges themselves are
taken sequentially from the current palette, as set by the set palette com-
mand. Note that Pyxplot’s default palette is optimised more for producing
plots with datasets in different and distinct colors than for producing piecharts
in aesthetically pleasing shades, where a little more subtly may be desirable. A
suitable call to the set palette command is highly recommended before the
piechart command is used.

As with the plot command, the position and size of the piechart are governed
by the set origin and set size commands. The former determines where the
centre of the piechart is positioned; the latter determines its diameter.

Example 37: A piechart of the composition of the Universe.

In this example, we use Pyxplot’s piechart command to produce a diagram of
the composition of the Universe, showing that of the mass in the Universe, only
4% is in the form of the baryonic matter; of the rest, 22% is in the form of dark
matter and 74% in the form of dark energy:

216 CHAPTER 10. PRODUCING VECTOR GRAPHICS

set palette gray40, gray60, gray80

set width 6

piechart ’--’ using $1 label key "%s"%($2)

0.22 Dark∼Matter
0.04 Baryonic∼Matter
0.74 Dark∼Energy
END

22% Dark Matter

4% Baryonic Matter

74% Dark Energy

Below, we show the change produced by replacing the line

piechart ’--’ using $1 label key "%s"%($2)

with

piechart ’--’ using $1 label auto "%s"%($2)

Note that the labels on the piechart are placed either within the pie, in the cases
of large wedges, and around the edge of the pie for those wedges which are too
narrow for this.

22% Dark Matter

4% Baryonic Matter

74% Dark Energy

10.15. LATEX AND PYXPLOT 217

10.15 LaTeX and Pyxplot

The text command can straightforwardly be used to render simple one-line
latex strings, but sometimes the need arises to place more substantial blocks of
text onto a plot. For this purpose, it can be useful to use the latex parbox or
minipage environments3. For example:
text r’\parbox[t]{6cm}{\setlength{\parindent}{1cm} \
\noindent There once was a lady from Hyde, \newline \
Who ate a green apple and died, \newline \
\indent While her lover lamented, \newline \
\indent The apple fermented, \newline \
and made cider inside her inside.}’

There once was a lady from Hyde,
Who ate a green apple and died,

While her lover lamented,
The apple fermented,

and made cider inside her inside.

If unusual mathematical symbols are required, for example those in the
amsmath package, such a package can be loaded using the set preamble com-
mand. For example:
set preamble \usepackage{marvosym}
text r"{\Huge\Dontwash\ \NoIroning\ \NoTumbler}$\;$ Do not \
wash, iron or tumble-dry this plot."

Ý²÷ Do not wash, iron or tumble-dry this plot.

3Remember, any valid latex string can be passed to the text command and set label

command.

218 CHAPTER 10. PRODUCING VECTOR GRAPHICS

Part III

Reference manual

219

Chapter 11

Command reference

This chapter contains an alphabetically ordered list of all of Pyxplot’s com-
mands. The syntax of each is specified in a variant of Backus-Naur notation, in
which angle brackets <> are used to indicate replaceable tokens, parentheses ()
are used to indicate mutually-exclusive options which are separated by vertical
lines |, square brackets [] are used to indicate optional items, and braces {} are
used to indicate items which may be repeated. Dots ... are used to indicate
arbitrary strings of text.

Replaceable tokens labelled <length> may be specified either as a number
with physical dimensions of length, e.g. 2*unit(m), or as a dimensionless num-
ber taken as a number of centimeters. Replaceable tokens labelled <angle> may
be specified either with physical dimensions of angle, e.g. 0.25*unit(rev), or
as a dimensionless number of degrees, e.g. 90.

Replaceable tokens labelled <vector> represent a physical position on the
vector-graphics canvas, and can be specified either as two comma-separated
co-ordinates, or as a two-component vector. In either case, the co-ordinates
may either have physical demensions of length, or be a dimensionless number
of centimeters.

Replaceable tokens labelled <graph vector> are similar, but represent a
position on a graph. They may be specified either as comma-separated co-
ordinates, or as a vector object. In either case, there may be either two or three
components, although the third component will be ignored except on three-
dimensional plots. The components should share the physical units of the axes
they are plotted against.

In flow control commands, tokens labelled <code> should be replaced by a
series of Pyxplot commands enclosed by braces {}. The closing brace must be
placed on a new line.

Where braces {} are used to indicate items which may be repeated, commas
or semicolons are often used to separate items. This is specified in the text
below the syntax specification.

Where keywords differ between US and British English, both variants are
accepted. For example, color may be spelt colour, gray may be spelt grey,
etc.

221

222 CHAPTER 11. COMMAND REFERENCE

11.1 ?

? [<topic> { <sub-topic> }]

The ? symbol is a shortcut to the help command.

11.2 !

! <shell command>

... ‘<shell command>‘ ...

Shell commands can be executed within Pyxplot by prefixing them with
pling (!) characters, as in the example:

!mkdir foo

As an alternative, back-quotes (‘) can be used to substitute the output of a shell
command into a Pyxplot command, as in the example:

set xlabel ‘echo "’" ; ls ; echo "’"‘

Note that back-quotes cannot be used inside quote characters, and so the fol-
lowing would not work:

set xlabel ’‘ls‘’

11.3 arc

arc [item <id>] [at] <vector> radius <length>

from <angle> to <angle> [with { <option> }]

Arcs (curves with constant radius of curvature, that is, segments of circles)
may be drawn on multiplot canvases using the arc command. The at modifier
specifies the coordinates of the center of curvature, from which all points on the
arc are at the distance given following the radius modifier. The angles start

and finish, measured clockwise from the vertical, control where the arc begins
and ends. For example, the command

arc at 0,0 radius 2 from 90 to 270

would draw a semi-circle beneath the line x = 0, centered on the origin with
radius 2 cm. The usual style modifiers for lines may be passed after the keyword
with; if the fillcolor modifier is specified then the arc will be filled to form a
pie-chart slice.

All vector graphics objects placed on multiplot canvases receive unique iden-
tification numbers which count sequentially from one, and which may be listed
using the list command. By reference to these numbers, they can be deleted
and subsequently restored with the delete and undelete commands respec-
tively.

11.4. ARROW 223

11.4 arrow

arrow [item <id>] [from] <vector> to <vector>

[with { <option> }]

Arrows may be drawn on multiplot canvases using the arrow command. The
style of the arrows produced may be specified by following the with modifier
by one of the style keywords nohead, head (default) or twohead. In addition,
keywords such as color, linewidth and linetype have the same syntax and
meaning following the keyword with as in the plot command. The following
example would draw a bidirectional blue arrow:

arrow from x1,y1 to x2,y2 with twohead linetype 2 color blue

The arrow command has a twin, the line command, which has the same
syntax, but uses the default arrow style of nohead, producing short line seg-
ments.

All vector graphics objects placed on multiplot canvases receive unique iden-
tification numbers which count sequentially from one, and which may be listed
using the list command. By reference to these numbers, they can be deleted
and subsequently restored with the delete and undelete commands respec-
tively.

11.5 assert

assert (<expression> | version (>= | <) <version>)

[<error message>]

The assert command can be used to assert that a logical expression, such
as x>0, is true. An error is reported if the expression is false, and optionally a
string can be supplied to provide a more informative error message to the user:

assert x>0

assert y<0 "y must be less than zero."

The assert command can also be used to test the version number of Pyxplot.
It is possible to test either that the version is newer than or equal to a specific
version, using the >= operator, or that it is older than a specific version, using
the < operator, as demonstrated in the following examples:

assert version >= 0.8.2

assert version < 0.8 "This script is designed for Pyxplot 0.7"

11.6 box

box [item <id>] at <vector> width <length> height <length>

[rotate <angle>] [with { <option> }]

box [item <id>] from <vector> to <vector>

[rotate <angle>] [with { <option> }]

224 CHAPTER 11. COMMAND REFERENCE

The box command is used to draw and fill rectangular boxes on multiplot
canvases. The position of each box may be specified in one of two ways. In the
first, the coordinates of one corner of the box are specified, along with its width
and height. If both the width and the height are positive then the coordinates
are taken to be those of the bottom left-hand corner of the box; other corners
may be specified if the supplied width and/or height are negative. If a rotation
angle is specified then the box is rotated about the specified corner. The with

modifier allows the style of the box to be specified using similar options to those
accepted by the plot command.

The second syntax allows two pairs of coordinates to be specified. Pyxplot
will then draw a rectangular box with opposing corners at the specified locations.
If an angle is specified the box will be rotated about its center. Hence the
following two commands both draw a square box centered on the origin:

box from -1, -1 to 1,1

box at 1, -1 width -2 height 2

All vector graphics objects placed on multiplot canvases receive unique iden-
tification numbers which count sequentially from one, and which may be listed
using the list command. By reference to these numbers, they can be deleted
and subsequently restored with the delete and undelete commands respec-
tively.

11.7 break

break [<loopname>]

The break command terminates execution of do, while, for and foreach

loops in an analogous manner to the break statement in the C programming
language. Execution resumes at the statement following the end of the loop.
For example, the following loop would only print the numbers 1 and 2:

for i = 1 to 10

{

print i

if (i==2)

{

break

}

}

If several loops are nested, the break statement only acts on the innermost
loop. If the break statement is encountered outside of any loop structure, an
error results. Optionally, the for, foreach, do and while commands may be
supplied with a name for the loop, prefixed by the word loopname, as in the
examples:

for i=0 to 4 loopname iloop

foreach i in "*.dat" loopname DatafileLoop

11.8. CALL 225

When loops are given such names, the break statement may be followed by the
name of the loop whose iteration is to be broken, allowing it to act upon loops
other than the innermost one.

See also the continue command.

11.8 call

call <expression>

The call command evaluates a function or subroutine call, and discards the
result. Whereas entering f(x) on the commandline alone will print the result
of the function call, call f(x) quietly discards the function evaluation.

11.9 cd

cd <directory>

Pyxplot’s cd command is very similar to the shell cd command; it changes
the current working directory. The following example would enter the subdirec-
tory foo:

cd foo

11.10 circle

circle [item <id>] [at] <vector> radius <length>

[with { <option> }]

The circle command is used to draw circles on multiplot canvases. The
coordinates of the circle’s center and its radius are specified. The with modi-
fier allows the style of the circle to be specified using similar options to those
accepted by the plot command. The example

circle at 2,2 radius 1 with color red fillcolor blue

would draw a red circle of unit radius filled in blue, centered 2 cm above and to
the right of the origin.

All vector graphics objects placed on multiplot canvases receive unique iden-
tification numbers which count sequentially from one, and which may be listed
using the list command. By reference to these numbers, they can be deleted
and subsequently restored with the delete and undelete commands respec-
tively.

11.11 clear

clear

In multiplot mode, the clear command removes all plots, arrows and text
objects from the working multiplot canvas. Outside of multiplot mode, it is not
especially useful; it removes the current plot to leave a blank canvas. The clear
command should not be followed by any parameters.

226 CHAPTER 11. COMMAND REFERENCE

11.12 continue

continue [<loopname>]

The continue command terminates execution of the current iteration of for,
foreach, do and while loops in an analogous manner to the continue statement
in the C programming language. Execution resumes at the first statement of
the next iteration of the loop, or at the first statement following the end of the
loop in the case of the last iteration of the loop. For example, the following
script will not print the number 2:

for i = 0 to 5

{

if (i==2)

{

continue

}

print i

}

If several loops are nested, the continue statement only acts on the in-
nermost loop. If the continue statement is encountered outside of any loop
structure, an error results. Optionally, the for, foreach, do and while state-
ments may be supplied with a name for the loop, prefixed by the word loopname,
as in the examples:

for i=0 to 4 loopname iloop

foreach i in "*.dat" loopname DatafileLoop

When loops are given such names, the continue statement may be followed by
the name of the loop whose iteration is to be broken, allowing it to act upon
loops other than the innermost one.

See also the break command.

11.13 delete

delete { <item number> }

The delete command removes vector graphics objects such as plots, arrows
or text items from the current multiplot canvas. All vector graphics objects
placed on multiplot canvases receive unique identification numbers which count
sequentially from one, and which may be listed using the list command. The
items to be deleted should be identified using a comma-separated list of their
identification numbers. The example

delete 1,2,3

would remove item numbers 1, 2 and 3.
Having been deleted, multiplot items can be restored using the undelete

command.

11.14. DO 227

11.14 do

do [loopname <loopname>]

<code>

while <condition>

The do command executes a block of commands repeatedly, checking the
condition given in the while clause at the end of each iteration. If the condition
is true then the loop executes again. This is similar to a while loop, except
that the contents of a do loop are always executed at least once. The following
example prints the numbers 1, 2 and 3:

i=1

do

{

print i

i = i + 1

} while (i < 4)

Note that there must always be a newline following the opening brace after
the do command, and the while clause must always be on the same line as the
closing brace.

11.15 ellipse

Ellipses may be drawn on multiplot canvases using the ellipse command. The
shape of the ellipse may be specified in many different ways, by specifying

(i) the position of two corners of the smallest rectangle which can enclose
the ellipse when its major axis is horizontal, together with an optional
counter-clockwise rotation angle, applied about the center of the ellipse.
For example:

ellipse from 0,0 to 4,1 rot 70

(ii) the position of both the center and one of the foci of the ellipse, together
with any one of the following additional pieces of information: the ellipse’s
major axis length, its semi-major axis length, its minor axis length, its
semi-minor axis length, its eccentricity, its latus rectum, or its semi-latus
rectum. For example:

ellipse focus 0,0 center 2,2 majoraxis 4

ellipse focus 0,0 center 2,2 minoraxis 4

ellipse focus 0,0 center 2,2 ecc 0.5

ellipse focus 0,0 center 2,2 LatusRectum 6

ellipse focus 0,0 center 2,2 slr 3

(iii) the position of either the center or one of the foci of the ellipse, together
with any two of the following additional pieces of information: the el-
lipse’s major axis length, its semi-major axis length, its minor axis length,

228 CHAPTER 11. COMMAND REFERENCE

its semi-minor axis length, its eccentricity, its latus rectum, or its semi-
latus rectum. An optional counter-clockwise rotation angle may also be
specified, applied about either the center or one of the foci of the ellipse,
whichever is specified. If no rotation angle is given, then the major axis of
the ellipse is horizontal. For example:

ellipse center 0,0 majoraxis 4 minoraxis 4

Optionally, an arc of an ellipse may be drawn by adding the following mod-
ified:

arc from <angle> to <angle>

The line type, line width, and color of line with which the outlines of ellipses
are drawn may be specified after the keyword with, as in the box and circle

commands above. Likewise, ellipses may be filled in the same manner.
All vector graphics objects placed on multiplot canvases receive unique iden-

tification numbers which count sequentially from one, and which may be listed
using the list command. By reference to these numbers, they can be deleted
and subsequently restored with the delete and undelete commands respec-
tively.

11.16 else

The else statement is described in the entry for the if statement, of which it
forms part.

11.17 eps

eps [item <id>] <filename> [at <vector>] [rotate <angle>]

[width <length>] [height <length>]

[clip] [calcbbox]

The eps command allows Encapsulated PostScript (EPS) images to be in-
serted onto multiplot canvases. The at modifier can be used to specify where
the image should be placed on the vector graphics canvas; if it is not, then the
image is placed at the origin. The settings texthalign and textvalign deter-
mined how the image is aligned relatively to this reference point – for example,
whether its bottom left corner or its center is placed at the reference point.

The rotate modifier can be used to rotate the image by any angle, measured
in degrees counter-clockwise. The width or height modifiers can be used to
specify the width or height with which the image should be rendered; both
should be specified in centimeters. If neither is specified then the image will be
rendered with the native dimensions specified within the PostScript. The eps

command is often useful in multiplot mode, allowing PostScript images to be
combined with plots, text labels, etc.

The clip modifier causes Pyxplot to clip an eps image to its stated bounding
box. The calcbbox modifier causes Pyxplot to ignore the bounding box stated

11.18. EXEC 229

in the eps file and calculate its own when working out how to scale the image
to the specified width and height.

All vector graphics objects placed on multiplot canvases receive unique iden-
tification numbers which count sequentially from one, and which may be listed
using the list command. By reference to these numbers, they can be deleted
and subsequently restored with the delete and undelete commands respec-
tively.

11.18 exec

exec <command>

The exec command can be used to execute Pyxplot commands contained
within string variables, as in the following example:

terminal="eps"

exec "set terminal %s"%(terminal)

It can also be used to write obfuscated Pyxplot scripts, and its use should be
minimized wherever possible.

11.19 exit

exit

The exit command can be used to quit Pyxplot. If multiple command
files, or a mixture of command files and interactive sessions, were specified on
Pyxplot’s command line, then Pyxplot moves onto the next command-line item
after receiving the exit command.

Pyxplot may also be quit be pressing CTRL-D or using the quit command.
In interactive mode, CTRL-C terminates the current command, if one is run-
ning. When running a script, CTRL-C terminates execution of the script.

11.20 fft

fft { <range> } <function name>()

of (<filename> | <function name>())

[using { <expression> }]

ifft { <range> } <function name>()

of (<filename> | <function name>())

[using { <expression> }]

The fft command calculates Fourier transforms of data files or functions.
Transforms can be performed on datasets with arbitrary numbers of dimen-
sions. To transform an algebraic expression with n degrees of freedom, it must
be wrapped in a function of the form f(i2, i2, . . . , in). To transform an n-
dimensional dataset stored in a data file, the samples must be arranged on a
regular linearly-spaced grid and stored in row-major order. For each dimension

230 CHAPTER 11. COMMAND REFERENCE

of the transform, a range specification must be provided to the fft command
in the form

[<minimum> : <maximum> : <step>]

When data from a data file is being transformed, the specified range(s) must
precisely match those of the samples read from the file; the first n columns of
data should contain the values of the n real-space coordinates, and the n+ 1th
column should contain the data to be transformed. After the range(s), a function
name should be provided for the output transform: a function of n arguments
with this name will be generated to represent the transformed data. Note that
this function is in general complex – i.e. it has a non-zero imaginary component.
Complex numerics can be enabled using the set numerics complex command
and the fft command is of little use without doing so. The using, index,
every and select modifiers can be used to specify how data will be sampled
from the input function or data file in an analogous manner to how they are
used in the plot command.

The ifft command calculates inverse Fourier transforms; it has the same
syntax as the fft command.

11.21 fit

fit [{ <range> }] <function name>() [withouterrors]

(<filename> | { <expression> } | { <vector obj> })

[index <value>] [using { <expression> }]

via { <variable> }

The fit command can be used to fit arbitrary functional forms to data
points read from files. It can be used to produce best-fit lines for datasets or
to determine gradients and other mathematical properties of data by looking at
the parameters associated with the best-fitting functional form. The following
simple example fits a straight line to data in a file called data.dat:

f(x) = a*x+b

fit f() ’data.dat’ index 1 using 2:3 via a,b

The first line specifies the functional form which is to be used. The coefficients
within this function, a and b, which are to be varied during the fitting process
are listed after the keyword via in the fit command. The modifiers index,
every, select and using have the same meanings in the fit command as
in the plot command. When fitting a function of n variables, at least n + 1
columns (or rows – see Section 3.9.1) of data must be specified after the using

modifier. By default, the first n+ 1 columns are used. These correspond to the
values of each of the n arguments to the function, plus finally the value which
the output from the function is aiming to match. If an additional column is
specified, then this is taken to contain the standard error in the value that the
output from the function is aiming to match, and can be used to weight the
data points which are being used to constrain the fit.

As the fit command works, it displays statistics including the best-fit val-
ues of each of the fitting parameters, the uncertainties in each of them, and

11.22. FOR 231

the covariance matrix. These can be useful for analysing the security of the
fit achieved, but calculating the uncertainties in the best-fit parameters and
the covariance matrix can be time consuming, especially when many param-
eters are being fitted simultaneously. The optional keyword withouterrors

can be included immediately before the filename of the data file to be fitted to
substantially speed up cases where this information is not required.

By default, the starting values for each of the fitting parameters is 1.0.
However, if the variables to be used in the fitting process are already set before
the fit command is called, these initial values are used instead. For example,
the following would use the initial values {a = 100, b = 50}:

f(x) = a*x+b

a = 100

b = 50

fit f() ’data.dat’ index 1 using 2:3 via a,b

More details can be found in Section 5.6.

11.22 for

for <variable> = <start> to <end> [step <step>]

[loopname <loopname>]

<code>

for (<initialise>; <criterion>; <step>)

<code>

The for command executes a set of commands repeatedly. Pyxplot allows
for loops to follow either the syntax of the BASIC programming language, or
the C syntax.

In the BASIC variant, a specified variable takes a different value on each
iteration. The variable takes the value start on the first iteration, and increases
by a fixed value step on each iteration; step may be negative if end < start.
If step is not specified then a value of unity is assumed. The loop terminates
when the variable exceeds end. The following example prints the squares of the
first five natural numbers:

for i = 1 to 5

{

print i**2

}

In the C variant, three expressions are provided, which are evaluated (a)
when the loop initialises, (b) as a boolean test of whether the loop should
continue iterating, and (c) on each loop to increment/decrement variables as
required. For example:

for (i=1,j=1; i<=256; i*=2,j++) { print "%3d %3d"%(j,i); }

232 CHAPTER 11. COMMAND REFERENCE

11.23 foreach

foreach <variable> in (<filename wildcard> |

<list>)

[loopname <loopname>]

<code>

The foreach command can be used to run a block of commands repeatedly,
once for each item in a list. The list of items can be specified in one of two
ways. In the first case, a set of filenames or filename wildcards is supplied, and
the foreach loop iterates once for each supplied filename, with a string variable
set to each filename in succession. For example, the following loop would plot
the data in the set of files whose names end with .dat:

plot # Create blank plot

foreach file in *.dat

{

replot file with lines

}

The second form of the command takes a list of string or numerical values
provided explicitly by the user, and the foreach loop iterates once for each
value, with a variable set to each value in succession. For example, the following
script would plot normal distributions of three different widths:

plot # Create blank plot

foreach sigma in (1, 2, 3)

{

replot 1/sigma*exp(-x**2/(2*sigma**2))

}

11.24 foreach datum

foreach { <variable> } in [{ <range> }]

(<filename> | { <expression> } | { <vector obj> })

[every { <expression> }]

[index <value>] [select <expression>]

[using { <expression> }]

<code>

The foreach datum command executes a series of commands for each data
pointread from a data fileor function. It takes a similar set of modifiers to the
plot command; the list of variables to be read from the supplied data on each
iteration should be comma separated.

11.25 global

global { <variable name> }

11.26. HELP 233

The global command command may be used within subroutines, which
have their own private variable namespaces, to specify that the named variables
should refer to the global namespace. If multiple variables are specified, their
names should be comma separated.

11.26 help

help [<topic> { <sub-topic> }]

The help command provides an hierarchical source of information which is
supplementary to this Users’ Guide. To obtain information on any particular
topic, type help followed by the name of the topic, as in the following example

help commands

which provides information on Pyxplot’s commands. Some topics have sub-
topics; these are listed at the end of each help page. To view them, add further
words to the end of the help request, as in the example:

help commands help

Information is arranged with general information about Pyxplot under the
heading about and information about Pyxplot’s commands under commands.
Information about the format that input data files should take can be found
under datafile. Other categories are self-explanatory.

To exit any help page, press the q key.

11.27 histogram

histogram [<range>] <function name>()

(<filename> | { <expression> } | { <vector obj> })

[every { <expression> }]

[index <value>]

[select <expression>]

[using { <expression> }]

([binwidth <value>] [binorigin <value>] |

[bins (x1, x2, ...)])

The histogram command takes a single column of data from a file and
produces a function that represents the frequency distribution of the supplied
data values. The output function consists of a series of discrete intervals which
we term bins. Within each interval the output function has a constant value,
determined such that the area under each interval – i.e. the integral of the
function over each interval – is equal to the number of datapoints found within
that interval. The following simple example

histogram f() ’input.dat’

234 CHAPTER 11. COMMAND REFERENCE

produces a frequency distribution of the data values found in the first column
of the file input.dat, which it stores in the function f(x). The value of this
function at any given point is equal to the number of items in the bin at that
point, divided by the width of the bins used. If the input datapoints are not
dimensionless then the output frequency distribution adopts appropriate units,
thus a histogram of data with units of length has units of one over length.

The number and arrangement of bins used by the histogram command can
be controlled by means of various modifiers. The binwidth modifier sets the
width of the bins used. The binorigin modifier controls where their boundaries
lie; the histogram command selects a system of bins which, if extended to
infinity in both directions, would put a bin boundary at the value specified
in the binorigin modifier. Thus, if binorigin 0.1 were specified, together
with a bin width of 20, bin boundaries might lie at 20.1, 40.1, 60.1, and so
on. Alternatively global defaults for the bin width and the bin origin can be
specified using the set binwidth and set binorigin commands respectively.
The example

histogram h() ’input.dat’ binorigin 0.5 binwidth 2

would bin data into bins between 0.5 and 2.5, between 2.5 and 4.5, and so forth.
Alternatively the set of bins to be used can be controlled more precisely

using the bins modifier, which allows an arbitrary set of bins to be specified.
The example

histogram g() ’input.dat’ bins (1, 2, 4)

would bin the data into two bins, x = 1→ 2 and x = 2→ 4.
A range can be supplied immediately following the histogram command,

using the same syntax as in the plot and fit commands; if such a range is
supplied, only points that fall within that range will be binned. In the same
way as in the plot command, the index, every, using and select modifiers
can be used to specify which subsets of a data file should be used.

Two points about the histogram command are worthy of note. First, al-
though histograms are similar to bar charts, they are not the same. A bar chart
conventionally has the height of each bar equal to the number of points that
it represents, whereas a histogram is a continuous function in which the area
underneath each interval is equal to the number of points within it. Thus, to
produce a bar chart using the histogram command, the end result should be
multiplied by the bin width used.

Second, if the function produced by the histogram command is plotted
using the plot command, samples are automatically taken not at evenly spaced
intervals along the ordinate axis, but at the centers of each bin. If the boxes

plot style is used, the box boundaries are be conveniently drawn to coincide
with the bins into which the data were sorted.

11.28 history

history [<number of items>]

The history command prints a list of the most recently executed commands
on the terminal. The optional parameter, N, if supplied, causes only the latest
N commands to be displayed.

11.29. IF 235

11.29 if

if <criterion> <code>

{ else if <criterion> <code> }

[else <code>]

The if command allows conditional execution of blocks of commands. The
code enclosed in braces following the if statement is executed if, and only if, the
criterion is satisfied. An arbitrary number of subsequent else if statements
can optionally follow the initial if statement; these have their own criteria for
execution which are only considered if all of the previous criteria have tested
false – i.e. if none of the previous command blocks have been executed. A final
optional else statement can be provided; the block of commands which follows
it are executed only if none of the preceding criteria have tested true. The
following example illustrates a chain of else if clauses:

if (x==2)

{

print "x is two!"

} else if (x==3) {

print "x is three!"

} else if (x>3) {

print "x is greater than three!"

} else {

x=2

print "x didn’t used to be two, but it is now!"

}

11.30 ifft

ifft { <range> } <function name>()

of (<filename> | <function name>())

[using { <expression> }]

See fft.

11.31 image

image [item <id>] <filename> [at <vector>]

[rotate <angle>] [width <length>]

[height <length>] [smooth]

[notransparent] [transparent rgb <r>:<g>:]

The image command allows graphical images to be inserted onto the current
multiplot canvas from files on disk. Input graphical images may be in bitmap,
gif, jpeg or png formats; the file type of each image is automatically detected.
The at modifier can be used to specify where the image should be placed on
the vector graphics canvas; if it is not, then the image is placed at the origin.
The settings texthalign and textvalign determined how the image is aligned

236 CHAPTER 11. COMMAND REFERENCE

relatively to this reference point – for example, whether its bottom left corner
or its center is placed at the reference point.

The rotate modifier can be used to rotate images by any angle, measured
in degrees counter-clockwise. The width or height modifiers can be used to
specify the width or height with which images should be rendered; both should
be specified in centimeters. If neither is specified then images are rendered with
the native dimensions specified within the metadata present in the image file (if
any). If both are specified, then the aspect ratio of the image is changed.

The keyword smooth may optionally be supplied to cause the pixels of im-
ages to be interpolated1. Images which include transparency are supported.
The optional keyword notransparent may be supplied to cause transparent
regions to be filled with the image’s default background color. Alternatively,
an RGB color may be specified in the form rgb<r>:<g>: after the keyword
transparent to cause that particular color to become transparent; the three
components of the RGB color should be in the range 0 to 255.

All vector graphics objects placed on multiplot canvases receive unique iden-
tification numbers which count sequentially from one, and which may be listed
using the list command. By reference to these numbers, they can be deleted
and subsequently restored with the delete and undelete commands respec-
tively.

11.32 interpolate

interpolate (akima | linear | loglinear | polynomial |

spline | stepwise |

2d [(bmp_r | bmp_g | bmp_b)])

[<range specification>] <function name>()

<filename>

[every { <expression> }]

[index <value>]

[select <expression>]

[using { <expression> }]

The interpolate command can be used to generate a special function within
Pyxplot’s mathematical environment which interpolates a set of data points sup-
plied from a data file. Either one- or two-dimensional interpolation is possible.

In the case of one-dimensional interpolation, various different types of in-
terpolation are supported: linear interpolation, power law interpolation, poly-
nomial interpolation, cubic spline interpolation and akima spline interpolation.
Stepwise interpolation returns the value of the datapoint nearest to the re-
quested point in argument space. The use of polynomial interpolation with
large datasets is strongly discouraged, as polynomial fits tend to show severe
oscillations between data points. Except in the case of stepwise interpolation,
extrapolation is not permitted; if an attempt is made to evaluate an interpo-
lated function beyond the limits of the data points which it interpolates, Pyxplot
returns an error or value of not-a-number.

1Many commonly-used PostScript display engines, including Ghostscript, do not support
this functionality.

11.33. JPEG 237

In the case of two-dimensional interpolation, the type of interpolation to
be used is set using the interpolate modifier to the set samples command,
and may be changed at any time after the interpolation function has been cre-
ated. The options available are nearest neighbor interpolation – which is the
two-dimensional equivalent of stepwise interpolation, inverse square interpola-
tion – which returns a weighted average of the supplied data points, using the
inverse squares of their distances from the requested point in argument space
as weights, and Monaghan Lattanzio interpolation, which uses the weighting
function (Monaghan & Lattanzio 1985)

w(x) = 1− 3/2v2 + 3/4v3 for 0 ≤ v ≤ 1

= 1/4(2− v)3 for 1 ≤ v ≤ 2

where v = r/h for h =
√
A/n, A is the product (xmax−xmin)(ymax− ymin) and

n is the number of input datapoints. These are selected as follows:

set samples interpolate nearestNeighbor

set samples interpolate inverseSquare

set samples interpolate monaghanLattanzio

Finally, data can be imported from graphical images in bitmap (.bmp) format
to produce a function of two arguments returning a value in the range 0 → 1
which represents the data in one of the image’s three color channels. The two
arguments are the horizontal and vertical position within the bitmap image, as
measured in pixels.

A very common application of the interpolate command is to perform
arithmetic functions such as addition or subtraction on datasets which are not
sampled at the same abscissa values. The following example would plot the
difference between two such datasets:

interpolate linear f() ’data1.dat’

interpolate linear g() ’data2.dat’

plot [min:max] f(x)-g(x)

Note that it is advisable to supply a range to the plot command in this example:
because the two datasets have been turned into continuous functions, the plot

command has to guess a range over which to plot them unless one is explicitly
supplied.

The spline command is an alias for interpolate spline; the following
two statements are equivalent:

spline f() ’data1.dat’

interpolate spline f() ’data1.dat’

11.33 jpeg

jpeg [item <id>] <filename> [at <vector>]

[rotate <angle>] [width <length>]

[height <length>] [smooth]

[notransparent] [transparent rgb <r>:<g>:]

See image.

238 CHAPTER 11. COMMAND REFERENCE

11.34 let

let <variable name> = <value>

The let command sets the named variable to equal value.

11.35 list

list

The list command returns a list of all of the items on the current multiplot
canvas, giving their identification numbers and the commands used to produce
them. The following is an example of the output produced:

pyxplot> list

ID Command

1 plot item 1 f(x) using columns

2 [deleted] text item 2 "Figure 1: A plot of f(x)" at 0,0 rotate 0 gap 0

3 text item 3 "Figure 1: A plot of $f(x)$" at 0,0 rotate 0 gap 0

In this example, the user has plotted a graph of f(x) and added a caption
to it. The ID column lists the reference numbers of each multiplot item. Item
1 has been deleted.

11.36 load

load <filename>

The load command executes a Pyxplot command script file, just as if its
contents had been typed into the current terminal. For example:

load ’foo’

would have the same effect as typing the contents of the file foo into the present
terminal. Filename wildcard can be supplied, in which case all command files
matching the given wildcard are executed, as in the example:

load ’*.script’

11.37 local

local { <variable name> }

The global command command may be used within subroutines, which
have their own private variable namespaces. It specifies that the named vari-
ables should, from now on, refer to the local namespace, even if the global com-
mand command has previously been used to reference the global namespace. If
multiple variables are specified, their names should be comma separated.

11.38. MAXIMIZE 239

11.38 maximize

maximize <expression> via { <variable> }

The maximize command can be used to find the maxima of algebraic ex-
pressions. A single algebraic expression should be supplied for optimisation,
together with a comma-separated list of the variables with respect to which it
should be optimised. In the following example, a maximum of the sinusoidal
function cos(x) is sought:

pyxplot> set numerics real

pyxplot> x=0.1

pyxplot> maximize cos(x) via x

pyxplot> print x/pi

-7.15135259e-52

Note that this particular example doesn’t work when complex arithmetic is
enabled, since cos(x) diverges to ∞ at x =∞i.

Various caveats apply the maximize command, as well as to the minimize

and solve commands. All of these commands operate by searching numerically
for optimal sets of input parameters to meet the criteria set by the user. As
with all numerical algorithms, there is no guarantee that the locally optimum
solutions returned are the globally optimum solutions. It is always advisable to
double-check that the answers returned agree with common sense.

These commands can often find solutions to equations when these solutions
are either very large or very small, but they usually work best when the solution
they are looking for is roughly of order unity. Pyxplot does have mechanisms
which attempt to correct cases where the supplied initial guess turns out to
be many orders of magnitude different from the true solution, but it cannot
be guaranteed not to wildly overshoot and produce unexpected results in such
cases. To reiterate, it is always advisable to double-check that the answers
returned agree with common sense.

11.39 minimize

minimize <expression> via { <variable> }

The minimize command can be used to find the minima of algebraic ex-
pressions. A single algebraic expression should be supplied for optimisation,
together with a comma-separated list of the variables with respect to which it
should be optimised. In the following example, a minimum of the sinusoidal
function cos(x) is sought:

pyxplot> set numerics real

pyxplot> x=0.1

pyxplot> minimize cos(x) via x

pyxplot> print x/pi

1

Note that this particular example doesn’t work when complex arithmetic is
enabled, since cos(x) diverges to −∞ at x = π +∞i.

240 CHAPTER 11. COMMAND REFERENCE

Various caveats apply the minimize command, as well as to the maximize

and solve commands. All of these commands operate by searching numerically
for optimal sets of input parameters to meet the criteria set by the user. As
with all numerical algorithms, there is no guarantee that the locally optimum
solutions returned are the globally optimum solutions. It is always advisable to
double-check that the answers returned agree with common sense.

These commands can often find solutions to equations when these solutions
are either very large or very small, but they usually work best when the solution
they are looking for is roughly of order unity. Pyxplot does have mechanisms
which attempt to correct cases where the supplied initial guess turns out to
be many orders of magnitude different from the true solution, but it cannot
be guaranteed not to wildly overshoot and produce unexpected results in such
cases. To reiterate, it is always advisable to double-check that the answers
returned agree with common sense.

11.40 move

move <item number> to <vector> [rotate <angle>]

The move command allows vector graphics objects to be moved around on
the current multiplot canvas. All vector graphics objects placed on multiplot
canvases receive unique identification numbers which count sequentially from
one, and which may be listed using the list command. The item to be moved
should be specified using its identification number. The example

move 23 to 8,8

would move multiplot item 23 to position (8, 8) centimeters. If this item were a
plot, the end result would be the same as if the command set origin 8,8 had
been executed before it had originally been plotted.

11.41 piechart

11.42 plot

plot [3d] [item <id>] [{ <range> }]

(<filename> | { <expression> } | { <vector obj> })

[axes <axes>] [every { <expression> }]

[index <value>] [select <expression>]

[label <string expression>]

[title <string>] [using { <expression> }]

[with { <option> }]

The plot command is used to produce graphs. The following simple example
would plot the sine function:

plot sin(x)

Ranges for the axes of a graph can be specified by placing them in square
brackets before the name of the function to be plotted. An example of this
syntax would be:

11.42. PLOT 241

plot [-pi:pi] sin(x)

which would plot the function sin(x) between −π and π.

Data files may also be plotted as well as functions, in which case the filename
of the data file to be plotted should be enclosed in either single or double
quotation marks. An example of this syntax would be:

plot ’data.dat’ with points

which would plot data from the file data.dat. Section 3.8 provides further
details of the format that input data files should take and how Pyxplot may be
directed to plot only certain portions of data files.

Multiple datasets can be plotted on a single graph by specifying them in a
comma-separated list, as in the example:

plot sin(x) with color blue, cos(x) with linetype 2

If the 3d modifier is supplied to the plot command, then a three-dimensional
plot is produced; many plot styles then take additional columns of data to
signify the positions of datapoints along the z-axis. This is described further in
Chapter 8. The angle from which three-dimensional plots are viewed can be set
using the set view command.

11.42.1 axes

The axes modifier may be used to specify which axes data should be plotted
against when plots have multiple parallel axes – for example, if a plot has an
x-axis along its lower edge and an x2-axis along its upper edge. The following
example would plot data using the x2-axis as the ordinate axis and the y-axis
as the abscissa axis:

plot sin(x) axes x2y1

It is also possible to use the axes modifier to specify that a vertical ordinate
axis and a horizontal abscissa axis should be used; the following example would
plot data using the y-axis as the ordinate axis and the x-axis as the abscissa
axis:

plot sin(x) axes yx

11.42.2 label

The label modifier to the plot command may be used to render text labels
next to datapoints, as in the following examples:

set samples 8

plot [2:5] x**2 label "$x=%.2f$"%($1) with points

plot ’datafile’ using 1:2 label "%s"%($3)

242 CHAPTER 11. COMMAND REFERENCE

Note that if a particular column of a data file contains strings which are to
be used as labels, as in the second example above, syntax such as "%s"%($3)

must be used to explicitly read the data as strings rather than as numerical
quantities. As Pyxplot treats any whitespace as separating columns of data,
such labels cannot contain spaces, though latex’s ∼ character can be used to
achieve a space.

Datapoints can be labelled when plotted in any of the following plot styles:
arrows (and similar styles), dots, errorbars (and similar styles), errorrange
(and similar styles), impulses, linespoints, lowerlimits, points, stars and
upperlimits. It is not possible to label datapoints plotted in other styles.
Labels are rendered in the same color as the datapoints with which they are
associated.

11.42.3 title

By default, Pyxplot generates its own entry in the legend of a plot for each
dataset plotted. This default behaviour can be overridden using the title

modifier. The following example labels a dataset as ‘Dataset 1’:

plot sin(x) title ’Dataset 1’

If a blank string, i.e. "", is supplied, then no entry is made in the plot’s legend
for that dataset. The same effect can be achieved using the notitle modifier.

11.42.4 with

The with modifier controls the style in which data should be plotted. For
example, the statement

plot "data.dat" index 1 using 4:5 with lines

specifies that data should be plotted using lines connecting each data pointto
its neighbors. More generally, the with modifier can be followed by a range
of settings which fine-tune the manner in which the data are displayed; for
example, the statement

plot "data.dat" with lines linewidth 2.0

would use twice the default width of line.
The following is a complete list of all of Pyxplot’s plot styles – i.e. all of

the words which may be used in place of lines: arrows head, arrows nohead,
arrows twohead, boxes, colormap, contourmap, dots, filledRegion, fsteps,
histeps, impulses, lines, linesPoints, lowerLimits, points, stars, steps,
surface, upperLimits, wboxes, xErrorBars, xErrorRange, XYErrorBars, xy-
ErrorRange, xyzErrorBars, XYZErrorRange, xzErrorBars, xzErrorRange, y-
ErrorBars, yErrorRange, yErrorShaded, yzErrorBars, yzErrorRange, zError-
Bars, zErrorRange. In addition, lp and pl are recognised as abbreviations
for linespoints; errorbars is recognised as an abbreviation for yerrorbars;
errorrange is recognised as an abbreviation for yerrorrange; and arrows -

twoway is recognised as an alternative for arrows twohead.
As well as the names of these plot styles, the with modifier can also be

followed by style modifiers such as linewidth which alter the exact appearance
of various plot styles. A complete list of these is as follows:

11.43. POINT 243

• color – used to select the color in which each dataset is to be plotted.
It should be followed either by an integer, to set a color from the present
palette (see Section 8.1.1), by a recognised color name, or by an object of
type color. This modifier may also be spelt colour.

• fillcolor – used to select the color in which each dataset is filled. The
color may be specified using any of the styles listed for color. May also
be spelt fillcolor.

• linetype – used to numerically select the type of line – for example, solid,
dotted, dashed, etc. – which should be used in line-based plot styles. A
complete list of Pyxplot’s numbered line types can be found in Chapter 18.
May be abbreviated lt.

• linewidth – used to select the width of line which should be used in
line-based plot styles, where unity represents the default width. May be
abbreviated lw.

• pointlinewidth – used to select the width of line which should be used to
stroke points in point-based plot styles, where unity represents the default
width. May be abbreviated plw.

• pointsize – used to select the size of drawn points, where unity represents
the default size. May be abbreviated ps.

• pointtype – used to numerically select the type of point – for example,
crosses, circles, etc. – used by point-based plot styles. A complete list
of Pyxplot’s numbered point types can be found in Chapter 18. May be
abbreviated pt.

Any number of these modifiers may be placed sequentially after the keyword
with, as in the following examples:

plot ’datafile’ using 1:2 with points pointsize 2

plot ’datafile’ using 1:2 with lines color red linewidth 2

plot ’datafile’ using 1:2 with lp col 1 lw 2 ps 3

Where modifiers take numerical values, expressions of the form $2+1, similar
to those supplied to the using modifier, may be used to indicate that each
datapoint should be displayed in a different style or in a different color. The
following example would plot a data file with points, drawing the position of
each point from the first two columns of the supplied data file and the size of
each point from the third column:

plot ’datafile’ using 1:2 with points pointsize $3

11.43 point

point [item <id>] [at] <vector> [label <string>]

[with { <option> }]

244 CHAPTER 11. COMMAND REFERENCE

The point command allows a single point to be plotted on the current
multiplot canvas independently of any graph. It is equivalent to plotting a data
file containing a single datum and with invisible axes. If an optional label is
specified then the text string provided is rendered next to the point. The with

modifier allows the style of the point to be specified using similar options to
those accepted by the plot command.

All vector graphics objects placed on multiplot canvases receive unique iden-
tification numbers which count sequentially from one, and which may be listed
using the list command. By reference to these numbers, they can be deleted
and subsequently restored with the delete and undelete commands respec-
tively.

11.44 print

print { <expression> }

The print command displays a string or the value of a mathematical ex-
pression to the terminal. It is most often used to find the value of a variable,
though it can also be used to produce formatted textual output from a Pyxplot
script. For example,

print a

would print the value of the variable a, and

print "a = %s"%(a)

would produce the same result in the midst of formatted text.

11.45 pwd

pwd

The pwd command prints the location of the current working directory.

11.46 quit

quit

The quit command can be used to exit Pyxplot. See exit for more details.

11.47 rectangle

rectangle [item <id>] at <vector>

width <length> height <length>

[rotate <angle>] [with { <option> }]

rectangle [item <id>] from <vector> to <vector>

[rotate <angle>] [with { <option> }]

See box.

11.48. REFRESH 245

11.48 refresh

refresh

The refresh command produces an exact copy of the latest display. It can
be useful, for example, after changing the terminal type, to produce a second
copy of a plot in a different graphic format. It differs from the replot command
in that it doesn’t replot anything; use of the set command since the previous
plot command has no effect on the output.

11.49 replot

replot [item <id>] ...

The replot command has the same syntax as the plot command and is
used to add more datasets to an existing plot, or to change its axis ranges. For
example, having plotted one data file using the command

plot ’datafile1.dat’

another can be plotted on the same axes using the command

replot ’datafile2.dat’ using 1:3

or the ranges of the axes on the original plot can be changed using the command

replot [0:1][0:1]

The plot is also updated to reflect any changes to settings made using the
set command. In multiplot mode, the replot command can likewise be used
to modify the last plot added to the page. For example, the following would
change the title of the latest plot to ‘foo’, and add a plot of the function g(x)
to it:

set title ’foo’

replot cos(x)

Additionally, in multiplot mode it is possible to modify any plot on the
current multiplot canvas by adding an item modifier to the replot statement
to specify which plot should be replotted. The following example would produce
two plots, and then add an additional function to the first plot:

set multiplot

plot f(x)

set origin 10,0

plot g(x)

replot item 1 h(x)

If no item number is specified, then the replot command acts by default
upon the most recent plot to have been added to the multiplot canvas.

246 CHAPTER 11. COMMAND REFERENCE

11.50 reset

reset

The reset command reverts the values of all settings that have been changed
with the set command back to their default values. It also clears the current
multiplot canvas.

11.51 save

save <filename>

The save command saves a list of all of the commands which have been
executed in the current interactive Pyxplot session into a file. The filename to
be used for the output should be placed in quotes, as in the example:

save ’foo’

would save a command history into the file named foo.

11.52 set

set <option> <value>

The set command is used to configure the values of a wide range of param-
eters within Pyxplot which control its behaviour and the style of the output
which it produces. For example:

set pointsize 2

would set the size of points plotted by Pyxplot to be twice the default. In the
majority of cases, the syntax follows that above: the set command should be
followed by a keyword which specifies which parameter should be set, followed
by the value to which that parameter should be set. Those parameters which
work in an on/off fashion take a different syntax along the lines of:

set key # Set option ON
set nokey # Set option OFF

More details of the effects of each individual parameter can be found in the sub-
sections below, which forms a complete list of the recognised setting keywords.

The reader should also see the show command, which can be used to display
the current values of settings, and the unset command, which returns settings
to their default values. Chapter 19 describes how commonly used settings can
be saved into a configuration file.

11.52.1 arrow

set arrow <arrow number>

from [<system>] <x>, [<system>] <y>, [[<system>] <z>]

to [<system>] <x>, [<system>] <y>, [[<system>] <z>]

[with { <option> }]

11.52. SET 247

where <system> may take any of the values
(first | second | screen | graph | axis<number>)

The set arrow command is used to add arrows to graphs. The example

set arrow 1 from 0,0 to 1,1

would draw an arrow between the points (0, 0) and (1, 1), as measured along
the x and y-axes. The tag 1 immediately following the keyword arrow is an
identification number and allows arrows to be subsequently removed using the
unset arrow command. By default, the coordinates are specified relative to the
first horizontal and vertical axes, but they can alternatively be specified any one
of several of coordinate systems. The coordinate system to be used is specified
as in the example:

set arrow 1 from first 0, second 0 to axis3 1, axis4 1

The name of the coordinate system to be used precedes the position value in
that system. The coordinate system first, the default, measures the graph
using the x- and y-axes. second uses the x2- and y2-axes. screen and graph

both measure in centimeters from the origin of the graph. The syntax axis<n>

may also be used, to use the nth horizontal or vertical axis; for example, axis3
above.

The set arrow command can be followed by the keyword with to specify
the style of the arrow. For example, the specifiers nohead, head and twohead,
when placed after the keyword with, can be used to make arrows with no arrow
heads, normal arrow heads, or two arrow heads. twoway is an alias for twohead.
All of the line type modifiers accepted by the plot command can also be used
here, as in the example:

set arrow 2 from first 0, second 2.5 to axis3 0,

axis4 2.5 with color blue nohead

11.52.2 autoscale

set autoscale { <axis> }

The set autoscale command causes Pyxplot to choose the scaling for an
axis automatically based on the data and/or functions to be plotted against it.
The example

set autoscale x1

would cause the range of the first horizontal axis to be scaled to fit the data.
Multiple axes can be specified, as in the example

set autoscale x1y3

Note that ranges explicitly specified in a plot command will override the set

autoscale command.

248 CHAPTER 11. COMMAND REFERENCE

11.52.3 axescolor

set axescolor <color>

The setting axescolor changes the color used to draw graph axes. The
example

set axescolor blue

would specify that graph axes should be drawn in blue. Any of the recognised
color names listed in Section 19.4 can be used, or a numbered color from the
present palette, or an object of type color.

11.52.4 axis

set axis <axis> [(visible | invisible)]

[(top | bottom | left | right | front | back)]

[(atzero | notatzero)]

[(automirrored | mirrored | fullmirrored)]

[(noarrow | arrow | reversearrow | twowayarrow)]

[linked [item <number>] <axis> [using <expression>]]

The set axis command is used to add additional axes to plots and to
configure their appearance. Where an axis is stated on its own, as in the example

set axis x2

additional horizontal or vertical axes are added with default settings. The con-
verse statements

set noaxis x2

unset axis x2

are used, respectively, to remove axes from plots and to return them to their
default configurations, which often has the same effect of removing them from
the graph, unless they are configured otherwise in a configuration file.

The position of any axis can be explicitly set using syntax of the form:

set axis x top

set axis y right

set axis z back

Horizontal axes can be set to appear either at the top or bottom; vertical axes
can be set to appear either at the left or right; and z-axes can be set to appear
either at the front or back. By default, the x1-axis is placed along the bottom
of graphs and the y1-axis is placed up the left-hand side of graphs. On three-
dimensional plots, the z1-axis is placed at the front of the graph. The second
set of axes are placed opposite to the first: the x2-, y2- and z2-axes are placed
respectively along the top, right and back sides of graphs. Higher-numbered
axes are placed alongside the x1-, y1- and z1-axes.

The following keywords may also be placed alongside the positional keywords
listed above to specify how the axis should appear:

11.52. SET 249

• arrow – Specifies that an arrowhead should be drawn on the right/top
end of the axis. [Not default].

• atzero – Specifies that rather than being placed along an edge of the plot,
the axis should mark the lines where the perpendicular axes x1, y1 and/or
z1 are zero. [Not default].

• automirrored – Specifies that an automatic decision should be made be-
tween the behaviour of mirrored and nomirrored. If there are no axes
on the opposite side of the graph, a mirror axis is produced. If there are
already axes on the opposite side of the graph, no mirror axis is produced.
[Default].

• fullmirrored – Similar to mirrored. Specifies that this axis should have
a corresponding twin placed on the opposite side of the graph with mir-
roring ticks and labelling. [Not default; see automirrored].

• invisible – Specifies that the axis should not be drawn; data can still
be plotted against it, but the axis is unseen. See Example 24 for a plot
where all of the axes are invisible.

• linked – Specifies that the axis should be linked to another axis; see
Section 8.8.9.

• mirrored – Specifies that this axis should have a corresponding twin
placed on the opposite side of the graph with mirroring ticks but with
no labels on the ticks. [Not default; see automirrored].

• noarrow – Specifies that no arrowheads should be drawn on the ends of
the axis. [Default].

• nomirrored – Specifies that this axis should not have any corresponding
twins. [Not default; see automirrored].

• notatzero – Opposite of atzero; the axis should be placed along an edge
of the plot. [Default].

• notlinked – Specifies that the axis should no longer be linked to any
other; see Section 8.8.9. [Default].

• reversearrow – Specifies that an arrowhead should be drawn on the
left/bottom end of the axis. [Not default].

• twowayarrow – Specifies that arrowheads should be drawn on both ends
of the axis. [Not default].

• visible – Specifies that the axis should be displayed; opposite of invisible.
[Default].

11.52.5 axisunitstyle

set axisunitstyle (bracketed | squarebracketed | ratio)

250 CHAPTER 11. COMMAND REFERENCE

The setting axisunitstyle controls the style with which the units of plotted
quantities are indicated on the axes of plots. The bracketed option causes the
units to be placed in parentheses following the axis labels, whilst the square-

bracketed option using square brackets instead. The ratio option causes the
units to follow the label as a divisor so as to leave the quantity dimensionless.

11.52.6 backup

set backup

The setting backup changes Pyxplot’s behaviour when it detects that a file
which it is about to write is going to overwrite an existing file. Whereas by
default the existing file would be overwritten by the new one, when the setting
backup is turned on, it is renamed, placing a tilde at the end of its filename.
For example, suppose that a plot were to be written with filename out.ps, but
such a file already existed. With the backup setting turned on the existing file
would be renamed out.ps∼ to save it from being overwritten.

The setting is turned off using the set nobackup command.

11.52.7 bar

set bar (large | small | <value>)

The setting bar changes the size of the bar drawn on the end of the error
bars, relative to the current point size. For example:

set bar 2

sets the bars to be twice the size of the points. The options large and small

are equivalent to 1 (the default) and 0 (no bar) respectively.

11.52.8 binorigin

set binorigin <value>

The setting binorigin affects the behaviour of the histogram command by
adjusting where it places the boundaries between the bins into which it places
data. The histogram command selects a system of bins which, if extended to
infinity in both directions, would put a bin boundary at the value specified in
the set binorigin command. Thus, if a value of 0.1 were specified to the set

binorigin command, and a bin width of 20 were chosen by the histogram

command, bin boundaries might lie at 20.1, 40.1, 60.1, and so on. The specified
value may have any physical units, but must be real and finite.

11.52.9 binwidth

set binwidth <value>

The setting binwidth changes the width of the bins used by the histogram

command. The specified width may have any physical units, but must be real
and finite.

11.52. SET 251

11.52.10 boxfrom

set boxfrom <value>

The setting boxfrom alters the vertical line from which bars are drawn when
Pyxplot draws bar charts. By default, bars all originate from the line y = 0,
but the example

set boxfrom 2

would make the bars originate from the line y = 2. The specified vertical
abscissa value may have any physical units, but must be real and finite.

11.52.11 boxwidth

set boxwidth <width>

The setting boxwidth alters Pyxplot’s behaviour when plotting bar charts. It
sets the default width of the boxes used, in ordinate axis units. If the specified
width is negative then, as happens by default, the boxes have automatically
selected widths, such that the interfaces between them occur at the horizontal
midpoints between their specified positions. For example:

set boxwidth 2

would set all boxes to be two units wide, and

set boxwidth -2

would set all of the bars to have differing widths, centered upon their specified
horizontal positions, such that their interfaces occur at the horizontal midpoints
between them. The specified width may have any physical units, but must be
real and finite.

11.52.12 c1format

set c1format (auto | <format>)

(horizontal | vertical | rotate <angle>)

The c1format setting is used to manually specify an explicit format for
the axis labels to take along the color scale bars drawn alongside plots which
make use of the colormap plot style. It has similar syntax to the set xformat

command.

11.52.13 c1label

set c1label <text> [rotate <angle>]

The setting c1label sets the label which should be written alongside the
color scale bars drawn next to plots when the colormap plot style is used.
An optional rotation angle may be specified to rotate axis labels clockwise by
arbitrary angles. The angle should be specified either as a dimensionless number
of degrees, or as a quantity with physical dimensions of angle.

252 CHAPTER 11. COMMAND REFERENCE

11.52.14 calendar

set calendar [(input | output)] <calendar>

The set calendar command sets the calendar that Pyxplot uses to convert
dates between calendar dates and Julian Day numbers. Pyxplot uses two sep-
arate calendars which may be different: an input calendar for processing dates
that the user inputs as calendar dates, and an output calendar that controls how
dates are displayed or written on plots. The available calendars are British,
French, Greek, Gregorian, Hebrew, Islamic, Jewish, Julian, Muslim, Papal
and Russian, where Jewish is an alias for Hebrew and Muslim is an alias for
Islamic.

11.52.15 clip

set clip

The set clip command causes Pyxplot to clip points which extend over the
edge of plots. The opposite effect is achieved using the set noclip command.

11.52.16 colorkey

set colorkey [<position>]

The setting colorkey determines whether color scales are drawn along the
edges of plots drawn using the colormap plot style, indicating the mapping
between represented values and colors. Note that such scales are only ever
drawn when the colormap plot style is supplied with only three columns of
data, since the color mappings are themselves multi-dimensional when more
columns are supplied. Issuing the command

set colorkey

by itself causes such a scale to be drawn on graphs in the default position, usually
along the right-hand edge of the graphs. The converse action is achieved by:

set nocolorkey

The command

unset colorkey

causes Pyxplot to revert to its default behaviour, as specified in a configuration
file, if present. A position for the key may optionally be specified after the set

colorkey command, as in the example:

set colorkey bottom

Recognised positions are top, bottom, left and right. above is an alias
for top; below is an alias for bottom and outside is an alias for right.

11.52. SET 253

11.52.17 colormap

set colormap <color expression> [mask <expr>]

The setting colormap is used to specify the mapping between ordinate values
and colors used by the colormap plot style. Within the color expression, the
variables c1, c2, c3 and c4 refer quantities calculated from the third through
sixth columns of data supplied to the colormap plot style in a way determined by
the c<n>range setting. Thus, the following color mapping, which is the default,
produces a greyscale color mapping of the third column of data supplied to the
colormap plot style; further columns of data, if supplied, are not used:

set c1range [*:*] renormalise

set colormap rgb(c1,c1,c1)

If a mask expression is supplied, then any areas in a color map where this
expression evaluates to false (or zero) are made transparent.

11.52.18 contours

set contours [(<number> |

"(" { <value> } ")")]

[(label | nolabel)]

The setting contours is used to define the set of ordinate values for which
contours are drawn when using the contourmap plot style. If <number> is speci-
fied, the contours are evenly spaced – either linearly or logarithmically, depend-
ing upon the state of the logscale c1 setting – between the values specified in
the c1range setting. Otherwise, the list of ordinate values may be specified as
a ()-bracketed comma-separated list.

If the option label is specified, then each contour is labelled with the ordi-
nate value that it follows. If the option nolabel is specified, then the contours
are not labelled.

11.52.19 c<n>range

set c<n>range [<range>]

[reversed | noreversed]

[renormalise | norenormalise]

The set c<n>range command changes the range of ordinate values repre-
sented by different colors in the colormap plot style, and in the case of the set

c1range command, also by contours in the contourmap plot style. The value
<n> should be an integer in the range 1–4.

Contour Maps

The effect of the set c1range command upon the set of ordinate values for
which contours are drawn in the contourmap plot style is dependent upon
whether the set contours command has been supplied with a number of con-
tours to draw, or a list of explicit ordinate values for which they should be
drawn. In the latter case, the set c1range command has no effect. In the

254 CHAPTER 11. COMMAND REFERENCE

former case, the contours are evenly spaced, either linearly or logarithmically
depending upon the state of the logscale c1 setting, between the minimum
and maximum ordinate values supplied to the set c1range command. If an
asterisk (*) is supplied in place of either the minimum and/or the maximum,
then the range of values used is automatically scaled to fit the range of the data
supplied.

Color Maps

The color of each pixel in a color map is determined by the colormap set-
ting. This should contain an expression that evaluates to a color object, e.g.
rgb(c1,c2,c3), and which may take the variables c1, c2, c3 and c4 as param-
eters. The colormap plot style should be supplied with between three and six
columns of data, the first two of which contain the x- and y-positions of points,
and the remainder of which are used to set the values of the variables c1, c2, c3
and c4 when calculating the color with which that point should be represented.
If fewer than six columns of data are supplied, then not all of these variables
will be set.

The set c<n>range command is used to determine how the raw data values
are mapped to the values of the variables c1–c4. If the norenormalise option is
specified, then the raw values are passed directly to the expression. Otherwise,
they are first scaled into the range zero to one. If an explicit range is specified
to the set c<n>range command, then the upper limit of this range maps to the
value one, and the lower limit maps to the value zero. This mapping is inverted
if the reverse option is specified, such that the upper limit maps to zero, and
the lower limit maps to one. If an asterisk (*) is supplied in place of either
the upper and/or lower limit, then the range automatically scales to fit the
data supplied. Intermediate values are scaled, either linearly or logarithmically,
depending upon the state of the logscale c<n> setting. For more details of
the syntax of the range specifier, see the set xrange command.

11.52.20 data style

See set style data.

11.52.21 display

set [no]display

By default, whenever an item is added to a multiplot canvas, or an existing
item is moved or replotted, the whole multiplot is redrawn to reflect the change.
This can be a time-consuming process when constructing large and complex
multiplot canvases, as fresh output is produced at each step. For this reason, the
set nodisplay command is provided, which stops Pyxplot from producing any
graphical output. The set display command can subsequently be issued to
return to normal behaviour. Scripts which produces large and complex multiplot
canvases are typically wrapped as follows:

set nodisplay

...

set display

11.52. SET 255

refresh

11.52.22 filter

set filter <filename wildcard> <filter command>

The set filter command allows input filter programs to be specified to
allow Pyxplot to deal with file types that are not in the plaintext format which
it ordinarily expects. Firstly the pattern used to recognise the filenames of the
data files to which the filter should apply to must be specified; the standard
wildcard characters * and ? may be used. Then a filter program should be
specified, along with any necessary command-line switches which should be
passed to it. This program should take the name of the file to be filtered as
the final option on its command line, immediately following any command-line
switches specified above. It should output a suitable Pyxplot data fileon its
standard output stream for Pyxplot to read. For example, to filter all files that
end in .foo through the a program called defoo using the --text option one
would type:

set filter "*.foo" "/usr/local/bin/defoo --text"

11.52.23 fontsize

set fontsize <value>

The setting fontsize changes the size of the font used to render all text
labels which appear on graphs and multiplot canvases, including keys, axis la-
bels, text labels produced using the text command, and so forth. The value
specified should be a multiplicative factor greater than zero; a value of 2 would
cause text to be rendered at twice its normal size, and a value of 0.5 would
cause text to be rendered at half its normal size. The default value is one.

As an alternative, font sizes can be specified with coarser granulation directly
in the latex text of labels, as in the example:

set xlabel ’\Large This is a BIG label’

11.52.24 function style

See set style function.

11.52.25 grid

set [no]grid { <axis> }

The setting grid controls whether a grid is placed behind graphs or not.
Issuing the command

set grid

would cause a grid to be drawn with its lines connecting to the ticks of the
default axes (usually the first horizontal and vertical axes). Conversely, issuing
the command

256 CHAPTER 11. COMMAND REFERENCE

set nogrid

would remove from the plot all gridlines associated with the ticks of any axes.
One or more axes can be specified for the set grid command to draw gridlines
from; in such cases, gridlines are then drawn only to connect with the ticks of
the specified axes, as in the example

set grid x1 y3

It is possible, though not always aesthetically pleasing, to draw gridlines
from multiple parallel axes, as in example:

set grid x1x2x3

11.52.26 gridmajcolor

set gridmajcolor <color>

The setting gridmajcolor changes the color that is used to draw the grid-
lines (see the set grid command) which are associated with the major ticks of
axes (i.e. major gridlines). For example:

set gridmajcolor purple

would cause the major gridlines to be drawn in purple. Any of the recognised
color names listed in Section 19.4 can be used, or a numbered color from the
present palette, or an object of type color.

See also the set gridmincolor command.

11.52.27 gridmincolor

set gridmincolor <color>

The setting gridmincolor changes the color that is used to draw the grid-
lines (see the set grid command) which are associated with the minor ticks of
axes (i.e. minor gridlines). For example:

set gridmincolor purple

would cause the minor gridlines to be drawn in purple. Any of the recognised
color names listed in Section 19.4 can be used, or a numbered color from the
present palette, or an object of type color.

See also the set gridmajcolor command.

11.52.28 key

set key <position> [<vector>]

The setting key determines whether legends are drawn on graphs, and if so,
where they should be located on the plots. Issuing the command

set key

11.52. SET 257

by itself causes legends to be drawn on graphs in the default position, usually
in the upper-right corner of the graphs. The converse action is achieved by:

set nokey

The command

unset key

causes Pyxplot to revert to its default behaviour, as specified in a configuration
file, if present. A position for the key may optionally be specified after the set

key command, as in the example:

set key bottom left

Recognised positions are top, bottom, left, right, below, above, outside,
xcenter and ycenter. In addition, if none of these options quite achieve the
desired position, a horizontal and vertical offset may be specified as a comma-
separated pair after any of the positional keywords above. The first value is
assumed to be the horizontal offset, and the second the vertical offset, both
measured in centimeters. The example

set key bottom left 0.0, -0.5

would display a key below the bottom left corner of the graph.

11.52.29 keycolumns

set keycolumns (<value> | auto)

The setting keycolumns sets how many columns the legend of a plot should
be arranged into. By default, the legends of plots are arranged into an automatically-
selected number of columns, equivalent to the behaviour achieved by issuing
the command set keycolumns auto. However, if a different arrangement is
desired, the set keycolumns command can be followed by any positive integer
to specify that the legend should be split into that number of columns, as in
the example:

set keycolumns 3

11.52.30 label

set label <label number> <text>

[<system>] <x>, [<system>] <y>, [[<system>] <z>]

[rotate <angle>]

[with { (color <color> | fontsize <size>) }]

where <system> may take any of the values
(first | second | screen | graph | axis<number>)

The set label command is used to place text labels on graphs. The exam-
ple

258 CHAPTER 11. COMMAND REFERENCE

set label 1 ’Hello’ 0, 0

would place a label reading ‘Hello’ at the point (0, 0) on a graph, as measured
along the x- and y-axes. The tag 1 immediately following the keyword label

is an identification number and allows the label to be subsequently removed
using the unset label command. By default, the positional coordinates of the
label are specified relative to the first horizontal and vertical axes, but they
can alternatively be specified in any one of several coordinate systems. The
coordinate system to be used is specified as in the example:

set label 1 ’Hello’ first 0, second 0

The name of the coordinate system to be used precedes the position value in
that system. The coordinate system first, the default, measures the graph
using the x- and y-axes. second uses the x2- and y2-axes. screen and graph

both measure in centimeters from the origin of the graph. The syntax axis<n>

may also be used, to use the n th horizontal or vertical axis; for example, axis3:

set label 1 ’Hello’ axis3 1, axis4 1

A rotation angle may optionally be specified after the keyword rotate to pro-
duce text rotated to any arbitrary angle, measured in degrees counter-clockwise.
The following example would produce upward-running text:

set label 1 ’Hello’ 1.2, 2.5 rotate 90

By default the labels are black; however, an arbitrary color may be specified
using the with color modifier. For example,

set label 3 ’A purple label’ 0, 0 with color purple

would place a purple label at the origin.

11.52.31 linewidth

set linewidth <value>

The set linewidth command sets the default line width of the lines used to
plot datasets onto graphs using plot styles such as lines, errorbars, etc. The
value supplied should be a multiplicative factor relative to the default line width;
a value of 1.0 would result in lines being drawn with their default thickness. For
example, in the following statement, lines of three times the default thickness
are drawn:

set linewidth 3

plot sin(x) with lines

The set linewidth command only affects plot statements where no line width
is manually specified.

11.52. SET 259

11.52.32 logscale

set logscale { <axis> } [<base>]

The setting logscale causes an axis to be laid out with logarithmically,
rather than linearly, spaced intervals. For example, issuing the command:

set log

would cause all of the axes of a plot to be scaled logarithmically. Alternatively,
only one, or a selection of axes, can be set to scale logarithmically as follows:

set log x1 y2

This would cause the first horizontal and second vertical axes to be scaled log-
arithmically. Linear scaling can be restored to all axes using the command

set nolog

meanwhile the command

unset log

restores axes to their default scaling, as specified in any configuration file which
may be present. Both of these commands can also be applied to only one or a
selection of axes, as in the examples

set nolog x1 y2

and

unset log x1y2

Optionally, a base may be specified at the end of the set logscale com-
mand, to produce axes labelled in logarithms of arbitrary bases. The default
base is 10.

In addition to acting upon any combination of x-, y- and z-axes, the set

logscale command may also be requested to set the c1, c2, c3, c4, t, u and/or
v axes to scale logarithmically. The first four of these options affect whether
the colors on color maps scale linearly or logarithmically with input ordinate
values; see the set c<n>range command for more details. The final three of
these options specifies whether parametric functions are sampled linearly or log-
arithmically in the variables t (one-dimensional), or u and v (two-dimensional);
see the set trange, set urange and set vrange commands for more details.

11.52.33 multiplot

set multiplot

Issuing the command

set multiplot

causes Pyxplot to enter multiplot mode, which allows many graphs to be plotted
together and displayed side-by-side. See Section 10.2 for a full discussion of
multiplot mode.

260 CHAPTER 11. COMMAND REFERENCE

11.52.34 mxtics

See set xtics.

11.52.35 mytics

See set xtics.

11.52.36 mztics

See set ztics.

11.52.37 noarrow

set noarrow [{ <arrow number> }]

Issuing the command

set noarrow

removes all arrows configured with the set arrow command. Alternatively,
individual arrows can be removed using commands of the form

set noarrow 2

where the tag 2 is the identification number given to the arrow to be removed
when it was initially specified with the set arrow command.

11.52.38 noaxis

set noaxis [{ <axis> }]

The set noaxis command is used to remove axes from graphs; it achieves
the opposite effect from the set axis command. It should be followed by a
comma-separated lists of the axes which are to be removed from the current
axis configuration.

11.52.39 nobackup

See backup.

11.52.40 noclip

See clip.

11.52.41 nocolorkey

set nocolorkey

Issuing the command set nocolorkey causes plots to be generated with
no color scale when the colormap plot style is used. See the set colorkey

command for more details.

11.52. SET 261

11.52.42 nodisplay

See display.

11.52.43 nogrid

set nogrid { <axis> }

Issuing the command set nogrid removes gridlines from the current plot.
On its own, the command removes all gridlines from the plot, but alternatively,
those gridlines connected to the ticks of certain axes can be selectively removed.
The following example would remove gridlines associated with the first horizon-
tal axis and the second vertical axis:

set nogrid x1 y2

11.52.44 nokey

set nokey

Issuing the command set nokey causes plots to be generated with no legend.
See the set key command for more details.

11.52.45 nolabel

set nolabel { <label number> }

Issuing the command

set nolabel

removes all text labels configured using the set label command. Alternatively,
individual labels can be removed using the syntax:

set nolabel 2

where the tag 2 is the identification number given to the label to be removed
when it was initially set using the set label command.

11.52.46 nologscale

set nologscale { <axis> }

The setting nologscale causes an axis to be laid out with linearly, rather
than logarithmically, spaced intervals; it is equivalent to the setting linearscale.
It is the converse of the setting logscale. For example, issuing the command

set nolog

would cause all of the axes of a plot to be scaled linearly. Alternatively only
one, or a selection of axes, can be set to scale linearly as follows:

set nologscale x1 y2

This would cause the first horizontal and second vertical axes to be scaled lin-
early.

262 CHAPTER 11. COMMAND REFERENCE

11.52.47 nomultiplot

set nomultiplot

The set nomultiplot command causes Pyxplot to leave multiplot mode;
outside of multiplot mode, only single graphs and vector graphics objects are
displayed at any one time, whereas in multiplot mode, galleries of plots and
vector graphics can be placed alongside one another. See Section 10.2 for a full
discussion of multiplot mode.

11.52.48 nostyle

set nostyle <style number>

The setting nostyle deletes a numbered plot style set using the set style

command. For example, the command

set nostyle 3

would delete the third numbered plot style, if defined. See the command set

style for more details.

11.52.49 notitle

set notitle

Issuing the command set notitle will cause graphs to be produced with
no title at the top.

11.52.50 noxtics

set no<axis>tics

This command causes graphs to be produced with no major tick marks along
the specified axis. For example, the set noxtics command removes all major
tick marks from the x-axis.

11.52.51 noytics

Similar to the set noxtics command, but acts on vertical axes.

11.52.52 noztics

Similar to the set noxtics command, but acts on z-axes.

11.52.53 numerics

set numerics [(complex | real)] [errors (explicit | quiet)]

[display (latex | natural | typeable)]

[sigfig <precision>]

The set numerics command is used to adjust the way in which calculations
are carried out and numerical quantities are displayed:

11.52. SET 263

• The option complex causes Pyxplot to switch from performing real arith-
metic (default) to performing complex arithmetic. The option real causes
any calculations which return results with finite imaginary components to
generate errors.

• The option errors controls how numerical errors such as divisions by
zero, numerical overflows, and the querying functions outside of the do-
mains in which they are defined, are communicated to the user. The
option explicit (default) causes an error message to be displayed on the
terminal whenever a calculation causes an error. The option quiet causes
such calculations to silently generate a nan (not a number) result. The
latter is especially useful when, for example, plotting an expression with
the ordinate axis range set to extend outside the domain in which that
expression returns a well-defined real result; it suppresses the error mes-
sages which might otherwise result from Pyxplot’s attempts to evaluate
the expression in those domains where its result is undefined. The option
nan is a synonym for quiet.

• The setting display changes the format in which numbers are displayed
on the terminal. Setting the option to typeable causes the numbers to be
printed in a form suitable for pasting back into Pyxplot commands. The
setting latex causes latex-compatible output to be generated. The setting
natural generates concise, human-readable output which has neither of
the above properties.

• The setting sigfig changes the number of significant figures to which
numbers are displayed on the Pyxplot terminal. Regardless of the value
set, all calculations are internally carried out and stored at double preci-
sion, accurate to around 16 significant figures.

11.52.54 origin

set origin <vector>

The set origin command is used to set the location of the bottom-left
corner of the next graph to be placed on a multiplot canvas. For example, the
command

set origin 3,5

would cause the next graph to be plotted with its bottom-left corner at po-
sition (3, 5) centimeters on the multiplot canvas. Alternatively, either of the
coordinates may be specified as quantities with physical units of length, such
as unit(35*mm). The set origin command is of little use outside of multiplot
mode.

11.52.55 output

set output <filename>

The setting output controls the name of the file that is produced for non-
interactive terminals (postscript, eps, jpeg, gif and png). For example,

264 CHAPTER 11. COMMAND REFERENCE

set output ’myplot.eps’

causes the output to be written to the file myplot.eps.

11.52.56 palette

set palette { <color> }

Pyxplot has a palette of colors which it assigns sequentially to datasets when
colors are not manually assigned. This is also the palette to which reference is
made if the user issues a command such as

plot sin(x) with color 5

requesting the fifth color from the palette. By default, this palette contains
a range of distinctive colors. However, the user can choose to substitute his
own list of colors using the set palette command. It should be followed by a
comma-separated list of color names, for example:

set palette red,green,blue

If, after issuing this command, the following plot statement were to be executed:

plot sin(x), cos(x), tan(x), exp(x)

the first function would be plotted in red, the second in green, and the third in
blue. Upon reaching the fourth, the palette would cycle back to red.

Any of the recognised color names listed in Section 19.4 can be used, or a
numbered color from the present palette, or an object of type color.

11.52.57 papersize

set papersize (<named size> | <height>,<width>)

The setting papersize changes the size of output produced by the postscript
terminal, and whenever the enlarge terminal option is set (see the set terminal

command). This can take the form of either a recognised paper size name – a
list of these is given in Appendix 16 – or as a (height, width) pair of values,
both measured in millimeters. The following examples demonstrate these pos-
sibilities:

set papersize a4

set papersize letter

set papersize 200,100

11.52.58 pointlinewidth

set pointlinewidth <value>

The setting pointlinewidth changes the width of the lines that are used to
plot data points. For example,

set pointlinewidth 20

would cause points to be plotted with lines 20 times the default thickness. The
setting pointlinewidth can be abbreviated as plw.

11.52. SET 265

11.52.59 pointsize

set pointsize <value>

The setting pointsize changes the size at which points are drawn, relative
to their default size. It should be followed by a single value which can be any
positive multiplicative factor. For example,

set pointsize 1.5

would cause points to be drawn at 1.5 times their default size.

11.52.60 preamble

set preamble <text>

The setting preamble changes the text of the preamble that is passed to latex
prior to the rendering of each text item on the current multiplot canvas. This
allows, for example, different packages to be loaded by default and user-defined
macros to be set up, as in the examples:

set preamble \usepackage{marvosym}

set preamble \def\degrees{$^\circ$}

11.52.61 samples

set samples [<value>]

[grid <x_samples> [x] <y_samples>]

[interpolate (inverseSquare |

monaghanLattanzio |

nearestNeighbor)]

The setting samples determines the number of values along the ordinate
axis at which functions are evaluated when they are plotted. For example, the
command

set samples 100

would cause functions to be evaluated at 100 points along the ordinate axis.
Increasing this value will cause functions to be plotted more smoothly, but
also more slowly, and the PostScript files generated will also be larger. When
functions are plotted with the points plot style, this setting controls the number
of points plotted.

After the keyword grid may be specified the dimensions of the two-dimensional
grid of samples used in the colormap and surface plot styles, and internally
when calculating the contours to be plotted in the contourmap plot style. If a
* is given in place of either of the dimensions, then the same number of samples
as are specified in <value> are taken.

After the keyword interpolate, the method used for interpolating non-
gridded two-dimensional data onto the above-mentioned grid may be specified.
The available options are InverseSquare, MonaghanLattanzio and Nearest-

Neighbour.

266 CHAPTER 11. COMMAND REFERENCE

11.52.62 seed

set seed <value>

The set seed command sets the seed used by all of those mathematical
functions which generate random samples from probability distributions. This
allows repeatable sequences of pseudo-random numbers to be generated. Upon
initialisation, Pyxplot returns the sequence of random numbers obtained after
issuing the command set seed 0.

11.52.63 size

set size [<width>]

[(ratio <ratio> | noratio | square)]

[(zratio <ratio> | nozratio)]

The setting size is used to set the width or aspect ratio of the next graph
to be generated. If a width is specified, then it may either take the form of
a dimensionless number implicitly measured in centimeters, or a quantity with
physical dimensions of length such as unit(50*mm).

When the keyword ratio is specified, it should be followed by the ratio of
the graph’s height to its width, i.e. of the length of its y-axes to that of its
x-axes. The keyword noratio returns the aspect ratio to its default value of
the golden ratio, and the keyword square sets the aspect ratio to one.

When the keyword zratio is specified, it should be followed by the ratio
of the length of three-dimensional graphs’ z-axes to that of their x-axes. The
keyword nozratio returns this aspect ratio to its default value of the golden
ratio.

noratio

set size noratio

Executing the command

set size noratio

resets Pyxplot to produce plots with its default aspect ratio, which is the golden
ratio. Other aspect ratios can be set with the set size ratio command.

ratio

set size ratio <ratio>

This command sets the aspect ratio of plots produced by Pyxplot. The
height of resulting plots will equal the plot width, as set by the set width

command, multiplied by this aspect ratio. For example,

set size ratio 2.0

would cause Pyxplot to produce plots that are twice as high as they are wide.
The default aspect ratio which Pyxplot uses is a golden ratio of 2/(1 +

√
5).

11.52. SET 267

square

set size square

This command sets Pyxplot to produce square plots, i.e. with unit aspect
ratio. Other aspect ratios can be set with the set size ratio command.

11.52.64 style

set style <style number> {<style option>}

At times, the string of style keywords following the with modifier in plot
commands can grow rather unwieldy in its length. For clarity, frequently used
plot styles can be stored as numbered plot styles. The syntax for setting a
numbered plot style is:

set style 2 points pointtype 3

where the 2 is the identification number of the plot style. In a subsequent plot
statement, this line style can be recalled as follows:

plot sin(x) with style 2

11.52.65 style data — style function

set style { data | function } {<style option>}

The set style data command affects the default style with which data
from files is plotted. Likewise the set style function command changes the
default style with which functions are plotted. Any valid style modifier which
can follow the keyword with in the plot command can be used. For example,
the commands

set style data points

set style function lines linestyle 1

would cause data files to be plotted, by default, using points and functions using
lines with the first defined line style.

11.52.66 terminal

set terminal (X11_singleWindow | X11_multiWindow | X11_persist |

bmp | eps | gif | jpeg | pdf | png | postscript |

svg | tiff)

(color | color | monochrome)

(dpi <value>)

(portrait | landscape)

(invert | noinvert)

(transparent | solid)

(antialias | noantialias)

(enlarge | noenlarge)

268 CHAPTER 11. COMMAND REFERENCE

The set terminal command controls the graphical format in which Pyxplot
renders plots and multiplot canvases, for example configuring whether it should
output plots to files or display them in a window on the screen. Various options
can also be set within many of the graphical formats which Pyxplot supports
using this command.

The following graphical formats are supported: X11 singleWindow, X11 -

multiWindow, X11 persist, bmp, eps, gif, jpeg, pdf, png, postscript, svg2,
tiff. To select one of these formats, simply type the name of the desired
format after the set terminal command. To obtain more details on each, see
the subtopics below. The following settings, which can also be typed following
the set terminal command, are used to change the options within some of
these graphic formats: color, monochrome, dpi, portrait, landscape, invert,
noinvert, transparent, solid, enlarge, noenlarge. Details of each of these
can be found below.

antialias

The antialias terminal option causes plots produced with the bitmap termi-
nals (i.e. bmp, gif, jpeg, png and tiff) to be antialiased; this is the default
behaviour.

bmp

The bmp terminal renders output as Windows bitmap images. The filename
to which output is to be sent should be set using the set output command;
the default is pyxplot.bmp. The number of dots per inch used can be changed
using the dpi option. The invert option may be used to produce an image
with inverted colors.

color

The color terminal option causes plots to be produced in color; this is the
default behaviour.

color

The color terminal option is the US-English equivalent of color.

dpi

When Pyxplot is set to produce bitmap graphics output, using the bmp, gif,
jpg or png terminals, the setting dpi changes the number of dots per inch with
which these graphical images are produced. That is to say, it changes the image
resolution of the output images. For example,

set terminal dpi 100

sets the output to a resolution of 100 dots per inch. Higher DPI values yield
better quality images, but larger file sizes.

2The svg output terminal is experimental and may be unstable. It relies upon the use of
the svg output device in Ghostscript, which may not be present on all systems.

11.52. SET 269

enlarge

The enlarge terminal option causes plots and multiplot canvases to be enlarged
or shrunk to fit within the margins of the currently selected paper size. It
is especially useful when using the postscript terminal, as it allows for the
production of immediately-printable output.

eps

Sends output to Encapsulated PostScript (eps) files. The filename to which
output should be sent can be set using the set output command; the default
is pyxplot.eps. This terminal produces images suitable for including in, for
example, latex documents.

gif

The gif terminal renders output as gif images. The filename to which out-
put should be sent can be set using the set output command; the default is
pyxplot.gif. The number of dots per inch used can be changed using the dpi

option. Transparent gifs can be produced with the transparent option. The
invert option may be used to produce an image with inverted colors.

invert

The invert terminal option causes the bitmap terminals (i.e. bmp, gif, jpeg,
png and tiff) to produce output with inverted colors.

jpeg

The jpeg terminal renders output as jpeg images. The filename to which out-
put should be sent can be set using the set output command; the default is
pyxplot.jpg. The number of dots per inch used can be changed using the dpi

option. The invert option may be used to produce an image with inverted
colors.

landscape

The landscape terminal option causes Pyxplot’s output to be displayed in ro-
tated orientation. This can be useful for fitting graphs onto sheets of paper, but
is generally less useful for plotting things on screen.

monochrome

The monochrome terminal option causes plots to be rendered in black and white.
This changes the default behaviour of the plot command to be optimised for
monochrome display, and so, for example, different dash styles are used to dif-
ferentiate between lines on plots with several datasets.

270 CHAPTER 11. COMMAND REFERENCE

noantialias

The noantialias terminal option causes plots produced with the bitmap ter-
minals (i.e. bmp, gif, jpeg, png and tiff) not to be antialiased. This can
be useful when making plots which will subsequently have regions cut out and
made transparent.

noenlarge

The noenlarge terminal option causes the output not to be scaled to fit within
the margins of the currently-selected papersize. This is the opposite of enlarge
option.

noinvert

The noinvert terminal option causes the bitmap terminals (i.e. gif, jpeg, png)
to produce normal output without inverted colors. This is the opposite of the
inverse option.

pdf

The pdf terminal renders output in Adobe’s Portable Document Format (PDF).

png

The png terminal renders output as png images. The filename to which out-
put should be sent can be set using the set output command; the default is
pyxplot.png. The number of dots per inch used can be changed using the dpi

option. Transparent pngs can be produced with the transparent option. The
invert option may be used to produce an image with inverted colors.

portrait

The portrait terminal option causes Pyxplot’s output to be displayed in up-
right (normal) orientation; it is the converse of the landscape option.

postscript

The postscript terminal renders output as PostScript files. The filename to
which output should be sent can be set using the set output command; the
default is pyxplot.ps. This terminal produces non-encapsulated PostScript
suitable for sending directly to a printer; it should not be used for producing
images to be embedded in documents, for which the eps terminal should be
used.

solid

The solid option causes the gif and png terminals to produce output with a
non-transparent background, the converse of transparent.

11.52. SET 271

transparent

The transparent terminal option causes the gif and png terminals to produce
output with a transparent background.

X11 multiWindow

The X11 multiwindow terminal displays plots on the screen in X11 windows.
Each time a new plot is generated it appears in a new window, and the old plots
remain visible. As many plots as may be desired can be left on the desktop
simultaneously. When Pyxplot exits, however, all of the windows are closed.

X11 persist

The X11 persist terminal displays plots on the screen in X11 windows. Each
time a new plot is generated it appears in a new window, and the old plots
remain visible. When Pyxplot is exited the windows remain in place until they
are closed manually.

X11 singleWindow

The X11 singlewindow terminal displays plots on the screen in X11 windows.
Each time a new plot is generated it replaces the old one, preventing the desktop
from becoming flooded with old plots. This terminal is the default when running
interactively.

11.52.67 textcolor

set textcolor <color>

The setting textcolor changes the default color of all text displayed on
plots or multiplot canvases. For example,

set textcolor red

causes all text labels, including the labels on graph axes and legends, etc. to be
rendered in red. Any of the recognised color names listed in Section 19.4 can be
used, or a numbered color from the present palette, or an object of type color.

11.52.68 texthalign

set texthalign (left | center | right)

The setting texthalign controls how text labels are justified horizontally
with respect to their specified positions, acting both upon labels placed on plots
using the set label command, and upon text items created using the text

command. Three options are available:

set texthalign left

set texthalign center

set texthalign right

272 CHAPTER 11. COMMAND REFERENCE

11.52.69 textvalign

set textvalign (bottom | center | top)

The setting textvalign controls how text labels are justified vertically with
respect to their specified positions, acting both upon labels placed on plots
using the set label command, and upon text items created using the text

command. Three options are available:

set textvalign bottom

set textvalign center

set textvalign top

11.52.70 timezone

set timezone <timezone>

The set timezone command sets the name of the default timezone that
Pyxplot uses when handling date objects. It should take the form of a tz

database timezone name, for example Europe/London. A complete list of these
can be found here: http://en.wikipedia.org/wiki/List_of_tz_database_

time_zones. If no timezone is specified, then the default set using the set

timezone command is used. If universal time is required, UTC may be specified
as the timezone. For example:

set timezone Europe/Paris

set timezone Australia/Perth

set timezone America/New_York

set timezone Antarctica/South_Pole

set timezone UTC

Note that it is not permitted to set a timezone such as GMT, EDT or CEST; a
place should be specified, and Pyxplot will use the local time from that location.

11.52.71 title

set title <title>

The setting title can be used to set a title for a plot, to be displayed above
it. For example, the command:

set title ’foo’

would cause a title ‘foo’ to be displayed above a graph. The easiest way to
remove a title, having set one, is using the command:

set notitle

11.52.72 trange

set trange [<range>] [reverse]

The set trange command changes the range of the free parameter t used
when generating parametric plots. For more details of the syntax of the range
specifier, see the set xrange command. Note that t is not allowed to autoscale,
and so the * character is not permitted in the specified range.

http://en.wikipedia.org/wiki/List_of_tz_database_time_zones
http://en.wikipedia.org/wiki/List_of_tz_database_time_zones

11.52. SET 273

11.52.73 unit

set unit [angle (dimensionless | nodimensionless)]

[of <dimension> <unit>]

[scheme <unit scheme>]

[preferred <unit>]

[nopreferred <unit>]

[display (full | abbreviated | prefix | noprefix)]

The set unit command controls how quantities with physical units are dis-
played by Pyxplot. The set unit scheme command provides the most general
configuration option, allowing one of several units schemes to be selected, each
of which comprises a list of units which are deemed to be members of that par-
ticular scheme. For example, in the CGS unit scheme, all lengths are displayed
in centimeters, all masses are displayed in grammes, all energies are displayed
in ergs, and so forth. In the imperial unit scheme, quantities are displayed in
British imperial units – inches, pounds, pints, and so forth – and in the US unit
scheme, US customary units are used. The available schemes are: ancient,
cgs, imperial, planck, si, and us.

To fine-tune the unit used to display quantities with a particular set of
physical dimensions, the set unit of form of the command should be used.
For example, the following command would cause all lengths to be displayed in
inches:

set unit of length inch

The set unit preferred command offers a slightly more flexible way of
achieving the same result. Whereas the set unit of command can only oper-
ate on named quantities such as lengths and powers, and cannot act upon com-
pound units such as W/Hz, the set unit preferred command can act upon
any unit or combination of units, as in the examples:

set unit preferred parsec

set unit preferred W/Hz

set unit preferred N*m

The latter two examples are particularly useful when working with spectral
densities (powers per unit frequency) or torques (forces multiplied by distances).
Unfortunately, both of these units are dimensionally equal to energies, and so
are displayed by Pyxplot in Joules by default. The above statement overrides
such behaviour. Having set a particular unit to be preferred, this can be unset
as in the following example:

set unit nopreferred parsec

By default, units are displayed in their abbreviated forms, for example A

instead of amperes and W instead of watts. Furthermore, SI prefixes such as
milli- and kilo- are applied to SI units where they are appropriate. Both of these
behaviours can be turned on or off, in the former case with the commands

set unit display abbreviated

set unit display full

274 CHAPTER 11. COMMAND REFERENCE

and in the latter case using the following pair of commands:

set unit display prefix

set unit display noprefix

11.52.74 urange

set urange [<range>] [reverse]

The set urange command changes the range of the free parameter u used
when generating parametric plots sampled over grids of (u,v) values. For more
details of the syntax of the range specifier, see the set xrange command. Note
that u is not allowed to autoscale, and so the * character is not permitted in
the specified range.

Specifying the set urange command by itself specified that parametric plots
should be sampled over two-dimensional grids of (u,v) values, rather than one-
dimensional ranges of t values.

11.52.75 view

set view <theta>, <phi>

The set view command is used to specify the angle from which three-
dimensional plots are viewed. It should be followed by two angles, which can
either be expressed in degrees, as dimensionless numbers, or as quantities with
physical units of angle:

set view 60,30

set unit angle nodimensionless

set view unit(0.1*rev),unit(2*rad)

The orientation (0, 0) corresponds to having the x-axis horizontal, the z-axis
vertical, and the y-axis directed into the page. The first angle supplied to the
set view command rotates the plot in the (x, y) plane, and the second angle
tips the plot up in the plane containing the z-axis and the normal to the user’s
two-dimensional display.

11.52.76 viewer

set viewer (auto | <command>)

The set viewer command is used to select which external PostScript view-
ing application is used to display Pyxplot output on screen in the X11 terminals.
If the option auto is selected, then either ghostview or ggv is used, if installed.
Alternatively, any other application such as evince or okular can be selected by
name, providing it is installed in within your shell’s search path or an absolute
path is provided, as in the examples:

set viewer evince

set viewer /usr/bin/okular

11.52. SET 275

Additional commandline switches may also be provided after the name of the
application to be used, as in the example

set viewer gv --grayscale

11.52.77 vrange

set vrange [<range>] [reverse]

See the set urange command.

11.52.78 width

set width <value>

The setting width is used to set the width of the next graph to be generated.
The width is specified either as a dimensionless number implicitly measured
in centimeters, or as a quantity with physical dimensions of length such as
unit(50*mm).

11.52.79 xformat

set <axis>format (auto | <format>)

(horizontal | vertical | rotate <angle>)

By default, the major tick marks along axes are labelled with representations
of the ordinate values at each point, each accurate to the number of significant
figures specified using the set numerics sigfig command. These labels may
appear as decimals, such as 3.142, in scientific notion, as in 3 × 108, or, on
logarithmic axes where a base has been specified for the logarithms, using syntax
such as3

set log x1 2

in a format such as 1.5× 28.
The set xformat command – together with its companions such as set

yformat – is used to manually specify an explicit format for the axis labels to
take, as demonstrated by the following pair of examples:

set xformat "%.2f"%(x)

set yformat "%s$^\prime$"%(y/unit(feet))

The first example specifies that values should be displayed to two decimal places
along the x-axis; the second specifies that distances should be displayed in feet
along the y-axis. Note that the dummy variable used to represent the repre-
sented value is x, y or z depending upon the direction of the axis, but that the
dummy variable used in the set x2format command is still x. The following
pair of examples both have the equivalent effect of returning the x2-axis to its
default system of tick labels:

3Note that the x axis must be referred to as x1 here to distinguish this statement from set

log x2.

276 CHAPTER 11. COMMAND REFERENCE

set x2format auto

set x2format "%s"%(x)

The following example specifies that ordinate values should be displayed as
multiples of π:

set xformat "%sπ"%(x/pi)

plot [-pi:2*pi] sin(x)

Note that where possible, Pyxplot intelligently changes the positions along
axes where it places the ticks to reflect significant points in the chosen labelling
system. The extent to which this is possible depends upon the format string
supplied. It is generally easier when continuous-varying numerical values are
substituted into strings, rather than discretely-varying values or strings.

11.52.80 xlabel

set <axis>label <text> [rotate <angle>]

The setting xlabel sets the label which should be written along the x-axis.
For example,

set xlabel ’x’

sets the label on the x-axis to read ‘x’. Labels can be placed on higher numbered
axes by inserting their number after the ‘x’; for example,

set x10label ’foo’

would label the tenth horizontal axis. Similarly, labels can be placed on vertical
axes as follows:

set ylabel ’y’

set y2label ’foo’

An optional rotation angle may be specified to rotate axis labels clockwise
by arbitrary angles. The angle should be specified either as a dimensionless
number of degrees, or as a quantity with physical dimensions of angle.

11.52.81 xrange

set <axis>range <range> [reverse]

The setting xrange controls the range of values spanned by the x-axes of
plots. For function plots, this is also the domain across which the function will
be evaluated. For example,

set xrange [0:10]

sets the first horizontal axis to run from 0 to 10. Higher numbered axes may
be referred to be inserting their number after the x; the ranges of vertical axes
may similarly be set by replacing the x with a y. Hence,

set y23range [-5:5]

11.52. SET 277

sets the range of the 23rd vertical axis to run from −5 to 5. To request a range
to be automatically scaled an asterisk can be used. The following command
would set the x-axis to have an upper limit of 10, but does not affect the lower
limit; its range remains at its previous setting:

set xrange [:10][*:*]

The keyword reverse is used to indicate that the two limits of an axis should
be swapped. This is useful for setting auto-scaling axes to be displayed running
from right to left, or from top to bottom.

11.52.82 xtics

set [m]<axis>tics

[(axis | border | inward | outward | both)]

[(autofreq

| [<minimum>,] <increment> [, <maximum>]

| "(" { [<label>] <position> } ")"

])

By default, Pyxplot places a series of tick marks at significant points along
each axis, with the most significant points being labelled. Labelled tick marks
are termed major ticks, and unlabelled tick marks are termed minor ticks. The
position and appearance of the major ticks along the x-axis can be configured
using the set xtics command; the corresponding set mxtics command con-
figures the appearance of the minor ticks along the x-axis. Analogous commands
such as set ytics and set mx2tics configure the major and minor ticks along
other axes.

The keywords inward, outward and both are used to configure how the ticks
appear – whether they point inward, towards the plot, as is default, or outwards
towards the axis labels, or in both directions. The keyword axis is an alias for
inward, and border is an alias for outward.

The remaining options are used to configure where along the axis ticks
are placed. If a series of comma-separated values <minimum>, <increment>,

<maximum> are specified, then ticks are placed at evenly spaced intervals be-
tween the specified limits. The <minimum> and <maximum> values are optional;
if only one value is specified then it is taken to be the step size between ticks.
If two values are specified, then the first is taken to be <minimum>. In the case
of logarithmic axes, <increment> is applied as a multiplicative step size.

Alternatively, if a bracketed list of quoted tick labels and tick positions are
provided, then ticks can be placed on an axis manually and each given its own
textual label. The quoted tick labels may be omitted, in which case they are
automatically generated:

set xtics ("a" 1, "b" 2, "c" 3)

set xtics (1,2,3)

The keyword autofreq overrides any manual selection of ticks which may have
been placed on an axis and resumes the automatic placement of ticks along it.
The show xtics command, together with its companions such as show x2tics

and show ytics, is used to query the current ticking options. The set noxtics

command is used to stipulate that no ticks should appear along a particular axis:

278 CHAPTER 11. COMMAND REFERENCE

set noxtics

show xtics

11.52.83 yformat

See xformat.

11.52.84 ylabel

See xlabel.

11.52.85 yrange

See xrange.

11.52.86 ytics

See xtics.

11.52.87 zformat

See xformat.

11.52.88 zlabel

See xlabel.

11.52.89 zrange

See xrange.

11.52.90 ztics

See xtics.

11.53 show

show { all | axes | functions | settings | units

| userfunctions | variables | <parameter> }

The show command displays the present state of parameters which can be
set with the set command. For example,

show pointsize

displays the currently set point size.
Details of the various parameters which can be queried can be found under

the set command; any keyword which can follow the set command can also
follow the show command.

In addition, show all shows a complete list of the present values of all
of Pyxplot’s configurable parameters. The command show settings shows

11.54. SOLVE 279

all of these parameters, but does not list the currently-configured variables,
functions and axes. show axes shows the configuration states of all graph axes.
show variables lists all of the currently defined variables. And finally, show
functions lists all of the current user-defined functions.

11.54 solve

solve { <equation> } via { <variable> }

The solve command can be used to solve simple systems of one or more
equations numerically. It takes as its arguments a comma-separated list of the
equations which are to be solved, and a comma-separated list of the variables
which are to be found. The latter should be prefixed by the word via, to
separate it from the list of equations.

Note that the time taken by the solver dramatically increases with the num-
ber of variables which are simultaneously found, whereas the accuracy achieved
simultaneously decreases. The following example solves a simple pair of simul-
taneous equations of two variables:

pyxplot> solve x+y=10, x-y=3 via x,y

pyxplot> print x

6.5

pyxplot> print y

3.5

No output is returned to the terminal if the numerical solver succeeds, otherwise
an error message is displayed. If any of the fitting variables are already defined
prior to the solve command’s being called, their values are used as initial
guesses, otherwise an initial guess of unity for each fitting variable is assumed.
Thus, the same solve command returns two different values in the following
two cases:

pyxplot> x= # Undefine x
pyxplot> solve cos(x)=0 via x

pyxplot> print x/pi

0.5

pyxplot> x=10

pyxplot> solve cos(x)=0 via x

pyxplot> print x/pi

3.5

In cases where any of the variables being solved for are not dimensionless, it
is essential that an initial guess with appropriate units be supplied, otherwise
the solver will try and fail to solve the system of equations using dimensionless
values:

x = unit(m)

y = 5*unit(km)

solve x=y via x

The solve command works by minimising the squares of the residuals of all
of the equations supplied, and so even when no exact solution can be found,

280 CHAPTER 11. COMMAND REFERENCE

the best compromise is returned. The following example has no solution – a
system of three equations with two variables is over-constrained – but Pyxplot
nonetheless finds a compromise solution:

pyxplot> solve x+y=10, x-y=3, 2*x+y=16 via x,y

pyxplot> print x

6.4220634

pyxplot> print y

3.4266948

When complex arithmetic is enabled, the solve command allows each of
the variables being fitted to take any value in the complex plane, and thus the
number of dimensions of the fitting problem is effectively doubled – the real
and imaginary components of each variable are solved for separately – as in the
following example:

pyxplot> set numerics complex

pyxplot> solve exp(x)=e*i via x

pyxplot> print Re(x)

-1227.7

pyxplot> print Im(x)/pi

0

11.55 spline

spline [<range>] <function name>()

(<filename> | { <expression> } | { <vector obj> })

[every { <expression> }]

[index <value>]

[select <expression>]

[using { <expression> }]

The spline command is an alias for the interpolate spline command.
See the entry for the interpolate command for more details.

11.56 swap

swap <item1> <item2>

Items on multiplot canvases are drawn in order of increasing identification
number, and thus items with low identification numbers are drawn first, at the
back of the multiplot, and items with higher identification numbers are later,
towards the front of the multiplot. When new items are added, they are given
higher identification numbers than previous items and appear at the front of
the multiplot.

If this is not the desired ordering, then the swap command may be used
to rearrange items. It takes the identification numbers of two multiplot items
and swaps their identification numbers and hence their positions in the ordered
sequence. Thus, if, for example, the corner of item 3 disappears behind the

11.57. TABULATE 281

corner of item 5, when the converse effect is actually desired, the following
command should be issued:

swap 3 5

11.57 tabulate

tabulate [<range>]

(<filename> | { <expression> } | { <vector obj> })

[every { <expression> }]

[index <value>]

[select <expression>]

[sortby <expression>]

[using { <expression> }]

[with <output format>]

Pyxplot’s tabulate command is similar to its plot command, but instead
of plotting a series of data points onto a graph, it outputs them to data files.
This can be used to produce text files containing samples of functions, to re-
arrange/filter the columns in data files, to change the units in which data is
expressed in data files, and so forth. The following example would produce a
data file called gamma.dat containing a list of values of the gamma function:

set output ’gamma.dat’

tabulate [1:5] gamma(x)

Multiple functions may be tabulated into the same file, either by using the using
modifier:

tabulate [0:2*pi] sin(x):cos(x):tan(x) u 1:2:3:4

or by placing them in a comma-separated list, as in the plot command:

tabulate [0:2*pi] sin(x), cos(x), tan(x)

In the former case, the functions are tabulated horizontally alongside one
another in a series of columns. In the latter case, the functions are tabulated
one after another in a series of index blocks separated by double linefeeds (see
Section 3.8).

The setting samples can be used to control the number of points that are
produced when tabulating functions, in the same way that it controls the plot

command:

set samples 200

If the ordinate axis is set to be logarithmic then the points at which functions
are evaluated are spaced logarithmically, otherwise they are spaced linearly.

The select, using and every modifiers operate in the same manner in the
tabulate command as in the plot command. Thus, the following example
would write out the third, sixth and ninth columns of the data file input.dat,
but only when the arcsine of the value in the fourth column is positive:

282 CHAPTER 11. COMMAND REFERENCE

set output ’filtered.dat’

tabulate ’input.dat’ u 3:6:9 select (asin($4)>0)

The numerical display format used in each column of the output file is chosen
automatically to preserve accuracy whilst simultaneously being as easily human
readable as possible. Thus, columns which contain only integers are displayed
as such, and scientific notation is only used in columns which contain very large
or very small values. If desired, however, a format statement may be specified
using the with format specifier. The syntax for this is similar to that expected
by the string substitution operator (%; see Section 6.2.1). As an example, to
tabulate the values of x2 to very many significant figures with some additional
text, one could use:

tabulate x**2 with format "x = %f ; x**2 = %27.20e"

This might produce the following output:

x = 0.000000 ; x**2 = 0.00000000000000000000e+00

x = 0.833333 ; x**2 = 6.94444444444442421371e-01

x = 1.666667 ; x**2 = 2.77777777777778167589e+00

The data produced by the tabulate command can be sorted in order of any
arbitrary metric by supplying an expression after the sortby modifier; where
such expressions are supplied, the data is sorted in order from the smallest value
of the expression to the largest.

11.58 text

text [item <id>] <text string> [at <vector>]

[rotate <angle>] [gap <length>]

[halign <alignment>] [valign <alignment>]

[with color <color>]

The text command allows strings of text to a added as labels on multiplot
canvases. The example

text ’Hello World!’ at 0,2

would render the text ‘Hello World!’ at position (0, 2), measured in centimeters.
The alignment of the text item with respect to this position can be set using
the set texthalign and set textvalign commands, or using the halign and
valign modifiers supplied to the text command itself.

A gap may be specified, which should either have dimensions of length, or be
dimensionless, in which case it is interpreted as being measured in centimeters.
If a gap is specified, then the text string is slightly displaced from the specified
position, in the direction in which it is being aligned.

A rotation angle may optionally be specified after the keyword rotate to pro-
duce text rotated to any arbitrary angle, measured in degrees counter-clockwise.
The following example would produce upward-running text:

text ’Hello’ at 1.5, 3.6 rotate 90

11.59. UNDELETE 283

By default the text is black; however, an arbitrary color may be specified
using the with color modifier. For example:

text ’A purple label’ at 0, 0 with color purple

would add a purple label at the origin of the multiplot.
Outside of multiplot mode, the text command can be used to produce im-

ages consisting simply of one single text item. This can be useful for importing
latexed equations as gif images into slideshow programs such as Microsoft Pow-
erpoint which are incapable of producing such neat mathematical notation by
themselves.

All vector graphics objects placed on multiplot canvases receive unique iden-
tification numbers which count sequentially from one, and which may be listed
using the list command. By reference to these numbers, they can be deleted
and subsequently restored with the delete and undelete commands respec-
tively.

11.59 undelete

undelete { <item number> }

The undelete command allows vector graphics objects which have previ-
ously been deleted from the current multiplot canvas to be restored. The item(s)
which are to be restored should be identified using the reference number(s) which
were used to delete them, and can be queried using the list command. The
example

undelete 1

would cause the previously deleted item numbered 1 to reappear.

11.60 unset

unset <setting>

The unset command causes a configuration option which has been changed
using the set command to be returned to its default value. For example:

unset linewidth

returns the linewidth to its default value.
Any keyword which can follow the set command to identify a configuration

parameter can also follow the unset command; a complete list of these can be
found under the set command.

11.61 while

while <condition> [loopname <loopname>]

<code>

284 CHAPTER 11. COMMAND REFERENCE

The while command executes a block of commands repeatedly, checking the
provided condition at the start of each iteration. If the condition is true, the
loop executes again. This is similar to a do loop, except that the contents of a
while loop may not be executed at all if the iteration criterion tests false upon
the first iteration. For example, the following code prints out the low-valued
Fibonacci numbers:

i = 1

j = 1

while (j < 50)

{

print j

i = i + j

print i

j = j + i

}

Chapter 12

List of in-built functions

The following is a complete list of the default functions which are built into
Pyxplot. Except where stated otherwise, functions may be assumed to expect
numerical arguments. Where arguments are represented by the letter x, they
must usually be real numbers. Where arguments are represented by the letter z,
they are usually permitted to be complex numbers. Functions which are defined
within Pyxplot’s default modules, but which are not in its default namespace,
are listed in subsections below.

abs(z)
The abs(z) function returns the absolute magnitude of z, where z may be any
general complex number. The output shares the physical dimensions of z, if
any.

acos(z)
The acos(z) function returns the arccosine of z, where z may be any general
dimensionless complex number. The output has physical dimensions of angle.

acosec(z)
The acosec(z) function returns the arccosecant of z, where z may be any general
dimensionless complex number. The output has physical dimensions of angle.

acosech(z)
The acosech(z) function returns the hyperbolic arccosecant of z, where z may
be any general dimensionless complex number. The output is dimensionless.

acosh(z)
The acosh(z) function returns the hyperbolic arccosine of z, where z may be
any general dimensionless complex number. The output is dimensionless.

acot(z)
The acot(z) function returns the arccotangent of z, where z may be any general
dimensionless complex number. The output has physical dimensions of angle.

285

286 CHAPTER 12. LIST OF IN-BUILT FUNCTIONS

acoth(z)
The acoth(z) function returns the hyperbolic arccotangent of z, where z may
be any general dimensionless complex number. The output is dimensionless.

acsc(z)
The acsc(z) function returns the arccosecant of z, where z may be any general
dimensionless complex number. The output has physical dimensions of angle.

acsch(z)
The acsch(z) function returns the hyperbolic arccosecant of z, where z may be
any general dimensionless complex number. The output is dimensionless.

airy ai(z)
The airy ai(z) function returns the Airy function Ai evaluated at z, where z
may be any dimensionless complex number.

airy ai diff(z)
The airy ai diff(z) function returns the first derivative of the Airy function Ai
evaluated at z, where z may be any dimensionless complex number.

airy bi(z)
The airy bi(z) function returns the Airy function Bi evaluated at z, where z
may be any dimensionless complex number.

airy bi diff(z)
The airy bi diff(z) function returns the first derivative of the Airy function Bi
evaluated at z, where z may be any dimensionless complex number.

arg(z)
The arg(z) function returns the argument of the complex number z, which may
have any physical dimensions. The output has physical dimensions of angle.

asec(z)
The asec(z) function returns the arcsecant of z, where z may be any general
dimensionless complex number. The output has physical dimensions of angle.

asech(z)
The asech(z) function returns the hyperbolic arcsecant of z, where z may be
any general dimensionless complex number. The output is dimensionless.

asin(z)
The asin(z) function returns the arcsine of z, where z may be any general
dimensionless complex number. The output has physical dimensions of angle.

asinh(z)
The asinh(z) function returns the hyperbolic arcsine of z, where z may be any
general dimensionless complex number. The output is dimensionless.

287

atan(z)
The atan(z) function returns the arctangent of z, where z may be any general
dimensionless complex number. The output has physical dimensions of angle.

atan2(x, y)
The atan2(x, y) function returns the arctangent of x/y. Unlike atan(y/x),
atan2(x, y) takes account of the signs of both x and y to remove the degen-
eracy between (1, 1) and (−1,−1). x and y must be real numbers, and must
have matching physical dimensions.

atanh(z)
The atanh(z) function returns the hyperbolic arctangent of z, where z may be
any general dimensionless complex number. The output is dimensionless.

besseli(l, x)
The besseli(l, x) function evaluates the lth regular modified spherical Bessel
function at x. l must be a positive dimensionless real integer. x must be a real
dimensionless number.

besselI(l, x)
The besselI(l, x) function evaluates the lth regular modified cylindrical Bessel
function at x. l must be a positive dimensionless real integer. x must be a real
dimensionless number.

besselj(l, x)
The besselj(l, x) function evaluates the lth regular spherical Bessel function at x.
l must be a positive dimensionless real integer. x must be a real dimensionless
number.

besselJ(l, x)
The besselJ(l, x) function evaluates the lth regular cylindrical Bessel function at
x. l must be a positive dimensionless real integer. x must be a real dimensionless
number.

besselk(l, x)
The besselk(l, x) function evaluates the lth irregular modified spherical Bessel
function at x. l must be a positive dimensionless real integer. x must be a real
dimensionless number.

besselK(l, x)
The besselK(l, x) function evaluates the lth irregular modified cylindrical Bessel
function at x. l must be a positive dimensionless real integer. x must be a real
dimensionless number.

bessely(l, x)
The bessely(l, x) function evaluates the lth irregular spherical Bessel function at
x. l must be a positive dimensionless real integer. x must be a real dimensionless
number.

288 CHAPTER 12. LIST OF IN-BUILT FUNCTIONS

besselY(l, x)
The besselY(l, x) function evaluates the lth irregular cylindrical Bessel func-
tion at x. l must be a positive dimensionless real integer. x must be a real
dimensionless number.

beta(a, b)
The beta(a, b) function evaluates the beta function B(a, b), where a and b must
be dimensionless real numbers.

call(f, a)
The call(f, a) function calls the function f with the arguments contained in the
list a.

ceil(x)
The ceil(x) function returns the smallest integer value greater than or equal to
x, where x must be a dimensionless real number.

chr(x)
The chr(x) function returns the character with numerical ASCII code x.

classOf(x)
The classOf(x) function returns the class prototype of the object x, where x
may be of any object type.

cmp(a, b)
The cmp(a, b) function returns 1 if a > b, −1 if a < b and zero if a = b.

cmyk(c,m, y, k)
The cmyk(c,m, y, k) function returns a color object with the specified CMYK
components in the range 0–1.

conjugate(z)
The conjugate(z) function returns the complex conjugate of the complex number
z, which may have any physical dimensions.

copy(o)
The copy(o) function returns a copy of the data structure o, which may be of
any object type. Nested data structures are not copied; see deepcopy(o) for
this.

cos(z)
The cos(z) function returns the cosine of z, where z may be any complex number
and must either have physical dimensions of angle or be a dimensionless number,
in which case it is understood to be measured in radians.

cosec(z)
The cosec(z) function returns the cosecant of z, where z may be any complex

289

number and must either have physical dimensions of angle or be a dimensionless
number, in which case it is understood to be measured in radians.

cosech(z)
The cosech(z) function returns the hyperbolic cosecant of z, where z may be
any complex number and must either have physical dimensions of angle or be a
dimensionless number, in which case it is understood to be measured in radians.

cosh(z)
The cosh(z) function returns the hyperbolic cosine of z, where z may be any
complex number and must either have physical dimensions of angle or be a
dimensionless number, in which case it is understood to be measured in radians.

cot(z)
The cot(z) function returns the cotangent of z, where z may be any complex
number and must either have physical dimensions of angle or be a dimensionless
number, in which case it is understood to be measured in radians.

coth(z)
The coth(z) function returns the hyperbolic cotangent of z, where z may be
any complex number and must either have physical dimensions of angle or be a
dimensionless number, in which case it is understood to be measured in radians.

cross(a, b)
The cross(a, b) function returns the vector cross product of the three-component
vectors a and b.

csc(z)
The csc(z) function returns the cosecant of z, where z may be any complex
number and must either have physical dimensions of angle or be a dimensionless
number, in which case it is understood to be measured in radians.

csch(z)
The csch(z) function returns the hyperbolic cosecant of z, where z may be
any complex number and must either have physical dimensions of angle or be a
dimensionless number, in which case it is understood to be measured in radians.

deepcopy(o)
The deepcopy(o) function returns a deep copy of the data structure o, copying
also any nested data structures. o may be of any object type.

degrees(x)
The degrees(x) function takes a real input which should either have physical
units of angle, or be dimensionless, in which case it is assumed to be measured

290 CHAPTER 12. LIST OF IN-BUILT FUNCTIONS

in radians. The output is the dimensionless number of degrees in x.

diff dx(e, x, step)
The diff dx(e, x, step) function numerically differentiates an expression e with
respect to a at x, using a step size of step. ‘x’ can be replaced by any variable
name of fewer than 16 characters, and so, for example, the diff dfoobar()

function differentiates an expression with respect to the variable foobar. The
expression e may optionally be enclosed in quotes. Both x, and the output
differential, may be complex numbers with any physical unit. The step size
may optionally be omitted, in which case a value of 10−6 is used. The following
example would differentiate the expression x2 with respect to x:
print diff dx("x**2", 1, 1e-6).

ellipticintE(k)
The ellipticintE(k) function evaluates the following complete elliptic integral:

E(k) =

∫ 1

0

√
1− k2t2

1− t2 dt.

ellipticintK(k)
The ellipticintK(k) function evaluates the following complete elliptic integral:

K(k) =

∫ 1

0

dt√
(1− t2)(1− k2t2)

.

ellipticintP(k, n)
The ellipticintP(k, n) function evaluates the following complete elliptic integral:

P (k, n) =

∫ π/2

0

dθ

(1 + n sin2 θ)(1− k2 sin2 θ)
.

erf(x)
The erf(x) function evaluates the error function at x, where x must be a dimen-
sionless real number.

erfc(x)
The erfc(x) function evaluates the complementary error function at x, where x
must be a dimensionless real number.

eval(s)
The eval(s) function evaluates the string expression s and returns the result.

exp(z)
The exp(z) function returns ez, where z can be a complex number but must
either be dimensionless or be an angle.

291

expint(n, x)
The expint(n, x) function evaluates the following integral:

∫ t=∞

t=1

exp(−xt)/tn dt.

n must be a positive real dimensionless integer and x must be a real dimension-
less number.

expm1(x)
The expm1(x) function accurately evaluates exp(x) − 1, where x must be a
dimensionless real number.

factors(x)
The factors(x) function returns a list of the factors of the integer x.

finite(x)
The finite(x) function returns one if x is a finite number, and zero otherwise.

floor(x)
The floor(x) function returns the largest integer value smaller than or equal to
x, where x must be a dimensionless real number.

gamma(x)
The gamma(x) function evaluates the gamma function Γ(x), where x must be
a dimensionless real number.

gcd(...)
The gcd(...) function returns the greatest common divisor (a.k.a. highest com-
mon factor) of its arguments, which should be dimensionless non-zero positive
integers.

globals()
The globals() function returns a dictionary of all currently-defined global vari-
ables.

gray(x)
The gray(x) function returns color object representing a shade of gray with
brightness x in the range 0–1.

grey(x)
The grey(x) function returns color object representing a shade of gray with
brightness x in the range 0–1.

hcf(...)
The hcf(...) function returns the highest common factor (a.k.a. greatest com-
mon divisor) of its arguments, which should be dimensionless non-zero positive
integers.

292 CHAPTER 12. LIST OF IN-BUILT FUNCTIONS

heaviside(x)
The heaviside(x) function returns the Heaviside function, defined to be one for
x ≥ 0 and zero otherwise. x must be a dimensionless real number.

hsb(h, s, b)
The hsb(h, s, b) function returns color object with specified hue, saturation and
brightness in the range 0–1.

hyperg 0F1(c, x)
The hyperg 0F1(c, x) function evaluates the hypergeometric function 0F1(c, x).
All inputs must be dimensionless real numbers. For reference, the implementa-
tion used is GSL’s gsl sf hyperg 0F1 function.

hyperg 1F1(a, b, x)
The hyperg 1F1(a, b, x) function evaluates the hypergeometric function 1F1(a, b, x).
All inputs must be dimensionless real numbers. For reference, the implementa-
tion used is GSL’s gsl sf hyperg 1F1 function.

hyperg 2F0(a, b, x)
The hyperg 2F0(a, b, x) function evaluates the hypergeometric function 2F0(a, b, x).
All inputs must be dimensionless real numbers.For reference, the implementa-
tion used is GSL’s gsl sf hyperg 2F0 function.

hyperg 2F1(a, b, c, x)
The hyperg 2F1(a, b, c, x) function evaluates the hypergeometric function 2F1(a, b, c, x).
All inputs must be dimensionless real numbers. For reference, the implemen-
tation used is GSL’s gsl sf hyperg 2F1 function. This implementation cannot
evaluate the region |x| < 1.

hyperg U(a, b, x)
The hyperg U(a, b, x) function evaluates the hypergeometric function U(a, b, x).
All inputs must be dimensionless real numbers. For reference, the implementa-
tion used is GSL’s gsl sf hyperg U function.

hypot(...)
The hypot(...) function returns the quadrature sum of its arguments,

√
x2 + y2 +

Its arguments must be numerical, but may have any physical dimensions so long
as they match. They can be complex numbers.

Im(z)
The Im(z) function returns the imaginary part of the complex number z, which
may have any physical units. The number returned shares the same physical
units as z.

int dx(e,min,max)
The int dx(e,min,max) function numerically integrates an expression e with
respect to x between min and max. ‘x’ can be replaced by any variable name
of fewer than 16 characters, and so, for example, the int dfoobar() function

293

integrates an expression with respect to the variable foobar. The expression
e may optionally be enclosed in quotes. min and max may have any physical
units, so long as they match, but must be real numbers. The output integral may
be a complex number, and may have any physical dimensions. The following
example would integrate the expression x2 with respect to x between 1 m and
2 m:
print int dx("x**2", 1*unit(m), 2*unit(m)).

jacobi cn(u,m)
The jacobi cn(u,m) function evaluates a Jacobi elliptic function; it returns the
value cosφ where φ is defined by the integral

∫ φ

0

dθ√
1−m sin2 θ

.

jacobi dn(u,m)
The jacobi dn(u,m) function evaluates a Jacobi elliptic function; it returns the

value
√

1−m sin2 θ where φ is defined by the integral

∫ φ

0

dθ√
1−m sin2 θ

.

jacobi sn(u,m)
The jacobi sn(u,m) function evaluates a Jacobi elliptic function; it returns the
value sinφ where φ is defined by the integral

∫ φ

0

dθ√
1−m sin2 θ

.

lambert W0(x)
The lambert W0(x) function evaluates the principal real branch of the Lam-
bert W function, for which W > −1 when x < 0.

lambert W1(x)
The lambert W1(x) function evaluates the secondary real branch of the Lam-
bert W function, for which W < −1 when x < 0.

lcm(...)
The lcm(...) function returns the lowest common multiple of its arguments,
which should be dimensionless positive integers.

ldexp(x, y)
The ldexp(x, y) function returns x times 2y for integer y, where both x and y
must be real.

294 CHAPTER 12. LIST OF IN-BUILT FUNCTIONS

legendreP(l, x)
The legendreP(l, x) function evaluates the lth Legendre polynomial at x, where l
must be a positive dimensionless real integer and x must be a real dimensionless
number.

legendreQ(l, x)
The legendreQ(l, x) function evaluates the lth Legendre function at x, where l
must be a positive dimensionless real integer and x must be a real dimensionless
number.

len(o)
The len(o) function returns the length of the object o. The may be the length
of a string, or the number of entries in a compound data type.

ln(z)
The ln(z) function returns the natural logarithm of z, where z may be any
complex dimensionless number.

locals()
The locals() function returns a dictionary of all currently-defined local variables
in the present scope.

log(z)
The log(z) function returns the natural logarithm of z, where z may be any
complex dimensionless number.

log10(z)
The log10(z) function returns the logarithm to base 10 of z, where z may be
any complex dimensionless number.

logn(x, n)
The logn(x, n) function returns the logarithm of x to base n.

lrange([f],l,[s])
The lrange([f],l,[s]) function returns a vector of numbers between f and l with
uniform multiplicative spacing s. If not specified, f = 1 and s = 2. If two
arguments are specified, these are interpreted as f and l. The arguments f and
l may have any physical units, so long as they match. s must be a dimensionless
number.

matrix(...)
The matrix(...) function creates a new matrix object. See types.matrix.

max(...)
The max(...) function returns the highest-valued of its arguments, which may be
of any object type and may have any physical dimensions, so long as they match.
If either input is complex, the input with the larger magnitude is returned. If a
single vector or list object is supplied, the highest-valued item in the vector or

295

list is returned.

min(...)
The min(...) function returns the lowest-valued of its arguments, where may be
of any object type and may have any physical dimensions, so long as they match.
If either input is complex, the input with the smaller magnitude is returned. If
a single vector or list object is supplied, the lowest-valued item in the vector or
list is returned.

mod(x, y)
The mod(x, y) function returns the remainder of x/y, where x and y may have
any physical dimensions so long as they match but must both be real.

module(...)
The module(...) function creates a new module object. See types.module.

open(x[,y])
The open(x[,y]) function opens the file x with string access mode y, and returns
a file handle object.

ord(s)
The ord(s) function returns the ASCII code of the first character of the string
s.

ordinal(x)
The ordinal(x) function returns an ordinal string, for example, “1st”, “2nd” or
“3rd”, for any positive dimensionless real number x.

pow(x, y)
The pow(x, y) function returns x to the power of y, where x and y may both
be complex numbers and x may have any physical dimensions but y must be
dimensionless. It not not permitted for y to be complex if x is not dimensionless,
since this would lead to an output with complex physical dimensions.

prime(x)
The prime(x) function returns one if floor(x) is a prime number and zero oth-
erwise.

primeFactors(x)
The primeFactors(x) function returns a list of the prime factors of the integer
x.

radians(x)
The radians(x) function takes a real input which should either have physical
units of angle, or be dimensionless, in which case it is assumed to be measured
in degrees. The output is the dimensionless number of radians in x.

296 CHAPTER 12. LIST OF IN-BUILT FUNCTIONS

raise(e, s)
The raise(e, s) function raises the exception e, with error string s. e should be
an exception object; s should be an error message string.

range([f],l,[s])
The range([f],l,[s]) function returns a vector of uniformly-spaced numbers be-
tween f and l, with stepsize s. If not specified, f = 0 and s = 1. If two
arguments are specified, these are interpreted as f and l. The arguments may
have any physical units, so long as they match.

Re(z)
The Re(z) function returns the real part of the complex number z, which may
have any physical units. The number returned shares the same physical units
as z.

rgb(r, g, b)
The rgb(r, g, b) function returns a color object with specified RGB components
in the range 0–1.

romanNumeral(x)
The romanNumeral(x) function returns the Roman numeral representing the
number x, for any positive dimensionless real input less than 10,000.

root(z, n)
The root(z, n) function returns the nth root of z. z may be any complex number,
and may have any physical dimensions. n must be a dimensionless integer.
When complex arithmetic is enabled, and whenever z is positive, this function
is entirely equivalent to pow(z,1/n). However, when z is negative and complex
arithmetic is disabled, the expression pow(z,1/n) may not be evaluated, since it
will in general have a small imaginary part for any finite-precision floating-point
representation of 1/n. The expression root(z,n), on the other hand, may be
evaluated under such conditions, providing that n is an odd integer.

round(x)
The round(x) function rounds the value x to the nearest integer. If x is ex-
actly halfway between integers, it is rounded away from zero. x must be a
dimensionless real number.

sec(z)
The sec(z) function returns the secant of z, where z may be any complex number
and must either have physical dimensions of angle or be a dimensionless number,
in which case it is understood to be measured in radians.

sech(z)
The sech(z) function returns the hyperbolic secant of z, where z may be any
complex number and must either have physical dimensions of angle or be a
dimensionless number, in which case it is understood to be measured in radians.

297

sgn(x)
The sgn(x) function returns 1 if x is greater than zero, -1 if x is less than zero,
and 0 if x equals zero.

sin(z)
The sin(z) function returns the sine of z, where z may be any complex number
and must either have physical dimensions of angle or be a dimensionless number,
in which case it is understood to be measured in radians.

sinc(z)
The sinc(z) function returns the sinc function sin(z)/z for any complex num-
ber z, which may either be dimensionless, in which case it is understood to
be measured in radians, or have physical dimensions of angle. The result is
dimensionless.

sinh(z)
The sinh(z) function returns the hyperbolic sine of z, where z may be any
complex number and must either have physical dimensions of angle or be a
dimensionless number, in which case it is understood to be measured in radians.

sqrt(z)
The sqrt(z) function returns the square root of z, which may be any complex
number and may have any physical dimensions.

sum(...)
The sum(...) function returns the sum of its arguments, which be of any object
type, and may have any physical units, so long as it is possible to add them
together.

tan(z)
The tan(z) function returns the tangent of z, where z may be any complex
number and must either have physical dimensions of angle or be a dimensionless
number, in which case it is understood to be measured in radians.

tanh(z)
The tanh(z) function returns the hyperbolic tangent of z, where z may be
any complex number and must either have physical dimensions of angle or be a
dimensionless number, in which case it is understood to be measured in radians.

texify(s)
The texify(s) function takes a string representation of an algebraic expression
as its input, e.g. “(x/3)**2”, and returns a latex representation of it.

texifyText(s)
The texifyText(s) function returns a string of latex text corresponding to the
supplied text string, with any reserved characters escaped.

298 CHAPTER 12. LIST OF IN-BUILT FUNCTIONS

tophat(x, σ)
The tophat(x, σ) function returns one if |x| ≤ |σ|, and zero otherwise. Both
inputs must be real, but may have any physical dimensions so long as they
match.

typeOf(o)
The typeOf(o) function returns the type of the object o.

unit(. . .)
The unit(. . .) function multiplies a number by a physical unit. The string
inside the brackets should consist of a string of the names of physical units,
multiplied together with the * operator, divided using the / operator, or raised
by numeric powers using the ^ operator. The list may be commenced with a
numeric constant, for example: unit(2*m^2/s).

vector(...)
The vector(...) function creates a new vector object. See types.vector.

zernike(n,m, r, φ)
The zernike(n,m, r, φ) function evaluates the Zernike polynomial Zmn (r, φ), where
m and n are non-negative integers with n ≥ m, r is the radial coordinate in the
range 0 < r < 1 and φ is the azimuthal coordinate.

zernikeR(n,m, r)
The zernikeR(n,m, r) function evaluates the radial Zernike polynomial Rmn (r),
where m and n are non-negative integers with n ≥ m and r is the radial coor-
dinate in the range 0 < r < 1.

zeta(x)
The zeta(x) function evaluates the Riemann zeta function for any dimensionless
number x.

12.0.1 The ast module

The ast module contains specialist functions for astronomy and cosmology.

ast.Lcdm age(H0,ΩM,ΩΛ)
The ast.Lcdm age(H0,ΩM,ΩΛ) function returns the current age of the Universe
in a standard ΛCDM cosmology with specified values for Hubble’s constant, ΩM

and ΩΛ. Hubble’s constant should be specified either with physical units of
recession velocity per unit distance, or as a dimensionless number, assumed to
have implicit units of km/s/Mpc. Suitable input values for a standard cosmology
are: H0 = 70, ΩM = 0.27 and ΩΛ = 0.73. For more details, see David W. Hogg’s
short article Distance measures in cosmology, available online at:
http://arxiv.org/abs/astro-ph/9905116.

ast.Lcdm angscale(z,H0,ΩM,ΩΛ)
The ast.Lcdm angscale(z,H0,ΩM,ΩΛ) function returns the angular scale of the

http://arxiv.org/abs/astro-ph/9905116

299

sky at a redshift of z in a standard ΛCDM cosmology. For details, see the
ast.Lcdm age() function above. The returned value has dimensions of distance
per unit angle.

ast.Lcdm DA(z,H0,ΩM,ΩΛ)
The ast.Lcdm DA(z,H0,ΩM,ΩΛ) function returns the angular size distance of
objects at a redshift of z in a standard ΛCDM cosmology. For details, see the
ast.Lcdm age() function above. The returned value has dimensions of distance.

ast.Lcdm DL(z,H0,ΩM,ΩΛ)
The ast.Lcdm DL(z,H0,ΩM,ΩΛ) function returns the luminosity distance of ob-
jects at a redshift of z in a standard ΛCDM cosmology. For details, see the
ast.Lcdm age() function above. The returned value has dimensions of dis-
tance.

ast.Lcdm DM(z,H0,ΩM,ΩΛ)
The ast.Lcdm DM(z,H0,ΩM,ΩΛ) function returns the proper motion distance
of objects at a redshift of z in a standard ΛCDM cosmology. For details, see the
ast.Lcdm age() function above. The returned value has dimensions of distance.

ast.Lcdm t(z,H0,ΩM,ΩΛ)
The ast.Lcdm t(z,H0,ΩM,ΩΛ) function returns the lookback time to objects at a
redshift of z in a standard ΛCDM cosmology. For details, see the ast.Lcdm age()

function above. The returned value has dimensions of time. To find the age of
the Universe at a redshift of z, this value should be subtracted from the output
of the ast.Lcdm age() function.

ast.Lcdm z(t,H0,ΩM,ΩΛ)
The ast.Lcdm z(t,H0,ΩM,ΩΛ) function returns the redshift corresponding to
a lookback time of t in a standard ΛCDM cosmology. For details, see the
ast.Lcdm age() function above. The returned value is dimensionless.

ast.moonphase(d)
The ast.moonphase(d) function returns the phase of the Moon, with dimensions
of angle, at the time of the supplied date object d. If d is numerical, it is assumed
to be a Unix time.

ast.sidereal time(d)
The ast.sidereal time(d) function returns the sidereal time at Greenwich, with
dimensions of angle, at the time of the supplied date object d. If d is numerical,
it is assumed to be a Unix time. The returned sidereal time is equal to the
right ascension of the stars which are transiting the Greenwich meridian at that
time. This function uses the expression for sidereal time adopted in 1982 by the
International Astronomical Union (IAU), and which is reproduced in Chapter 12
of Jean Meeus’ book Astronomical Algorithms (1998).

300 CHAPTER 12. LIST OF IN-BUILT FUNCTIONS

12.0.2 The colors module

The colors module contains color objects representing all of Pyxplot’s default
colors. It also contains the following functions:

colors.spectrum(spec, norm)
The colors.spectrum(spec, norm) function returns a color representation of the
spectrum spec, normalised to brightness norm. spec should be a function object
that takes a single input (wavelength) with units of length, and may return an
output with arbitrary units.

colors.wavelength(λ,norm)
The colors.wavelength(λ,norm) function returns a color representation of monochro-
matic light at wavelength λ, normalised to brightness norm. A value of norm =
1 is recommended for plotting the complete span of the electromagnetic spec-
trum without colors clipping to white.

12.0.3 The exceptions module

The exceptions module contains the following objects of type exception:

assertion, file, generic, interrupt, key, namespace, numerical, overflow,
range, syntax, type, unit.

To raise an exception with one of these types, the raise function should be
called:

raise(e, s)
The raise(e, s) function raises the exception e, with error string s. e should be
an exception object; s should be an error message string.

12.0.4 The fractals module

fractals.julia(z,zc,m)
The fractals.julia(z,zc,m) function tests whether the point z in the complex
plane lies within the Julia set associated with the point zc in the complex plane.
The expression zn+1 = z2

n+zc is iterated until either |zn| > 2, in which case the
iteration is deemed to have diverged, or until m iterations have been exceeded,
in which case it is deemed to have remained bounded. The number of iterations
required for divergence is returned, or m is returned if the iteration remained
bounded – i.e. the point lies within the numerical approximation to the Julia
set.

fractals.mandelbrot(z,m)
The fractals.mandelbrot(z,m) function tests whether the point z in the complex
plane lies within the Mandelbrot set. The expression zn+1 = z2

n + z0 is iterated
until either |zn| > 2, in which case the iteration is deemed to have diverged,
or until m iterations have been exceeded, in which case it is deemed to have
remained bounded. The number of iterations required for divergence is returned,

301

or m is returned if the iteration remained bounded – i.e. the point lies within
the numerical approximation to the Mandelbrot set.

12.0.5 The os module

os.chdir(x)
The os.chdir(x) function changes working directory to x, which should be a
string.

os.getcwd()
The os.getcwd() function returns the path of the current working directory.

os.getegid()
The os.getegid() function returns the effective group id of the Pyxplot process.

os.geteuid()
The os.geteuid() function returns the effective user id of the Pyxplot process.

os.getgid()
The os.getgid() function returns the group id of the Pyxplot process.

os.gethomedir()
The os.gethomedir() function returns the path of the user’s home directory.

os.gethostname()
The os.gethostname() function returns the system’s host name.

os.getlogin()
The os.getlogin() function returns the system login of the user.

os.getpgrp()
The os.getpgrp() function returns the process group id of the Pyxplot process.

os.getpid()
The os.getpid() function returns the process id of the Pyxplot process.

os.getppid()
The os.getppid() function returns the parent process id of the Pyxplot process.

os.getrealname()
The os.getrealname() function returns the user’s real name.

os.getuid()
The os.getuid() function returns the user id of the Pyxplot process.

302 CHAPTER 12. LIST OF IN-BUILT FUNCTIONS

os.glob(x)
The os.glob(x) function returns a list of files which match the supplied wildcard
x, which should be a string.

os.popen(x,[y])
The os.popen(x,[y]) function opens a pipe to the command x with string access
mode y, and returns a file handle object.

os.stat(x)
The os.stat(x) function returns a dictionary of information about the file x,
which should be a string filename.

os.stderr
The os.stderr function is a file handle for the Pyxplot process’s stderr stream.

os.stdin
The os.stdin function is a file handle for the Pyxplot process’s stdin stream.

os.stdout
The os.stdout function is a file handle for the Pyxplot process’s stdout stream.

os.system(x)
The os.system(x) function executes a command in a subshell.

os.tmpfile()
The os.tmpfile() function returns a file handle for a temporary file.

os.uname()
The os.uname() function returns a dictionary of information about the operating
system.

12.0.6 The os.path module

os.path.atime(x)
The os.path.atime(x) function returns a date object representing the time of
the last access of the file with pathname x.

os.path.ctime(x)
The os.path.ctime(x) function returns a date object representing the time of the
last status change to the file with pathname x.

os.path.exists(x)
The os.path.exists(x) function returns a boolean flag indicating whether a file
with pathname x exists.

303

os.path.expanduser(x)
The os.path.expanduser(x) function returns its argument with ∼s indicating
home directories expanded.

os.path.filesize(x)
The os.path.filesize(x) function returns the size, with physical dimensions of
bytes, of the file with pathname x.

os.path.join(...)
The os.path.join(...) function joins a series of strings intelligently into a path-
name.

os.path.mtime(x)
The os.path.mtime(x) function returns a date object representing the time of
the last modification of the file with pathname x.

12.0.7 The phy module

The phy module contains a selection of physical constants, listed in Chapter 14.
It also contains the following functions:

phy.Bv(ν, T)
The phy.Bv(ν, T) function returns the power emitted by a blackbody of temper-
ature T at frequency ν per unit area, per unit solid angle, per unit frequency. T
should have physical dimensions of temperature, or be a dimensionless number,
in which case it is understood to be a temperature in Kelvin. ν should have
physical dimensions of frequency, or be a dimensionless number, in which case
it is understood to be a frequency measured in Hertz. The output has physical
dimensions of power per unit area per unit solid angle per unit frequency.

phy.Bvmax(T)
The phy.Bvmax(T) function returns the frequency at which the function Bv(ν, T)
reaches its maximum, as calculated by the Wien Displacement Law. The inputs
are subject to the same constraints as above.

12.0.8 The random module

The random module contains function for generating random samples from prob-
ability distributions:

random.binomial(p, n)
The random.binomial(p, n) function returns a random sample from a binomial
distribution with n independent trials and a success probability p. n must be
a real positive dimensionless integer. p must be a dimensionless number in the
range 0 ≤ p ≤ 1.

random.chisq(ν)
The random.chisq(ν) function returns a random sample from a χ-squared distri-

304 CHAPTER 12. LIST OF IN-BUILT FUNCTIONS

bution with ν degrees of freedom, where ν must be a real positive dimensionless
integer.

random.gaussian(σ)
The random.gaussian(σ) function returns a random sample from a Gaussian
(normal) distribution of standard deviation σ and centred upon zero. σ must
be real, but may have any physical units. The returned random sample shares
the physical units of σ.

random.lognormal(ζ, σ)
The random.lognormal(ζ, σ) function returns a random sample from the log
normal distribution centred on ζ, and of width σ. σ must be a real positive
dimensionless number. ζ must be real, but may have any physical units. The
returned random sample shares the physical units of ζ.

random.poisson(n)
The random.poisson(n) function returns a random integer from a Poisson dis-
tribution with mean n, where n must be a real positive dimensionless number.

random.random()
The random.random() function returns a random real number between 0 and 1.

random.tdist(ν)
The random.tdist(ν) function returns a random sample from a t-distribution
with ν degrees of freedom, where ν must be a real positive dimensionless integer.

12.0.9 The stats module

The stats module contains statistical functions:

stats.binomialCDF(k, p, n)
The stats.binomialCDF(k, p, n) function evaluates the probability of getting
fewer than or exactly k successes out of n trials in a binomial distribution with
success probability p. k and n must be positive real integers. p must be a real
number in the range 0 ≤ p ≤ 1.

stats.binomialPDF(k, p, n)
The stats.binomialPDF(k, p, n) function evaluates the probability of getting k
successes out of n trials in a binomial distribution with success probability p.
k and n must be positive real integers. p must be a real number in the range
0 ≤ p ≤ 1.

stats.chisqCDF(x, ν)
The stats.chisqCDF(x, ν) function returns the cumulative probability density at
x in a χ-squared distribution with ν degrees of freedom. ν must be a positive

305

real dimensionless integer. x must be a positive real dimensionless number.

stats.chisqCDFi(P, ν)
The stats.chisqCDFi(P, ν) function returns the point x at which the cumulative
probability density in a χ-squared distribution with ν degrees of freedom is P .
ν must be a positive real dimensionless integer. P must be a real number in the
range 0 ≤ p ≤ 1.

stats.chisqPDF(x, ν)
The stats.chisqPDF(x, ν) function returns the probability density at x in a χ-
squared distribution with ν degrees of freedom. ν must be a positive real di-
mensionless integer. x must be a positive real dimensionless number.

stats.gaussianCDF(x, σ)
The stats.gaussianCDF(x, σ) function evaluates the Gaussian cumulative distri-
bution function of standard deviation σ at x. The distribution is centred upon
x = 0. x and σ must both be real, but may have any physical dimensions so
long as they match.

stats.gaussianCDFi(x, σ)
The stats.gaussianCDFi(x, σ) function evaluates the inverse Gaussian cumula-
tive distribution function of standard deviation σ at x. The distribution is
centred upon x = 0. x and σ must both be real, but may have any physical
dimensions so long as they match.

stats.gaussianPDF(x, σ)
The stats.gaussianPDF(x, σ) function evaluates the Gaussian probability den-
sity function of standard deviation σ at x. The distribution is centred upon
x = 0. x and σ must both be real, but may have any physical dimensions so
long as they match.

stats.lognormalCDF(x, ζ, σ)
The stats.lognormalCDF(x, ζ, σ) function evaluates the log normal cumulative
distribution function of standard deviation σ, centred upon ζ, at x. σ must be
real, positive and dimensionless. x and ζ must both be real, but may have any
physical dimensions so long as they match.

stats.lognormalCDFi(x, ζ, σ)
The stats.lognormalCDFi(x, ζ, σ) function evaluates the inverse log normal cu-
mulative distribution function of standard deviation σ, centred upon ζ, at x. σ
must be real, positive and dimensionless. x and ζ must both be real, but may
have any physical dimensions so long as they match.

stats.lognormalPDF(x, ζ, σ)
The stats.lognormalPDF(x, ζ, σ) function evaluates the log normal probability
density function of standard deviation σ, centred upon ζ, at x. σ must be
real, positive and dimensionless. x and ζ must both be real, but may have any
physical dimensions so long as they match.

306 CHAPTER 12. LIST OF IN-BUILT FUNCTIONS

stats.poissonCDF(x, µ)
The stats.poissonCDF(x, µ) function returns the probability of getting ≤ x from
a Poisson distribution with mean µ, where µ must be real, positive and dimen-
sionless and x must be real and dimensionless.

stats.poissonPDF(x, µ)
The stats.poissonPDF(x, µ) function returns the probability of getting x from
a Poisson distribution with mean µ, where µ must be real, positive and dimen-
sionless and x must be a real dimensionless integer.

stats.tdistCDF(x, ν)
The stats.tdistCDF(x, ν) function returns the cumulative probability density
at x in a t-distribution with ν degrees of freedom. ν must be a positive real
dimensionless integer. x must be a positive real dimensionless number.

stats.tdistCDFi(P, ν)
The stats.tdistCDFi(P, ν) function returns the point x at which the cumulative
probability density in a t-distribution with ν degrees of freedom is P . ν must
be a positive real dimensionless integer. P must be a real number in the range
0 ≤ p ≤ 1.

stats.tdistPDF(x, ν)
The stats.tdistPDF(x, ν) function returns the probability density at x in a t-
distribution with ν degrees of freedom. ν must be a positive real dimensionless
integer. x must be a positive real dimensionless number.

12.0.10 The time module

The time module contains functions for handling objects of type date. For more
information about manipulating times and dates in Pyxplot, see Section 4.11.
Many of the functions below take an optional timezone string as their final argu-
ment. This should be specified in the form Europe/London, America/New York

or Australia/Perth, as used by the tz database. A complete list of available
timezones can be found here: http://en.wikipedia.org/wiki/List_of_tz_

database_time_zones. If universal time is used, the timezone may be specified
as UTC.

time.fromCalendar(year,month, day, hour,min, sec,< timezone >)
The time.fromCalendar(year,month, day, hour,min, sec,< timezone >) func-
tion creates a date object from the specified calendar date. See also the set

calendar and set timezone commands to change the current calendar and
timezone.

time.fromJD(t)
The time.fromJD(t) function creates a date object from the specified numerical
Julian date.

http://en.wikipedia.org/wiki/List_of_tz_database_time_zones
http://en.wikipedia.org/wiki/List_of_tz_database_time_zones

307

time.fromMJD(t)
The time.fromMJD(t) function creates a date object from the specified numer-
ical modified Julian date.

time.fromUnix(t)
The time.fromUnix(t) function creates a date object from the specified numerical
Unix time.

time.interval(t2, t1)
The time.interval(t2, t1) function returns the numerical time interval between
date objects t1 and t2, with physical units of time.

time.intervalStr(t2, t1, format)
The time.intervalStr(t2, t1, format) function returns a string representation of
the time interval elapsed between the first and second supplied date objects.
The third input is used to control the format of the output, with the following
tokens being substituted for:

Token Value
%% A literal % sign.
%d The number of days elapsed, modulo 365.
%D The number of days elapsed.
%h The number of hours elapsed, modulo 24.
%H The number of hours elapsed.
%m The number of minutes elapsed, modulo 60.
%M The number of minutes elapsed.
%s The number of seconds elapsed, modulo 60.
%S The number of seconds elapsed.
%Y The number of years elapsed.

time.now()
The time.now() function creates a date object representing the current time.

time.sleep(t)
The time.sleep(t) function sleeps for t seconds, or for time period t if it has
dimensions of time.

time.sleepUntil(t)
The time.sleepUntil(t) function sleeps until the specified date and time. Its
argument should be a date object.

308 CHAPTER 12. LIST OF IN-BUILT FUNCTIONS

time.string(t, < format >,< timezone >)
The time.string(t, < format >,< timezone >) function returns a string repre-
sentation of the specified date object t. The second input is optional, and may
be used to control the format of the output. If no format string is provided,
then the format
"%a %Y %b %d %H:%M:%S"

is used. In such format strings, the following tokens are substituted for various
parts of the date:

Token Value
%% A literal % sign.
%a Three-letter abbreviated weekday name.
%A Full weekday name.
%b Three-letter abbreviated month name.
%B Full month name.
%C Century number, e.g. 21 for the years 2000-2100.
%d Day of month.
%H Hour of day, in range 00-23.
%I Hour of day, in range 01-12.
%k Hour of day, in range 0-23.
%l Hour of day, in range 1-12.
%m Month number, in range 01-12.
%M Minute, in range 00-59.
%p Either am or pm.
%S Second, in range 00-59.
%y Last two digits of year number.
%Y Year number.

12.0.11 The types module

The types module contains prototype objects for each of Pyxplot’s data types.
Each may be called like a function to create a new object of the specified type:

types.boolean(...)
The types.boolean(...) prototype takes any of the following combinations of
arguments:

• none – returns false.

• any object – returns false for zero, an empty string, a null object, or an
empty data structure. Otherwise returns true.

309

types.color(...)
The types.color(...) prototype takes any of the following combinations of argu-
ments:

• none – returns black.

• a color – returns a copy of that color.

• a number – returns the color at the specified position in the present
palette.

types.date(...)
The types.date(...) prototype takes any of the following combinations of argu-
ments:

• none – returns the current time.

• a date – returns a copy of that date.

types.dictionary(...)
The types.dictionary(...) prototype takes any of the following combinations of
arguments:

• none – returns an empty dictionary.

• a dictionary – returns a deep copy of the supplied dictionary.

types.exception(...)
The types.exception(...) prototype takes any of the following combinations of
arguments:

• a string – returns an exception type with the specified name.

• an exception – returns a copy of the supplied exception type.

types.fileHandle(...)
The types.fileHandle(...) prototype takes any of the following combinations of
arguments:

• none – returns a file handle of a temporary file.

• a file handle – returns a copy of the supplied file handle.

types.function(...)
The types.function(...) prototype takes any of the following combinations of
arguments:

• Cannot be called. Functions should be created using the syntax f(x)=...

310 CHAPTER 12. LIST OF IN-BUILT FUNCTIONS

types.instance(...)
The types.instance(...) prototype takes any of the following combinations of
arguments:

• none – returns an empty module.

• a module or instance – returns a deep copy of the supplied module or
instance.

types.list(...)
The types.list(...) prototype takes any of the following combinations of argu-
ments:

• none – returns an empty list.

• a list – returns a deep copy of the supplied list.

• a vector – returns a list representation of the supplied vector.

• a list of arguments returns its arguments as a list.

types.matrix(...)
The types.matrix(...) prototype takes any of the following combinations of ar-
guments:

• none – returns a one-by-one zero matrix.

• a pair of numbers – returns a zero matrix of the specified dimensions.
The first number is the number of rows, and the second the number of
columns.

• a matrix – returns a copy of the supplied matrix.

• one or more vectors, or a list of vectors – converts the supplied
vector(s) into the columns of a new matrix object.

• one or more lists, or a list of lists – converts the supplied list(s) into
the rows of a new matrix object, providing all the elements are numerical
and have matching units.

types.module(...)
The types.module(...) prototype takes any of the following combinations of
arguments:

• none – returns an empty module.

• a module – returns a deep copy of the supplied module.

types.null(...)
The types.null(...) prototype takes any of the following combinations of argu-
ments:

• none – returns a null object.

311

types.number(...)
The types.number(...) prototype takes any of the following combinations of
arguments:

• none – returns zero.

• a number – returns that number.

• a boolean – returns zero or one.

• a string – converts the string to a number if it is in a valid format, or
returns an error if not.

types.string(...)
The types.string(...) prototype takes any of the following combinations of argu-
ments:

• none – returns an empty string.

• any object – returns a string representation of the object.

types.type(...)
The types.type(...) prototype takes any of the following combinations of argu-
ments:

• Cannot be called. New data types cannot be created except by instanti-
ating modules.

types.vector(...)
The types.vector(...) prototype takes any of the following combinations of ar-
guments:

• none – returns the vector [0].

• a number – returns a zero vector with the specified number of dimensions.

• a vector – returns a copy of the supplied vector.

• a list – converts the supplied list to a vector, providing all of its elements
are numerical and have consistent units.

• a list of arguments returns its arguments as a vector, providing they
are all numerical and have consistent units.

312 CHAPTER 12. LIST OF IN-BUILT FUNCTIONS

Chapter 13

List of data types

The following is a list of Pyxplot’s data types:

• boolean

• color

• date

• dictionary

• exception

• fileHandle

• function

• instance

• list

• matrix

• module

• null

• number

• string

• type

• vector

Each of these data types has a prototype object in the module types, which
can be called like a function to create a new object of the type. See Sec-
tion 12.0.11 for details of the arguments accepted by each prototype.

All objects in Pyxplot have methods that can be called on them, using the
generic syntax:

object.methodName(arguments)

313

314 CHAPTER 13. LIST OF DATA TYPES

Some methods are common to all objects. For example, all objects have a
method str() which produces a string representation of the object, as used by
the print command. They also all have a methods() method, which returns a
list of the names of all of the methods available for the object. For example:

pyxplot> pi.type()

<data type: number>
pyxplot> "hello world".methods

methods() returns a list of the methods of an object.

pyxplot> [3,2,1].len()

3

pyxplot> time.fromCalendar(2000,1,1,0,0,0).toUnix()

946684800

As the above examples show, printing a method object returns brief documen-
tation about it. The sections below list the methods of each data type.

13.1 Methods common to all data types

class()
The class() method returns the class prototype of an object.

contents()
The contents() method returns a list of all the methods and internal variables
of an object.

data()
The data() method returns a list of all the internal variables (not methods) of
an object.

methods()
The methods() method returns a list of the methods of an object.

str()
The str() method returns a string representation of an object.

type()
The type() method returns the type of an object.

13.2 The boolean type

The boolean type has no methods other than those common to all types. Ob-
jects of type boolean have no methods other than those common to all types.

13.3. THE COLOR TYPE 315

13.3 The color type

componentsCMYK()
The componentsCMYK() method returns a vector CMYK representation of a
color.

componentsHSB()
The componentsHSB() method returns a vector HSB representation of a color.

componentsRGB()
The componentsRGB() method returns a vector RGB representation of a color.

toCMYK()
The toCMYK() method returns color object containing a CMYK representation
of a color.

toHSB()
The toHSB() method returns color object containing an HSB representation of
a color.

toRGB()
The toRGB() method returns color object containing an RGB representation of
a color.

13.4 The date type

For more information about manipulating dates in Pyxplot, see Section 4.11.
For more information about manipulating times and dates in Pyxplot, see Sec-
tion 4.11. Many of the methods listed below take an optional timezone string
as their final argument. This should be specified in the form Europe/London,
America/New York or Australia/Perth, as used by the tz database. A com-
plete list of available timezones can be found here: http://en.wikipedia.

org/wiki/List_of_tz_database_time_zones. If universal time is used, the
timezone may be specified as UTC.

str(< format >,< timezone >)
The str(< format >,< timezone >) method converts a date object to a string
with an optional format string supplied as an argument (see the time.string()
function).

toDayOfMonth(< timezone >)
The toDayOfMonth(< timezone >) method returns the day of the month of a
date object in the current calendar.

http://en.wikipedia.org/wiki/List_of_tz_database_time_zones
http://en.wikipedia.org/wiki/List_of_tz_database_time_zones

316 CHAPTER 13. LIST OF DATA TYPES

toDayWeekName(< timezone >)
The toDayWeekName(< timezone >) method returns the name of the day of
the week of a date object.

toDayWeekNum(< timezone >)
The toDayWeekNum(< timezone >) method returns the day of the week (1–7)
of a date object.

toHour(< timezone >)
The toHour(< timezone >) method returns the integer hour component (0–23)
of a date object.

toJD()
The toJD() method converts a date object to a numerical Julian date.

toMinute(< timezone >)
The toMinute(< timezone >) method returns the integer minute component
(0–59) of a date object.

toMJD()
The toMJD() method converts a date object to a modified Julian date.

toMonthName(< timezone >)
The toMonthName(< timezone >) method returns the name of the month in
which a date object falls.

toMonthNum(< timezone >)
The toMonthNum(< timezone >) method returns the number (1–12) of the
month in which a date object falls.

toSecond(< timezone >)
The toSecond(< timezone >) method returns the seconds component (0–60) of
a date object, including the non-integer component.

toUnix()
The toUnix() method converts a date object to a Unix time.

toYear(< timezone >)
The toYear(< timezone >) method returns the year in which a date object falls
in the current calendar.

13.5 The dictionary type

delete(s)
The delete(s) method deletes any element with string key s from the dictionary.

13.6. THE EXCEPTION TYPE 317

hasKey(x)
The hasKey(x) method returns a boolean indicating whether the key x exists
in the dictionary.

items()
The items() method returns a list of the [key,value] pairs in a dictionary.

keys()
The keys() method returns a list of the keys defined in a dictionary.

len()
The len() method returns the number of entries in a dictionary.

values()
The values() method returns a list of the values in a dictionary.

13.6 The exception type

raise(x)
The raise(x) method raises an exception with error message string x.

13.7 The fileHandle type

close()
The close() method closes a file handle.

dump(x)
The dump(x) method stores a typeable ASCII representation of the object x
to a file. Note that this method has no checking for recursive hierarchical data
structures.

eof()
The eof() method returns a boolean flag to indicate whether the end of a file
has been reached.

flush()
The flush() method flushes any buffered data which has not yet physically been
written to a file.

getPos()
The getPos() method returns a file handle’s current position in a file.

isOpen()
The isOpen() method returns a boolean flag indicating whether a file is open.

318 CHAPTER 13. LIST OF DATA TYPES

read()
The read() method returns the contents of a file as a string.

readline()
The readline() method returns a single line of a file as a string.

readlines()
The readlines() method returns the lines of a file as a list of strings.

setPos(x)
The setPos(x) method sets a file handle’s current position in a file.

write(x)
The write(x) method writes the string x to a file.

13.8 The function type

Objects of type function have no methods other than those common to all
types.

13.9 The instance type

delete(s)
The delete(s) method deletes any element with string key s from the instance.

hasKey(x)
The hasKey(x) method returns a boolean indicating whether the key x exists
in the instance.

items()
The items() method returns a list of the [key,value] pairs in a instance.

keys()
The keys() method returns a list of the keys defined in a instance.

len()
The len() method returns the number of entries in a instance.

values()
The values() method returns a list of the values in a instance.

13.10. THE LIST TYPE 319

13.10 The list type

append(x)
The append(x) method appends the object x to a list and returns the new list.

count(x)
The count(x) method returns the number of items in a list that equal x.

extend(x)
The extend(x) method appends the members of a list or vector x to the operand
and returns the new list.

filter(f)
The filter(f) method takes a pointer to a function of one argument, f(a). It
calls the function for every element of the list, and returns a new list of those
elements for which f(a) tests true.

index(x)
The index(x) method returns the index of the first element of a list that equals
x, or −1 if no elements match.

insertn, x)
The insertn, x) method inserts the number x into a list at position n, and returns
the new list.

len()
The len() method returns the number of elements in a list.

map(f)
The map(f) method takes a pointer to a function of one argument, f(a). It
calls the function for every element of the list, and returns a list of the results.

max()
The max() method returns the highest-valued item in a list.

min()
The min() method returns the lowest-valued item in a list.

pop()
The pop() method returns the last item in a list, and removes it from the list.

reduce(f)
The reduce(f) method takes a pointer to a function of two arguments. It first
calls f(a, b) on the first two elements of the list, and then continues through the
list calling f(a, b) on the result and the next item in the list. The final result is

320 CHAPTER 13. LIST OF DATA TYPES

returned.

reverse()
The reverse() method reverses the order of the members of a list, and returns
the new list.

sort()
The sort() method sorts the members of a list into ascending order, and returns
the new list.

sortOn(f)
The sortOn(f) method sorts the members of a list using the user-supplied func-
tion f(a, b) to determine the sort order. f should return 1, 0 or −1 depending
whether a > b, a = b or a < b.

sortOnElement(n)
The sortOnElement(n) method sorts a list of lists on the nth element of each
sublist. If n is negative, it counts from the final item of each list, n = −1 being
the last item.

vector()
The vector() method returns the elements in a list as a vector.

13.11 The matrix type

det()
The det() method returns the determinant of a square matrix.

diagonal()
The diagonal() method returns a boolean indicating whether a matrix is diag-
onal.

eigenvalues()
The eigenvalues() method returns a vector containing the eigenvalues of a square
symmetric matrix.

eigenvectors()
The eigenvectors() method returns a list of the eigenvectors of a square sym-
metric matrix.

inv()
The inv() method returns the inverse of a square matrix.

size()
The size() method returns the dimensions of a matrix.

13.12. THE MODULE TYPE 321

symmetric()
The symmetric() method returns a boolean indicating whether a matrix is sym-
metric.

transpose()
The transpose() method returns the transpose of a matrix.

13.12 The module type

delete(s)
The delete(s) method deletes any element with string key s from the module.

hasKey(x)
The hasKey(x) method returns a boolean indicating whether the key x exists
in the module.

items()
The items() method returns a list of the [key,value] pairs in a module.

keys()
The keys() method returns a list of the keys defined in a module.

len()
The len() method returns the number of entries in a module.

values()
The values() method returns a list of the values in a module.

13.13 The null type

Objects of type null have no methods other than those common to all types.

13.14 The number type

Objects of type number have no methods other than those common to all types.

13.15 The string type

append(x)
The append(x) method appends the string x to the end of a string.

beginsWith(x)
The beginsWith(x) method returns a boolean indicating whether a string begins
with the substring x.

322 CHAPTER 13. LIST OF DATA TYPES

endsWith(x)
The endsWith(x) method returns a boolean indicating whether a string ends
with the substring x.

find(x)
The find(x) method returns the position of the first occurrence of x in a string,
or −1 if it is not found.

findAll(x)
The findAll(x) method returns a list of the positions where the substring x
occurs in a string.

isalnum()
The isalnum() method returns a boolean indicating whether all of the characters
of a string are alphanumeric.

isalpha()
The isalpha() method returns a boolean indicating whether all of the characters
of a string are alphabetic.

isdigit()
The isdigit() method returns a boolean indicating whether all of the characters
of a string are numeric.

len()
The len() method returns the length of a string.

lower()
The lower() method converts a string to lowercase.

lstrip()
The lstrip() method strips whitespace off the beginning of a string.

split()
The split() method returns a list of all the whitespace-separated words in a
string.

splitOn(...)
The splitOn(...) method splits a string whenever it encounters any of the sub-
strings supplied as arguments, and returns a list of the split string segments.

strip()
The strip() method strips whitespace off the beginning and end of a string.

rstrip()
The rstrip() method strips whitespace off the end of a string.

13.16. THE TYPE TYPE 323

upper()
The upper() method converts a string to uppercase.

13.16 The type type

Objects of type type have no methods other than those common to all types.

13.17 The vector type

append(x)
The append(x) method appends the number x to a vector and returns the new
vector.

extend(x)
The extend(x) method appends the members of a list or vector x to the operand
and returns the new vector.

filter(f)
The filter(f) method takes a pointer to a function of one argument, f(a). It
calls the function for every element of the vector, and returns a new vector of
those elements for which f(a) tests true.

insert(n, x)
The insert(n, x) method inserts the number x into a vector at position n, and
returns the new vector.

len()
The len() method returns the number of elements in a vector.

list()
The list() method returns the elements in a vector as a list.

map(f)
The map(f) method takes a pointer to a function of one argument, f(a). It
calls the function for every element of the vector, and returns a vector of the
results.

norm()
The norm() method returns the quadrature sum of the elements in a vector.

reduce(f)
The reduce(f) method takes a pointer to a function of two arguments. It first
calls f(a, b) on the first two elements of the vector, and then continues through
the vector calling f(a, b) on the result and the next item in the vector. The final
result is returned.

324 CHAPTER 13. LIST OF DATA TYPES

reverse()
The reverse() method reverses the order of the elements of a vector, and returns
the new vector.

sort()
The sort() method sorts the elements of a vector into ascending order, and
returns the new vector.

Chapter 14

List of physical constants

The following table lists all of the physical constants which are defined by default
in Pyxplot:

325

326 CHAPTER 14. LIST OF PHYSICAL CONSTANTS

N
a
m

e
D

e
sc

ri
p

ti
o
n

A
p

p
ro

x
im

a
te

V
a
lu

e
e

e
2
.7

1
8
2
8
1
8

e
u
l
e
r

T
h

e
E

u
le

r
co

n
st

a
n
t

0
.5

7
7
2
1
5
6
6

f
a
l
s
e

B
o
ol

ea
n

tr
u

th
va

lu
e

0
g
o
l
d
e
n
R
a
t
i
o

T
h

e
go

ld
en

ra
ti

o
1.

6
1
8
0
3
4

i
T

h
e

sq
u

ar
e-

ro
o
t

o
f
−

1
i

p
h
y
.
a
l
p
h
a

T
h

e
fi

n
e-

st
ru

ct
u

re
co

n
st

a
n
t

0
.0

0
7
2
9
7
3
5
2
5

p
h
y
.
c

T
h

e
sp

ee
d

o
f

li
g
h
t

2
9
9
7
9
2
4
5
8

m
/s

p
h
y
.
e
p
s
i
l
o
n
0

T
h

e
p

er
m

it
ti

v
it

y
o
f

fr
ee

sp
a
ce

8
.8

5
4
1
8
7
8
2
×

1
0
−

1
2

F
/m

p
h
y
.
G

T
h

e
gr

av
it

a
ti

o
n

a
l

co
n

st
a
n
t

6
.6

7
3
×

1
0−

1
1

m
3
/k

g
/s

2

p
h
y
.
g

T
h

e
m

ea
n

te
rr

es
tr

ia
l

a
cc

el
er

a
ti

o
n

d
u

e
to

g
ra

v
it

y
9
.8

0
6
6
5

m
/
s2

p
h
y
.
h

T
h

e
P

la
n

ck
co

n
st

a
n
t

6
.6

2
6
0
6
8
9
6
×

1
0
−

3
4

J
s

p
h
y
.
h
b
a
r

T
h

e
P

la
n

ck
co

n
st

a
n
t
/

2
π

1
.0

5
4
5
7
1
6
3
×

1
0
−

3
4

J
s

p
h
y
.
k
B

T
h

e
B

ol
tz

m
a
n

n
co

n
st

a
n
t

1.
3
8
0
6
5
0
4
×

1
0
−

2
3

J
/K

p
h
y
.
L
s
u
n

T
h

e
lu

m
in

o
si

ty
o
f

th
e

S
u

n
3
.8

3
9
×

1
02

6
W

p
h
y
.
M
s
u
n

T
h

e
m

as
s

o
f

th
e

S
u

n
1.

9
8
8
9
2
×

1
0

3
0

k
g

p
h
y
.
m
u
0

T
h

e
p

er
m

ea
b

il
it

y
o
f

fr
ee

sp
a
ce

1.
2
5
6
6
3
7
0
6
×

1
0
−

6
N
/
A

2

p
h
y
.
m
u
b

T
h

e
B

oh
r

m
a
g
n

et
o
n

9.
2
7
4
0
0
8
9
9
×

1
0
−

2
4

J
/
T

p
h
y
.
m
e

T
h

e
m

as
s

o
f

th
e

el
ec

tr
o
n

9.
1
0
9
3
8
1
8
8
×

1
0
−

3
1

k
g

p
h
y
.
m
m
u
o
n

T
h

e
m

as
s

o
f

th
e

m
u

o
n

1
.8

8
3
5
3
1
0
9
×

1
0
−

2
8

k
g

p
h
y
.
m
n

T
h

e
m

as
s

o
f

th
e

n
eu

tr
o
n

1.
6
7
4
9
2
7
1
6
×

1
0
−

2
7

k
g

p
h
y
.
m
p

T
h

e
m

as
s

o
f

th
e

p
ro

to
n

1.
6
7
2
6
2
1
5
8
×

1
0
−

2
7

k
g

p
h
y
.
m
u

T
h

e
u

n
ifi

ed
m

a
ss

co
n

st
a
n
t

1.
6
6
0
5
3
8
7
8
×

1
0
−

2
7

k
g

p
h
y
.
N
A

A
vo

ga
d

ro
’s

n
u

m
b

er
6
.0

2
2
1
4
1
9
9
×

1
0

2
3

m
o
l−

1

p
h
y
.
q

T
h

e
fu

n
d

a
m

en
ta

l
ch

a
rg

e
1.

6
0
2
1
7
6
4
9
×

1
0
−

1
9

C
p
h
y
.
R

T
h

e
ga

s
co

n
st

a
n
t

8
.3

1
4
4
7
2

J
/
K
/
m

o
l

p
h
y
.
R
s
u
n

T
h

e
ra

d
iu

s
o
f

th
e

S
u

n
69

5
5
0
0
0
0
0

m
p
h
y
.
R
y

T
h

e
R

y
d

b
er

g
co

n
st

a
n
t

10
9
7
3
7
3
2

m
−

1

327
N

a
m

e
D

e
sc

ri
p

ti
o
n

A
p

p
ro

x
im

a
te

V
a
lu

e
p
h
y
.
s
i
g
m
a

T
h

e
S

te
fa

n
-B

o
lt

zm
a
n

n
co

n
st

a
n
t

5
.6

7
0
4
0
0
4
7
×

1
0
−

8
k
g
/s

3
/K

4

p
i

π
3.

1
4
1
5
9
2
7

t
r
u
e

B
o
ol

ea
n

tr
u

th
va

lu
e

1
v
e
r
s
i
o
n

P
y
x
p

lo
t

ve
rs

io
n

st
ri

n
g

“
0
.9

.2
”

328 CHAPTER 14. LIST OF PHYSICAL CONSTANTS

Chapter 15

List of physical units

The following table lists all of the physical units which Pyxplot recognises by
default. Each unit may be referred to by either a long or an abbreviated name,
and both of these have singular and plural forms. Some units also have fur-
ther alternative names: for example, units such as the meter which are spelt
differently in British English may be spelt in either way.

329

330 CHAPTER 15. LIST OF PHYSICAL UNITS

N
a
m

e
F
u

ll
A

b
b

re
v

U
n

it
o
f

si
n

g
.

p
l.

si
n

g
.

p
l.

a
c
r
e

a
c
r
e
s

a
c
r
e

a
c
r
e
s

a
re

a
a
m
p
e
r
e

a
m
p
e
r
e
s

A
A

cu
rr

en
t

A
ls

o
k
n

o
w

n
a
s

th
e
a
m
p

a
n

d
th

e
a
m
p
s
.

a
n
g
s
t
r
o
m

a
n
g
s
t
r
o
m
s

a
n
g

a
n
g

le
n

g
th

a
r
c
m
i
n
u
t
e

a
r
c
m
i
n
u
t
e
s

a
r
c
m
i
n

a
r
c
m
i
n
s

a
n

g
le

a
r
c
s
e
c
o
n
d

a
r
c
s
e
c
o
n
d
s

a
r
c
s
e
c

a
r
c
s
e
c
s

a
n

g
le

a
r
e

a
r
e
s

a
r
e

a
r
e
s

a
re

a
a
s
t
r
o
n
o
m
i
c
a
l
u
n
i
t

a
s
t
r
o
n
o
m
i
c
a
l
u
n
i
t
s

A
U

A
U

le
n

g
th

a
t
m
o
s
p
h
e
r
e

a
t
m
o
s
p
h
e
r
e
s

a
t
m

a
t
m
s

p
re

ss
u

re
b
a
r

b
a
r
s

b
a
r

b
a
r
s

p
re

ss
u

re
b
a
r
l
e
y
c
o
r
n

b
a
r
l
e
y
c
o
r
n
s

b
a
r
l
e
y
c
o
r
n

b
a
r
l
e
y
c
o
r
n
s

le
n

g
th

b
a
r
n

b
a
r
n
s

b
a
r
n

b
a
r
n
s

a
re

a
b
a
r
y
e

b
a
r
y
e
s

B
a

B
a

p
re

ss
u

re
b
a
t
h

b
a
t
h
s

b
a
t
h

b
a
t
h
s

vo
lu

m
e

b
e
c
q
u
e
r
e
l

b
e
c
q
u
e
r
e
l

B
q

B
q

fr
eq

u
en

cy
b
i
l
l
i
o
n
e
l
e
c
t
r
o
n
v
o
l
t
s

b
i
l
l
i
o
n
e
l
e
c
t
r
o
n
v
o
l
t
s

B
e
V

B
e
V

en
er

g
y

b
i
t

b
i
t
s

b
i
t

b
i
t
s

in
fo

rm
a
ti

o
n

co
n
te

n
t

B
r
i
t
i
s
h

T
h
e
r
m
a
l

U
n
i
t

B
r
i
t
i
s
h

T
h
e
r
m
a
l

U
n
i
t
s

B
T
U

B
T
U

en
er

g
y

b
u
s
h
e
l
U
K

b
u
s
h
e
l
s
U
K

b
u
s
h
e
l
U
K

b
u
s
h
e
l
s
U
K

vo
lu

m
e

(U
K

im
p

er
ia

l)
b
u
s
h
e
l
U
S

b
u
s
h
e
l
s
U
S

b
u
s
h
e
l
U
S

b
u
s
h
e
l
s
U
S

vo
lu

m
e

(U
S

cu
st

o
m

a
ry

)
b
y
t
e

b
y
t
e
s

B
B

in
fo

rm
a
ti

o
n

co
n
te

n
t

c
a
b
l
e

c
a
b
l
e
s

c
a
b
l
e

c
a
b
l
e
s

le
n

g
th

c
a
l
o
r
i
e

c
a
l
o
r
i
e
s

c
a
l

c
a
l

en
er

g
y

c
a
n
d
e
l
a

c
a
n
d
e
l
a
s

c
d

c
d

li
g
h
t

in
te

n
si

ty
c
a
n
d
l
e
p
o
w
e
r

c
a
n
d
l
e
p
o
w
e
r

c
a
n
d
l
e
p
o
w
e
r

c
a
n
d
l
e
p
o
w
e
r

li
g
h
t

in
te

n
si

ty

331
N

a
m

e
F
u

ll
A

b
b

re
v

U
n
it

o
f

si
n

g
.

p
l.

si
n

g
.

p
l.

c
a
r
a
t

c
a
r
a
t
s

C
D

C
D
s

m
a
ss

c
e
n
t
i
m
e
t
r
e

c
e
n
t
i
m
e
t
r
e
s

c
m

c
m

le
n

g
th

c
h
a
i
n

c
h
a
i
n
s

c
h
a
i
n

c
h
a
i
n
s

le
n

g
th

c
l
o

c
l
o
s

c
l
o

c
l
o
s

th
er

m
a
l

in
su

la
ti

o
n

c
o
u
l
o
m
b

c
o
u
l
o
m
b
s

C
C

ch
a
rg

e
c
u
b
i
c
c
e
n
t
i
m
e
t
r
e

c
u
b
i
c
c
e
n
t
i
m
e
t
r
e
s

c
u
b
i
c
c
m

c
u
b
i
c
c
m

vo
lu

m
e

c
u
b
i
c
f
o
o
t

c
u
b
i
c
f
e
e
t

c
u
b
i
c
f
t

c
u
b
i
c
f
t

vo
lu

m
e

c
u
b
i
c
i
n
c
h

c
u
b
i
c
i
n
c
h
e
s

c
u
b
i
c
i
n

c
u
b
i
c
i
n

vo
lu

m
e

c
u
b
i
c
m
e
t
r
e

c
u
b
i
c
m
e
t
r
e
s

c
u
b
i
c
m

c
u
b
i
c
m

vo
lu

m
e

c
u
b
i
t

c
u
b
i
t
s

c
u
b
i
t

c
u
b
i
t
s

le
n

g
th

c
u
p
U
S

c
u
p
s
U
S

c
u
p
U
S

c
u
p
s
U
S

vo
lu

m
e

(U
S

cu
st

o
m

a
ry

)
d
a
y

d
a
y
s

d
a
y

d
a
y
s

ti
m

e
d
e
c
i
m
e
t
r
e

d
e
c
i
m
e
t
r
e
s

d
m

d
m

le
n

g
th

d
e
g
r
e
e

d
e
g
r
e
e
s

d
e
g

d
e
g

a
n

g
le

d
e
g
r
e
e
c
e
l
s
i
u
s

d
e
g
r
e
e
s
c
e
l
s
i
u
s

o
C

o
C

te
m

p
er

a
tu

re
A

ls
o

k
n

o
w

n
a
s

th
e
d
e
g
r
e
e
c
e
n
t
i
g
r
a
d
e
,

th
e
d
e
g
r
e
e
s
c
e
n
t
i
g
r
a
d
e
,

th
e
c
e
n
t
i
g
r
a
d
e

a
n

d
th

e
c
e
l
s
i
u
s
.

d
e
g
r
e
e
f
a
h
r
e
n
h
e
i
t

d
e
g
r
e
e
s
f
a
h
r
e
n
h
e
i
t

o
F

o
F

te
m

p
er

a
tu

re
A

ls
o

k
n

o
w

n
a
s

th
e
f
a
h
r
e
n
h
e
i
t
.

d
i
o
p
t
r
e

d
i
o
p
t
r
e
s

d
i
o
p
t
r
e

d
i
o
p
t
r
e
s

le
n

s
p

ow
er

d
r
a
c
h
m

d
r
a
c
h
m
s

d
r
a
c
h
m

d
r
a
c
h
m
s

m
a
ss

d
y
n
e

d
y
n
e
s

d
y
n

d
y
n

fo
rc

e
e
a
r
t
h
m
a
s
s

e
a
r
t
h
m
a
s
s
e
s

M
e
a
r
t
h

M
e
a
r
t
h

m
a
ss

e
a
r
t
h
r
a
d
i
u
s

e
a
r
t
h
r
a
d
i
i

R
e
a
r
t
h

R
e
a
r
t
h

le
n

g
th

e
l
e
c
t
r
o
n
v
o
l
t

e
l
e
c
t
r
o
n
v
o
l
t
s

e
V

e
V

en
er

g
y

e
r
g

e
r
g
s

e
r
g

e
r
g

en
er

g
y

332 CHAPTER 15. LIST OF PHYSICAL UNITS

N
a
m

e
F
u

ll
A

b
b

re
v

U
n

it
o
f

si
n

g
.

p
l.

si
n

g
.

p
l.

e
u
r
o

e
u
r
o
s

e
u
r
o

e
u
r
o
s

co
st

f
a
r
a
d

f
a
r
a
d

F
F

ca
p

a
ci

ta
n

ce
f
a
t
h
o
m

f
a
t
h
o
m
s

f
a
t
h
o
m

f
a
t
h
o
m
s

le
n

g
th

f
i
r
k
i
n
U
K
a
l
e

f
i
r
k
i
n
s
U
K
a
l
e

f
i
r
k
i
n
U
K
a
l
e

f
i
r
k
i
n
s
U
K
a
l
e

vo
lu

m
e

f
i
r
k
i
n
w
i
n
e

f
i
r
k
i
n
s
w
i
n
e

f
i
r
k
i
n
U
K
w
i
n
e

f
i
r
k
i
n
s
U
K
w
i
n
e

vo
lu

m
e

f
l
u
i
d
o
u
n
c
e
U
K

f
l
u
i
d
o
u
n
c
e
U
K

f
l
o
z
U
K

f
l
o
z
U
K

vo
lu

m
e

(U
K

im
p

er
ia

l)
f
l
u
i
d
o
u
n
c
e
U
S

f
l
u
i
d
o
u
n
c
e
U
S

f
l
o
z
U
S

f
l
o
z
U
S

vo
lu

m
e

(U
S

cu
st

o
m

a
ry

)
f
o
o
t

f
e
e
t

f
t

f
t

le
n

g
th

f
u
r
l
o
n
g

f
u
r
l
o
n
g
s

f
u
r
l
o
n
g

f
u
r
l
o
n
g
s

le
n

g
th

g
a
l
l
o
n
U
K

g
a
l
l
o
n
s
U
K

g
a
l
l
o
n
U
K

g
a
l
l
o
n
s
U
K

vo
lu

m
e

(U
K

im
p

er
ia

l)
g
a
l
l
o
n
U
S

g
a
l
l
o
n
s
U
S

g
a
l
l
o
n
U
S

g
a
l
l
o
n
s
U
S

vo
lu

m
e

(U
S

cu
st

o
m

a
ry

)
g
a
u
s
s

g
a
u
s
s

G
G

m
a
g
n

et
ic

fi
el

d
g
i
b
i
b
i
t

g
i
b
i
b
i
t
s

G
i
b

G
i
b

in
fo

rm
a
ti

o
n

co
n
te

n
t

g
i
b
i
b
y
t
e

g
i
b
i
b
y
t
e
s

G
i
B

G
i
B

in
fo

rm
a
ti

o
n

co
n
te

n
t

g
r
a
i
n

g
r
a
i
n
s

g
r
a
i
n

g
r
a
i
n
s

m
a
ss

g
r
a
m

g
r
a
m
s

g
g

m
a
ss

g
r
a
m
m
e

g
r
a
m
m
e
s

g
g

m
a
ss

g
r
a
y

g
r
a
y

G
y

G
y

ra
d

ia
ti

o
n

d
o
se

h
e
c
t
a
r
e

h
e
c
t
a
r
e
s

h
e
c
t
a
r
e

h
e
c
t
a
r
e
s

a
re

a
h
e
n
r
y

h
e
n
r
y

H
H

in
d

u
ct

a
n

ce
h
e
r
t
z

h
e
r
t
z

H
z

H
z

fr
eq

u
en

cy
h
o
m
e
r

h
o
m
e
r
s

h
o
m
e
r

h
o
m
e
r
s

vo
lu

m
e

h
o
r
s
e
p
o
w
e
r

h
o
r
s
e
p
o
w
e
r

h
o
r
s
e
p
o
w
e
r

h
o
r
s
e
p
o
w
e
r

p
ow

er
h
o
u
r

h
o
u
r
s

h
r

h
r

ti
m

e
h
u
n
d
r
e
d
w
e
i
g
h
t
U
K

h
u
n
d
r
e
d
w
e
i
g
h
t
U
K

c
w
t
U
K

c
w
t
U
K

m
a
ss

(U
K

im
p

er
ia

l)

333
N

a
m

e
F
u

ll
A

b
b

re
v

U
n
it

o
f

si
n

g
.

p
l.

si
n

g
.

p
l.

h
u
n
d
r
e
d
w
e
i
g
h
t
U
S

h
u
n
d
r
e
d
w
e
i
g
h
t
U
S

c
w
t
U
S

c
w
t
U
S

m
a
ss

(U
S

cu
st

o
m

a
ry

)
i
n
c
h

i
n
c
h
e
s

i
n

i
n

le
n

g
th

i
n
c
h
o
f
m
e
r
c
u
r
y

i
n
c
h
e
s
o
f
m
e
r
c
u
r
y

i
n
H
g

i
n
H
g

p
re

ss
u

re
i
n
c
h
o
f
w
a
t
e
r

i
n
c
h
e
s
o
f
w
a
t
e
r

i
n
A
q

i
n
A
q

p
re

ss
u

re
j
a
n
s
k
y

j
a
n
s
k
y
s

J
y

J
y

fl
u

x
d

en
si

ty
j
o
u
l
e

j
o
u
l
e
s

J
J

en
er

g
y

j
u
p
i
t
e
r
m
a
s
s

j
u
p
i
t
e
r
m
a
s
s
e
s

M
j
u
p
i
t
e
r

M
j
u
p
i
t
e
r

m
a
ss

A
ls

o
k
n

o
w

n
a
s

th
e
M
j
o
v
e

a
n

d
th

e
M
j
o
v
i
a
n
.

j
u
p
i
t
e
r
r
a
d
i
u
s

j
u
p
i
t
e
r
r
a
d
i
i

R
j
u
p
i
t
e
r

R
j
u
p
i
t
e
r

le
n

g
th

A
ls

o
k
n

o
w

n
a
s

th
e
R
j
o
v
e

a
n

d
th

e
R
j
o
v
i
a
n
.

k
a
t
a
l

k
a
t
a
l
s

k
a
t

k
a
t

ca
ta

ly
ti

c
a
ct

iv
it

y
k
a
y
s
e
r

k
a
y
s
e
r
s

k
a
y
s
e
r

k
a
y
s
e
r
s

w
av

en
u

m
b

er
k
e
l
v
i
n

k
e
l
v
i
n

K
K

te
m

p
er

a
tu

re
k
i
b
i
b
i
t

k
i
b
i
b
i
t
s

K
i
b

K
i
b

in
fo

rm
a
ti

o
n

co
n
te

n
t

k
i
b
i
b
y
t
e

k
i
b
i
b
y
t
e
s

K
i
B

K
i
B

in
fo

rm
a
ti

o
n

co
n
te

n
t

k
i
l
d
e
r
k
i
n
U
K
a
l
e

k
i
l
d
e
r
k
i
n
s
U
K
a
l
e

k
i
l
d
e
r
k
i
n
U
K
a
l
e

k
i
l
d
e
r
k
i
n
s
U
K
a
l
e

vo
lu

m
e

k
i
l
o
g
r
a
m

k
i
l
o
g
r
a
m
s

k
g

k
g

m
a
ss

k
i
l
o
w
a
t
t
h
o
u
r

k
i
l
o
w
a
t
t
h
o
u
r
s

k
W
h

k
W
h

en
er

g
y

k
n
o
t

k
n
o
t
s

k
n

k
n

ve
lo

ci
ty

l
i
g
h
t
y
e
a
r

l
i
g
h
t
y
e
a
r
s

l
y
r

l
y
r

le
n

g
th

l
i
n
k

l
i
n
k
s

l
i
n
k

l
i
n
k
s

le
n

g
th

l
i
t
r
e

l
i
t
r
e
s

l
l

vo
lu

m
e

l
o
n
g
t
o
n

l
o
n
g
t
o
n
s

t
o
n

t
o
n
s

m
a
ss

(U
K

im
p

er
ia

l)
l
u
m
e
n

l
u
m
e
n
s

l
m

l
m

p
ow

er
l
u
n
a
r
d
i
s
t
a
n
c
e

l
u
n
a
r
d
i
s
t
a
n
c
e
s

l
u
n
a
r
d
i
s
t
a
n
c
e

l
u
n
a
r
d
i
s
t
a
n
c
e
s

le
n

g
th

334 CHAPTER 15. LIST OF PHYSICAL UNITS

N
a
m

e
F
u

ll
A

b
b

re
v

U
n

it
o
f

si
n

g
.

p
l.

si
n

g
.

p
l.

l
u
x

l
u
x
s

l
x

l
x

p
ow

er
m
a
x
w
e
l
l

m
a
x
w
e
l
l

M
x

M
x

m
a
g
n

et
ic

fl
u

x
m
e
b
i
b
i
t

m
e
b
i
b
i
t
s

M
i
b

M
i
b

in
fo

rm
a
ti

o
n

co
n
te

n
t

m
e
b
i
b
y
t
e

m
e
b
i
b
y
t
e
s

M
i
B

M
i
B

in
fo

rm
a
ti

o
n

co
n
te

n
t

m
e
t
r
e

m
e
t
r
e
s

m
m

le
n

g
th

m
h
o

m
h
o
s

m
h
o

m
h
o
s

co
n

d
u

ct
a
n

ce
m
i
l
e

m
i
l
e
s

m
i

m
i

le
n

g
th

m
i
l
e
p
e
r
h
o
u
r

m
i
l
e
s
p
e
r
h
o
u
r

m
p
h

m
p
h

ve
lo

ci
ty

m
i
n
a

m
i
n
a
s

m
i
n
a

m
i
n
a
s

m
a
ss

m
i
n
u
t
e

m
i
n
u
t
e
s

m
i
n

m
i
n

ti
m

e
m
o
l
e

m
o
l
e
s

m
o
l

m
o
l

m
o
le

s
n
a
u
t
i
c
a
l
m
i
l
e

n
a
u
t
i
c
a
l
m
i
l
e
s

n
a
u
t
i
c
a
l
m
i
l
e

n
a
u
t
i
c
a
l
m
i
l
e
s

le
n

g
th

n
e
w
t
o
n

n
e
w
t
o
n
s

N
N

fo
rc

e
o
h
m

o
h
m
s

o
h
m

o
h
m
s

re
si

st
a
n

ce
o
u
n
c
e

o
u
n
c
e
s

o
z

o
z

m
a
ss

p
a
r
s
e
c

p
a
r
s
e
c
s

p
c

p
c

le
n

g
th

p
a
r
t
s
p
e
r
b
i
l
l
i
o
n

p
a
r
t
s
p
e
r
b
i
l
l
i
o
n

p
p
b

p
p
b

d
im

en
si

o
n

le
ss

n
es

s
p
a
r
t
s
p
e
r
m
i
l
l
i
o
n

p
a
r
t
s
p
e
r
m
i
l
l
i
o
n

p
p
m

p
p
m

d
im

en
si

o
n

le
ss

n
es

s
p
a
s
c
a
l

p
a
s
c
a
l
s

P
a

P
a

p
re

ss
u

re
p
e
r
c
e
n
t

p
e
r
c
e
n
t

p
e
r
c
e
n
t

p
e
r
c
e
n
t

d
im

en
si

o
n

le
ss

n
es

s
p
e
r
c
h

p
e
r
c
h
e
s

p
e
r
c
h

p
e
r
c
h
e
s

le
n

g
th

p
i
c
a

p
i
c
a
s

p
i
c
a

p
i
c
a
s

le
n

g
th

p
i
n
t
U
K

p
i
n
t
s
U
K

p
i
n
t
U
K

p
i
n
t
s
U
K

vo
lu

m
e

(U
K

im
p

er
ia

l)
p
i
n
t
U
S

p
i
n
t
s
U
S

p
i
n
t
U
S

p
i
n
t
s
U
S

vo
lu

m
e

(U
S

cu
st

o
m

a
ry

)
p
l
a
n
c
k
c
h
a
r
g
e

p
l
a
n
c
k
c
h
a
r
g
e
s

Q
p
l
a
n
c
k

Q
p
l
a
n
c
k

ch
a
rg

e

335
N

a
m

e
F
u

ll
A

b
b

re
v

U
n
it

o
f

si
n

g
.

p
l.

si
n

g
.

p
l.

p
l
a
n
c
k
c
u
r
r
e
n
t

p
l
a
n
c
k
c
u
r
r
e
n
t

I
p
l
a
n
c
k

I
p
l
a
n
c
k

cu
rr

en
t

p
l
a
n
c
k
e
n
e
r
g
y

p
l
a
n
c
k
e
n
e
r
g
y

E
p
l
a
n
c
k

E
p
l
a
n
c
k

en
er

g
y

p
l
a
n
c
k
f
o
r
c
e

p
l
a
n
c
k
f
o
r
c
e

F
p
l
a
n
c
k

F
p
l
a
n
c
k

fo
rc

e
p
l
a
n
c
k
i
m
p
e
d
e
n
c
e

p
l
a
n
c
k
i
m
p
e
d
e
n
c
e

Z
p
l
a
n
c
k

Z
p
l
a
n
c
k

re
si

st
a
n

ce
p
l
a
n
c
k
l
e
n
g
t
h

p
l
a
n
c
k
l
e
n
g
t
h
s

L
p
l
a
n
c
k

L
p
l
a
n
c
k

le
n

g
th

p
l
a
n
c
k
m
a
s
s

p
l
a
n
c
k
m
a
s
s
e
s

M
p
l
a
n
c
k

M
p
l
a
n
c
k

m
a
ss

p
l
a
n
c
k
m
o
m
e
n
t
u
m

p
l
a
n
c
k
m
o
m
e
n
t
u
m

p
p
l
a
n
c
k

p
p
l
a
n
c
k

m
o
m

en
tu

m
p
l
a
n
c
k
p
o
w
e
r

p
l
a
n
c
k
p
o
w
e
r

P
p
l
a
n
c
k

P
p
l
a
n
c
k

p
ow

er
p
l
a
n
c
k
t
e
m
p
e
r
a
t
u
r
e

p
l
a
n
c
k
t
e
m
p
e
r
a
t
u
r
e

T
h
e
t
a
p
l
a
n
c
k

T
h
e
t
a
p
l
a
n
c
k

te
m

p
er

a
tu

re
p
l
a
n
c
k
t
i
m
e

p
l
a
n
c
k
t
i
m
e
s

T
p
l
a
n
c
k

T
p
l
a
n
c
k

ti
m

e
p
l
a
n
c
k
v
o
l
t
a
g
e

p
l
a
n
c
k
v
o
l
t
a
g
e

V
p
l
a
n
c
k

V
p
l
a
n
c
k

p
o
te

n
ti

a
l

p
o
i
n
t

p
o
i
n
t
s

p
t

p
t

le
n

g
th

p
o
i
s
e

p
o
i
s
e
s

P
P

v
is

co
si

ty
p
o
l
e

p
o
l
e
s

p
o
l
e

p
o
l
e
s

le
n

g
th

p
o
u
n
d

p
o
u
n
d
s

l
b

l
b
s

m
a
ss

p
o
u
n
d
f
o
r
c
e

p
o
u
n
d
s
f
o
r
c
e

l
b
f

l
b
f

fo
rc

e
p
o
u
n
d
p
e
r
s
q
u
a
r
e
i
n
c
h

p
o
u
n
d
s
p
e
r
s
q
u
a
r
e
i
n
c
h

p
s
i

p
s
i

p
re

ss
u

re
q
u
a
r
t
U
K

q
u
a
r
t
s
U
K

q
u
a
r
t
U
K

q
u
a
r
t
s
U
K

vo
lu

m
e

(U
K

im
p

er
ia

l)
q
u
a
r
t
U
S

q
u
a
r
t
s
U
S

q
u
a
r
t
U
S

q
u
a
r
t
s
U
S

vo
lu

m
e

(U
S

cu
st

o
m

a
ry

)
r
a
d
i
a
n

r
a
d
i
a
n
s

r
a
d

r
a
d

a
n

g
le

r
a
n
k
i
n

r
a
n
k
i
n

R
R

te
m

p
er

a
tu

re
r
e
v
o
l
u
t
i
o
n

r
e
v
o
l
u
t
i
o
n
s

r
e
v

r
e
v

a
n

g
le

r
o
d

r
o
d
s

r
o
d

r
o
d
s

le
n

g
th

r
o
m
a
n
l
e
a
g
u
e

r
o
m
a
n
l
e
a
g
u
e
s

r
o
m
a
n
l
e
a
g
u
e

r
o
m
a
n
l
e
a
g
u
e
s

le
n

g
th

r
o
m
a
n
m
i
l
e

r
o
m
a
n
m
i
l
e
s

r
o
m
a
n
m
i
l
e

r
o
m
a
n
m
i
l
e
s

le
n

g
th

336 CHAPTER 15. LIST OF PHYSICAL UNITS

N
a
m

e
F
u

ll
A

b
b

re
v

U
n

it
o
f

si
n

g
.

p
l.

si
n

g
.

p
l.

r
o
o
d

r
o
o
d
s

r
o
o
d

r
o
o
d
s

a
re

a
s
e
c
o
n
d

s
e
c
o
n
d
s

s
s

ti
m

e
A

ls
o

k
n

o
w

n
a
s

th
e
s
e
c

a
n

d
th

e
s
e
c
s
.

s
h
e
k
e
l

s
h
e
k
e
l
s

s
h
e
k
e
l

s
h
e
k
e
l
s

m
a
ss

s
h
o
r
t
t
o
n

s
h
o
r
t
t
o
n
s

s
h
o
r
t
t
o
n

s
h
o
r
t
t
o
n
s

m
a
ss

(U
S

cu
st

o
m

a
ry

)
s
i
e
m
e
n
s

s
i
e
m
e
n
s

S
S

co
n

d
u

ct
a
n

ce
s
i
e
v
e
r
t

s
i
e
v
e
r
t
s

S
v

S
v

ra
d

ia
ti

o
n

d
o
se

s
l
u
g

s
l
u
g
s

s
l
u
g

s
l
u
g
s

m
a
ss

s
o
l

s
o
l
s

s
o
l

s
o
l
s

ti
m

e
s
o
l
a
r
l
u
m
i
n
o
s
i
t
y

s
o
l
a
r
l
u
m
i
n
o
s
i
t
i
e
s

L
s
u
n

L
s
u
n

p
ow

er
A

ls
o

k
n

o
w

n
a
s

th
e
L
s
o
l
a
r
.

s
o
l
a
r
m
a
s
s

s
o
l
a
r
m
a
s
s
e
s

M
s
u
n

M
s
u
n

m
a
ss

A
ls

o
k
n

o
w

n
a
s

th
e
M
s
o
l
a
r
.

s
o
l
a
r
r
a
d
i
u
s

s
o
l
a
r
r
a
d
i
i

R
s
u
n

R
s
u
n

le
n

g
th

A
ls

o
k
n

o
w

n
a
s

th
e
R
s
o
l
a
r
.

s
q
u
a
r
e
c
e
n
t
i
m
e
t
r
e

s
q
u
a
r
e
c
e
n
t
i
m
e
t
r
e
s

s
q
c
m

s
q
c
m

a
re

a
s
q
u
a
r
e
d
e
g
r
e
e

s
q
u
a
r
e
d
e
g
r
e
e
s

s
q
d
e
g

s
q
d
e
g

so
li

d
a
n

g
le

s
q
u
a
r
e
f
o
o
t

s
q
u
a
r
e
f
e
e
t

s
q
f
t

s
q
f
t

a
re

a
s
q
u
a
r
e
i
n
c
h

s
q
u
a
r
e
i
n
c
h
e
s

s
q
i
n

s
q
i
n

a
re

a
s
q
u
a
r
e
k
i
l
o
m
e
t
r
e

s
q
u
a
r
e
k
i
l
o
m
e
t
r
e
s

s
q
k
m

s
q
k
m

a
re

a
s
q
u
a
r
e
m
e
t
r
e

s
q
u
a
r
e
m
e
t
r
e
s

s
q
m

s
q
m

a
re

a
s
q
u
a
r
e
m
i
l
e

s
q
u
a
r
e
m
i
l
e
s

s
q
m
i

s
q
m
i

a
re

a
s
t
e
r
a
d
i
a
n

s
t
e
r
a
d
i
a
n
s

s
t
e
r
a
d

s
t
e
r
a
d

so
li

d
a
n

g
le

s
t
o
n
e

s
t
o
n
e

s
t
o
n
e

s
t
o
n
e

m
a
ss

t
a
b
l
e
s
p
o
o
n

t
a
b
l
e
s
p
o
o
n
s

t
a
b
l
e
s
p
o
o
n

t
a
b
l
e
s
p
o
o
n
s

vo
lu

m
e

337
N

a
m

e
F
u

ll
A

b
b

re
v

U
n
it

o
f

si
n

g
.

p
l.

si
n

g
.

p
l.

t
a
l
e
n
t

t
a
l
e
n
t
s

t
a
l
e
n
t

t
a
l
e
n
t
s

m
a
ss

t
e
a
s
p
o
o
n

t
e
a
s
p
o
o
n
s

t
e
a
s
p
o
o
n

t
e
a
s
p
o
o
n
s

vo
lu

m
e

t
e
s
l
a

t
e
s
l
a

T
T

m
a
g
n

et
ic

fi
el

d
t
h
e
r
m

t
h
e
r
m
s

t
h
e
r
m

t
h
e
r
m
s

en
er

g
y

t
o
g

t
o
g
s

t
o
g

t
o
g
s

th
er

m
a
l

in
su

la
ti

o
n

t
o
n
n
e

t
o
n
n
e
s

t
t

m
a
ss

A
ls

o
k
n

o
w

n
a
s

th
e
m
e
t
r
i
c
t
o
n
n
e

a
n

d
th

e
m
e
t
r
i
c
t
o
n
n
e
s
.

t
r
o
y
o
u
n
c
e

t
r
o
y
o
u
n
c
e
s

o
z
t
r
o
y

o
z
t
r
o
y

m
a
ss

v
o
l
t

v
o
l
t
s

V
V

p
o
te

n
ti

a
l

w
a
t
t

w
a
t
t
s

W
W

p
ow

er
w
e
b
e
r

w
e
b
e
r

W
b

W
b

m
a
g
n

et
ic

fl
u

x
w
e
e
k

w
e
e
k
s

w
e
e
k

w
e
e
k
s

ti
m

e
y
a
r
d

y
a
r
d
s

y
d

y
d

le
n

g
th

y
e
a
r

y
e
a
r
s

y
r

y
r

ti
m

e

338 CHAPTER 15. LIST OF PHYSICAL UNITS

The following units of angle are recognised:
the arcminute, the arcsecond, the degree, the radian and the revolution.

The following units of area are recognised:
the acre, the are, the barn, the hectare, the rood, the square centimetre,
the square foot, the square inch, the square kilometre, the square metre

and the square mile.

The following units of capacitance are recognised:
the farad.

The following units of catalytic activity are recognised:
the katal.

The following units of charge are recognised:
the coulomb and the planck charge.

The following units of conductance are recognised:
the mho and the siemens.

The following units of cost are recognised:
the euro.

The following units of current are recognised:
the ampere and the planck current.

The following units of dimensionlessness are recognised:
the parts per billion, the parts per million and the percent.

The following units of energy are recognised:
the British Thermal Unit, the billion electronvolts, the calorie, the
electronvolt, the erg, the joule, the kilowatt hour, the planck energy

and the therm.

The following units of flux density are recognised:
the jansky.

The following units of force are recognised:
the dyne, the newton, the planck force and the pound force.

The following units of frequency are recognised:
the becquerel and the hertz.

The following units of inductance are recognised:
the henry.

The following units of information content are recognised:

339

the bit, the byte, the gibibit, the gibibyte, the kibibit, the kibibyte, the
mebibit and the mebibyte.

The following units of length are recognised:
the angstrom, the astronomical unit, the barleycorn, the cable, the centimetre,
the chain, the cubit, the decimetre, the earth radius, the fathom, the foot,
the furlong, the inch, the jupiter radius, the light year, the link, the
lunar distance, the metre, the mile, the nautical mile, the parsec, the
perch, the pica, the planck length, the point, the pole, the rod, the roman -

league, the roman mile, the solar radius and the yard.

The following units of lens power are recognised:
the dioptre.

The following units of light intensity are recognised:
the candela1 and the candlepower.

The following units of magnetic field are recognised:
the gauss and the tesla.

The following units of magnetic flux are recognised:
the maxwell and the weber.

The following units of mass are recognised:
the carat, the drachm, the earth mass, the grain, the gram, the gramme, the
hundredweight UK, the hundredweight US, the jupiter mass, the kilogram,
the long ton, the mina, the ounce, the planck mass, the pound, the shekel,
the short ton, the slug, the solar mass, the stone, the talent, the tonne

and the troy ounce.

The following units of moles are recognised:
the mole.

The following units of momentum are recognised:
the planck momentum.

The following units of potential are recognised:
the planck voltage and the volt.

The following units of power are recognised:
the horsepower, the lumen, the lux, the planck power, the solar luminosity

and the watt.

The following units of pressure are recognised:

1In the SI system, the candela is a base unit. However, its definition is 1/683 W/sterad,
and since Pyxplot recognises the radian as a base unit, the candela is implemented as a derived
unit.

340 CHAPTER 15. LIST OF PHYSICAL UNITS

the atmosphere, the bar, the barye, the inch of mercury, the inch of water,
the pascal and the pound per square inch.

The following units of radiation dose are recognised:
the gray and the sievert.

The following units of resistance are recognised:
the ohm and the planck impedence.

The following units of solidangle are recognised:
the square degree and the steradian.

The following units of temperature are recognised:
the degree celsius, the degree fahrenheit, the kelvin, the planck temperature

and the rankin.

The following units of thermal insulation are recognised:
the clo and the tog.

The following units of time are recognised:
the day, the hour, the minute, the planck time, the second, the sol, the week

and the year.

The following units of velocity are recognised:
the knot and the mile per hour.

The following units of viscosity are recognised:
the poise.

The following units of volume are recognised:
the bath, the bushel UK, the bushel US, the cubic centimetre, the cubic -

foot, the cubic inch, the cubic metre, the cup US, the firkin UK ale, the
firkin wine, the fluid ounce UK, the fluid ounce US, the gallon UK, the
gallon US, the homer, the kilderkin UK ale, the litre, the pint UK, the
pint US, the quart UK, the quart US, the tablespoon and the teaspoon.

The following units of wavenumber are recognised:
the kayser.

Chapter 16

List of paper sizes

The following table lists all of the named paper sizes which Pyxplot recognises:

341

342 CHAPTER 16. LIST OF PAPER SIZES

Name h/mm w/mm
2a0 1681 1189
4a0 2378 1681
a0 1189 840
a1 840 594
a10 37 26
a2 594 420
a3 420 297
a4 297 210
a5 210 148
a6 148 105
a7 105 74
a8 74 52
a9 52 37
b0 1414 999
b1 999 707
b10 44 31
b2 707 499
b3 499 353
b4 353 249
b5 249 176
b6 176 124
b7 124 88
b8 88 62
b9 62 44
c0 1296 917
c1 917 648
c10 40 28
c2 648 458
c3 458 324
c4 324 229
c5 229 162
c6 162 114
c7 114 81
c8 81 57
c9 57 40
crown 508 381
demy 572 445
double demy 889 597
elephant 711 584
envelope dl 110 220
executive 267 184
foolscap 330 203

Name h/mm w/mm
government 267 203

letter
international 85 53

businesscard
japanese b0 1435 1015
japanese b1 1015 717
japanese b10 44 31
japanese b2 717 507
japanese b3 507 358
japanese b4 358 253
japanese b5 253 179
japanese b6 179 126
japanese b7 126 89
japanese b8 89 63
japanese b9 63 44
japanese kiku4 306 227
japanese kiku5 227 151
japanese shiroku4 379 264
japanese shiroku5 262 189
japanese shiroku6 188 127
large post 533 419
ledger 432 279
legal 356 216
letter 279 216
medium 584 457
monarch 267 184
post 489 394
quad demy 1143 889
quarto 254 203
royal 635 508
statement 216 140
swedish d0 1542 1090
swedish d1 1090 771
swedish d10 48 34
swedish d2 771 545
swedish d3 545 385
swedish d4 385 272
swedish d5 272 192
swedish d6 192 136
swedish d7 136 96
swedish d8 96 68
swedish d9 68 48
swedish e0 1241 878

343

Name h/mm w/mm
swedish e1 878 620
swedish e10 38 27
swedish e2 620 439
swedish e3 439 310
swedish e4 310 219
swedish e5 219 155
swedish e6 155 109
swedish e7 109 77
swedish e8 77 54
swedish e9 54 38
swedish f0 1476 1044
swedish f1 1044 738
swedish f10 46 32
swedish f2 738 522
swedish f3 522 369
swedish f4 369 261
swedish f5 261 184
swedish f6 184 130
swedish f7 130 92
swedish f8 92 65
swedish f9 65 46
swedish g0 1354 957
swedish g1 957 677
swedish g10 42 29
swedish g2 677 478
swedish g3 478 338
swedish g4 338 239
swedish g5 239 169
swedish g6 169 119
swedish g7 119 84
swedish g8 84 59
swedish g9 59 42
swedish h0 1610 1138
swedish h1 1138 805
swedish h10 50 35
swedish h2 805 569
swedish h3 569 402
swedish h4 402 284
swedish h5 284 201
swedish h6 201 142
swedish h7 142 100
swedish h8 100 71
swedish h9 71 50

Name h/mm w/mm
tabloid 432 279
us businesscard 89 51

344 CHAPTER 16. LIST OF PAPER SIZES

Chapter 17

Color tables

Figures 17.1, 17.2 and 17.3 show the default named colors which Pyxplot recog-
nises. In addition to using these colors in statements such as

plot ’data’ with color red

it is also possible to make custom colors using the rgb(r,g,b), cmyk(c,m,y,k),
gray(g) and hsb(h,s,b) functions, whose inputs should be in the range 0–1.
For example:

plot ’data’ with color rgb(0.8,0.8,0.2)

myColor = cmyk(0.2,0.8,0.8,0.1)

plot ’data’ with color myColor

These figures also exclude the 100 shades of gray which Pyxplot recognises,
which are named from gray00 (black) to gray99 (almost white). These shades
of gray may also be spelt in the UK English form grey??.

345

346 CHAPTER 17. COLOR TABLES

Apricot

Aquamarine

Bittersweet

Black

Blue

BlueGreen

BlueViolet

BrickRed

Brown

BurntOrange

CadetBlue

CarnationPink

Cerulean

CornflowerBlue

Cyan

Dandelion

DarkOrchid

Emerald

ForestGreen

Fuchsia

Goldenrod

Gray

Green

GreenYellow

Grey

JungleGreen

Lavender

LimeGreen

Magenta

Mahogany

Maroon

Melon

MidnightBlue

Mulberry

NavyBlue

OliveGreen

Orange

OrangeRed

Orchid

Peach

Periwinkle

PineGreen

Plum

ProcessBlue

Purple

RawSienna

Red

RedOrange

RedViolet

Rhodamine

RoyalBlue

RoyalPurple

RubineRed

Salmon

SeaGreen

Sepia

SkyBlue

SpringGreen

Tan

TealBlue

Thistle

Turquoise

Violet

VioletRed

White

WildStrawberry

Yellow

YellowGreen

YellowOrange

black

white

Figure 17.1: A list of the named colors which Pyxplot recognises, sorted
alphabetically. The numerous shades of gray which it recognises are not shown.

347

RawSienna

Brown

Maroon

BrickRed

Red

Mahogany

Sepia

Salmon

OrangeRed

WildStrawberry

RubineRed

Lavender

Rhodamine

VioletRed

Magenta

CarnationPink

RedViolet

Thistle

DarkOrchid

Mulberry

Plum

Orchid

Fuchsia

Purple

RoyalPurple

Violet

BlueViolet

Blue

Periwinkle

CadetBlue

NavyBlue

RoyalBlue

MidnightBlue

CornflowerBlue

Cerulean

ProcessBlue

Cyan

SkyBlue

Turquoise

Aquamarine

BlueGreen

TealBlue

Emerald

JungleGreen

SeaGreen

PineGreen

OliveGreen

ForestGreen

Green

YellowGreen

LimeGreen

SpringGreen

GreenYellow

Yellow

Goldenrod

Dandelion

YellowOrange

BurntOrange

Apricot

Tan

Orange

Peach

RedOrange

Melon

Bittersweet

White

white

Gray

Grey

black

Black

Figure 17.2: A list of the named colors which Pyxplot recognises, sorted by
hue. The numerous shades of gray which it recognises are not shown.

348 CHAPTER 17. COLOR TABLES

LimeGreen

OliveGreen

Yellow

SpringGreen

YellowGreen

PineGreen

Goldenrod

GreenYellow

YellowOrange

Dandelion

JungleGreen

BurntOrange

SeaGreen

TealBlue
BlueGreen

Orange

Peach

Apricot

SkyBlue

RedOrange

Melon

Bittersweet

Cyan
ProcessBlue

White

RawSiennaBrown

Cerulean

CornflowerBlue

Salmon

CadetBlue

Lavender

Periwinkle

RoyalBlue

OrangeRed

NavyBlue

CarnationPink

WildStrawberry

Thistle

Orchid

VioletRed
Rhodamine

DarkOrchid

RubineRed

Violet
RoyalPurple

BlueViolet

Purple

Blue

Magenta

Mulberry

RedViolet

FuchsiaPlum

Figure 17.3: The named colors which Pyxplot recognises, arranged in HSB
color space, with the brightness axis orientated into the page. Some colors are
not shown as they lie too close to others.

Chapter 18

Line and point types

The tables in this chapter show the appearances of each of the numbered line,
point and star types available in the lines, points and stars plot styles re-
spectively.

349

350 CHAPTER 18. LINE AND POINT TYPES

Line width 1 Line width 2 Line width 4

Line type 1

Line type 2

Line type 3

Line type 4

Line type 5

Line type 6

Line type 7

Line type 8

Line type 9

Line type 10

Table 18.1: The numbered line types available in the lines plot style.

351

Point type 1

Point type 2

Point type 3

Point type 4

Point type 5

Point type 6

Point type 7

Point type 8

Point type 9

Point type 10

Point type 11

Point type 12

Point type 13

Point type 14

Point type 15

Point type 16

Point type 17

Point type 18

Point type 19

Point type 20

Point type 21

Point type 22

Point type 23

Point type 24

Point type 25

Point type 26

Point type 27

Point type 28

Point type 29

Point type 30

Point type 31

Point type 32

Point type 33

Point type 34

Point type 35

Point type 36

Point type 37

Point type 38

Point type 39

Point type 40

Point type 41

Point type 42

Point type 43

Point type 44

Table 18.2: The numbered point types available in the points plot style.

352 CHAPTER 18. LINE AND POINT TYPES

Star type 1

Star type 2

Star type 3

Star type 4

Star type 5

Star type 6

Star type 7

Star type 8

Star type 9

Star type 10

Table 18.3: The numbered star types available in the stars plot style.

Chapter 19

Configuring Pyxplot

In Parts I and II, we encountered numerous configuration options within Pyx-
plot which can controlled using the set command. There are times, however,
when many plots are wanted in a homogeneous style, or when a single plot is
repeatedly generated, when it is desirable to change the default set of configura-
tion options with which Pyxplot starts up, in order to avoid having to repeated
enter a large number of set commands. In this chapter, we describe the use of
configuration files to program Pyxplot’s default state.

19.1 Configuration files

Configuration files for Pyxplot have the filename .pyxplotrc, and may be
placed either in a user’s home directory, in which case they globally affect all of
that user’s Pyxplot sessions, or in particular directories, in which case they only
affect Pyxplot sessions which are instantiated with that particular directory as
the current working directory. When configuration files are present in both
locations, both are read; settings found in the .pyxplotrc file in the current
working directory take precedence over those found in the user’s home directory.
Configuration files are read only once, upon startup, and subsequent changes to
the configuration files do not affect copies of Pyxplot which are already running.

Changes to settings made in configuration files affect not only the values
that these settings have upon startup; they also changes the values to which the
unset command returns settings. Thus, whilst the command

unset multiplot

ordinarily turns off multiplot mode, it may turn it on if a configuration file
contains the line

multiPlot=on

When colored terminal output is enabled, the color-coding of the show command
also reflects the current default configuration: settings which match their default
values are shown in green1 whilst those settings which have been changed from
their default values are shown in amber2.

1This color can be changed using the color rep setting in a configuration file.
2This color can be changed using the color wrn setting in a configuration file.

353

354 CHAPTER 19. CONFIGURING PYXPLOT

Configuration files should take the form of a series of sections, each headed
by a section heading enclosed in square brackets. Each section heading should
be followed by a series of settings, which often take the form of

setting_name = value

In most cases, neither the setting name nor the value are case sensitive.
The following sections are used, although they do not all need to be present

in any given file, and they may appear in any order:

• colors – contains a single setting palette, which should be set to a
comma-separated list of colors which should make up the palette used
to plot datasets. The first will be called color 1 in Pyxplot, the second
color 2, etc. A list of recognised color names is given in Section 19.4.

• filters – can be used to define input filters which should be used for
certain file types (see Section 5.1).

• functions – contains user-defined function definitions which become pre-
defined in Pyxplot’s mathematical environment, for example

sinc(x) = sin(x)/(x)

• latex – contains a single setting preamble, which is prefixed to the be-
ginning of all latex text items, before the \begin{document} statement.
It can be used to define custom latex macros or to include packages using
the \includepackage{} command. The preamble can be also changed
using the set preamble command.

• script – can contain a list of set commands, using the same syntax which
would be used to enter them at a Pyxplot command prompt. This section
provides an alternative and more general way of controlling the settings
which can be changed in the settings section. Note that this section may
only contain instances of the set command; other Pyxplot commands may
not be used. The set command’s item modifier may not be used.

• settings – contains settings similar to those which can be set with the
set command. A complete list is given in Section 19.3.2 below.

• styling – contains settings which control various detailed aspects of the
graphical output which Pyxplot produces. These settings cannot be ac-
cessed by any other means.

• terminal – contains settings for altering the behaviour and appearance
of Pyxplot’s interactive terminal. These cannot be changed with the set

command, and can only be controlled via configuration files. A complete
list of the available settings is given in Section 19.3.4.

• units – can be used to define new physical units for use in Pyxplot’s
mathematical environment.

• variables – contains variable definitions, in the format

variable = value

Any variables defined in this section will be pre-defined in Pyxplot’s math-
ematical environment upon startup.

19.2. AN EXAMPLE CONFIGURATION FILE 355

19.2 An example configuration file

The following configuration file represents Pyxplot’s default configuration, and
provides a useful index to all of the settings which are available. In subsequent
sections, we describe the effect of each setting in detail.

[settings]

aspect = auto

axesColor = black

axisUnitStyle = ratio

backup = off

bar = 1.0

binOrigin = auto

binWidth = auto

boxFrom = auto

boxWidth = auto

calendarIn = British

calendarOut = British

clip = off

colKey = on

colKeyPos = Right

color = on

contours = 12

c1Range_log = false

c1Range_max = 0

c1Range_max_Auto = true

c1Range_min = 0

c1Range_min_Auto = true

c1Range_renorm = true

c1Range_reverse = false

c2Range_log = false

c2Range_max = 0

c2Range_max_auto = true

c2Range_min = 0

c2Range_min_auto = true

c2Range_renorm = true

c2Range_reverse = false

c3Range_log = false

c3Range_max = 0

c3Range_max_auto = true

c3Range_min = 0

c3Range_min_auto = true

c3Range_renorm = true

c3Range_reverse = false

c4Range_log = false

c4Range_max = 0

c4Range_max_auto = true

c4Range_min = 0

c4Range_min_auto = true

c4Range_renorm = true

356 CHAPTER 19. CONFIGURING PYXPLOT

c4Range_reverse = false

dataStyle = Points

display = on

dpi = 300

fontSize = 1

funcStyle = Lines

grid = off

gridAxisX = 1

gridAxisY = 1

gridAxisZ = 1

gridMajColor = grey70

gridMinColor = grey85

key = on

keyColumns = 0

keyPos = top right

key_Xoff = 0.0

key_Yoff = 0.0

landscape = off

lineWidth = 1.0

multiPlot = off

numComplex = off

numDisplay = natural

numErr = on

numSF = 8

originX = 0.0

originY = 0.0

output =

paperHeight = 297

paperName = a4

paperWidth = 210

pointLineWidth = 1.0

pointSize = 1.0

samples = 250

samples_method = nearestNeighbor

samples_x_auto = false

samples_x = 40

samples_y_auto = false

samples_y = 40

termAntiAlias = on

termEnlarge = off

termInvert = off

termTransparent = off

termType = X11_singleWindow

textColor = black

textHAlign = left

textVAlign = bottom

title =

title_Xoff = 0.0

title_Yoff = 0.0

uRange_log = false

19.2. AN EXAMPLE CONFIGURATION FILE 357

uRange_max = 1.0

uRange_min = 0.0

vRange_log = false

vRange_max = 1.0

vRange_min = 0.0

tRange_log = false

tRange_max = 1.0

tRange_min = 0.0

unitAbbrev = on

unitAngleDimless = on

unitPrefix = on

unitScheme = si

width = 8.0

view_xy = 60

view_yz = 30

zAspect = auto

[terminal]

color = on

color_err = red

color_rep = green

color_wrn = amber

splash = on

[styling]

arrow_headAngle = 45

arrow_headSize = 1.0

arrow_headBackIndent = 0.2

axes_lineWidth = 1.0

axes_majTickLen = 1.0

axes_minTickLen = 1.0

axes_separation = 1.0

axes_textGap = 1.0

colorScale_margin = 1.0

colorScale_width = 1.0

grid_majLineWidth = 1.0

grid_minLineWidth = 0.5

baseline_lineWidth = 1.0

baseline_pointSize = 1.0

[variables]

pi = 3.14159265358979

[colors]

palette = black, red, blue, magenta, cyan, brown, salmon, gray,

green, navyBlue, periwinkle, pineGreen, seaGreen, greenYellow,

orange, carnationPink, plum

[latex]

preamble =

358 CHAPTER 19. CONFIGURING PYXPLOT

19.3 Setting definitions

We now provide a more detailed description of the effect of each of the settings
which can be found in configuration files, including where appropriate a list of
possible values for each. Settings are arranged by section.

19.3.1 The filters section

The filters section allows input filters to be specified for data files whose
filenames match particular wildcards. Each line should be in the format

wildcard = filter_binary

For example, the line

*.gz = /usr/bin/gzip

would set the application /usr/bin/gzip to be used as an input filter for all data
files with a .gz suffix. For more information about input filters, see Section 5.1.

19.3.2 The settings section

The settings section can contain any of the following settings in any order:

aspect Possible values: auto, or any floating-point number.
Analogous set command: set size ratio

Sets the y/x aspect ratio of plots.

autoAspect Possible values: on, off.
Analogous set command: set size ratio

Sets whether plots have the automatic y/x aspect ratio,
which is the golden ratio. If on, then the aspect setting is
ignored. Deprecated: new scripts should use aspect=auto

instead.

autoZAspect Possible values: on, off.
Analogous set command: set size zratio

Sets whether 3d plots have the automatic z/x aspect ratio,
which is the golden ratio. If on, then the zAspect setting is
ignored. Deprecated: new scripts should use zAspect=auto
instead.

axesColor Possible values: Any recognised color.
Analogous set command: set axescolor

Sets the color of axis lines and ticks.

axisUnitStyle Possible values: Bracketed, Ratio, SquareBracketed
Analogous set command: set axisunitstyle

Sets the style in which the physical units of quantities plot-
ted against axes are appended to axis labels.

19.3. SETTING DEFINITIONS 359

backup Possible values: on, off.
Analogous set command: set backup

When this switch is set to on, and plot output is being
directed to file, attempts to write output over existing files
cause a copy of the existing file to be preserved, with a tilde
after its old filename (see Section 9.4).

bar Possible values: Any floating-point number.
Analogous set command: set bar

Sets the horizontal length of the lines drawn at the end of
errorbars, in units of their default length.

binOrigin Possible values: auto, or any floating-point number.
Analogous set command: set binorigin

Sets the point along the abscissa axis from which the bins
used by the histogram command originate.

binWidth Possible values: auto, or any floating-point number.
Analogous set command: set binwidth

Sets the widths of the bins used by the histogram com-
mand.

boxFrom Possible values: auto, or any floating-point number.
Analogous set command: set boxfrom

Sets the horizontal point from which bars on bar charts
appear to emanate.

boxWidth Possible values: auto, or any floating-point number.
Analogous set command: set boxwidth

Sets the default width of boxes on barcharts. If negative,
then the boxes have automatically selected widths, so that
the interfaces between bars occur at the horizontal mid-
points between the specified datapoints.

calendarIn Possible values: British, French, Greek, Gregorian,
Hebrew, Islamic, Julian, Papal, Russian.
Analogous set command: set calendar

Sets the default calendar for the input of dates from day,
month and year representation into Julian Date represen-
tation. See Section 4.11 for more details.

calendarOut Possible values: British, French, Greek, Gregorian,
Hebrew, Islamic, Julian, Papal, Russian.
Analogous set command: set calendar

Sets the default calendar for the output of dates from Julian
Date representation to day, month and year representation.
See Section 4.11 for more details.

360 CHAPTER 19. CONFIGURING PYXPLOT

clip Possible values: on, off.
Analogous set command: set clip

Sets whether datapoints close to the edges of graphs should
be clipped at the edges (on) or allowed to overrun the axes
(off).

colKey Possible values: on, off.
Analogous set command: set colkey

Sets whether colormap plots have a scale along one side
relating color to ordinate value.

colKeyPos Possible values: top, bottom, left, right.
Analogous set command: set colkey

Sets the side of the plot along which the color legend should
appear on colormap plots.

color Possible values: on, off.
Analogous set command: set terminal

Sets whether output should be color (on) or monochrome
(off).

contour Possible values: Any integer.
Analogous set command: set contour

Sets the number of contours which are drawn in the
contourmap plot style.

c?Range log Possible values: true, false.
Analogous set command: set logscale c

When the variables c1–c4 are set to renormalise in the
c?Range renorm setting, this setting determines whether
color maps are drawn with logarithmic or linear color scales.
The ? wildcard should be replaced with an integer in the
range 1–4 to alter the renormalisation of the variables c1

through c4 respectively in the expressions supplied to the
colmap setting. In the case of c1, this setting also deter-
mines whether contours demark linear or logarithmic inter-
vals on contour maps.

c?Range max Possible values: Any floating-point number.
Analogous set command: set crange

When the variables c1–c4 are set to renormalise in the
c?Range renorm setting, this setting determines the upper
limit of the range of values demarked by differing colors
on color maps. The ? wildcard should be replaced with
an integer in the range 1–4 to alter the renormalisation of
the variables c1 through c4 respectively in the expressions
supplied to the colmap setting. In the case of c1, this set-
ting also determines the range of ordinate values for which
contours are drawn on contour maps.

19.3. SETTING DEFINITIONS 361

c?Range max auto Possible values: true, false.
Analogous set command: set crange

When the variables c1–c4 are set to renormalise in the
c?Range renorm setting, this setting determines whether
the upper limit of the range of values demarked by differ-
ing colors on color maps should autoscale to fit the data,
or be a fixed value as specified in the C?Range max setting.
The ? wildcard should be replaced with an integer in the
range 1–4 to alter the renormalisation of the variables c1

through c4 respectively. In the case of c1, this setting also
affects the range of ordinate values for which contours are
drawn on contour maps.

c?Range min Possible values: Any floating-point number.
Analogous set command: set crange

When the variables c1–c4 are set to renormalise in the
c?Range renorm setting, this setting determines the lower
limit of the range of values demarked by differing colors
on color maps. The ? wildcard should be replaced with
an integer in the range 1–4 to alter the renormalisation of
the variables c1 through c4 respectively in the expressions
supplied to the colmap setting. In the case of c1, this set-
ting also determines the range of ordinate values for which
contours are drawn on contour maps.

c?Range min auto Possible values: true, false.
Analogous set command: set crange

When the variables c1–c4 are set to renormalise in the
c?Range renorm setting, this setting determines whether
the lower limit of the range of values demarked by differing
colors on color maps should autoscale to fit the data, or be
a fixed value as specified in the C?Range min setting. The
? wildcard should be replaced with an integer in the range
1–4 to alter the renormalisation of the variables c1 through
c4 respectively. In the case of c1, this setting also affects
the range of ordinate values for which contours are drawn
on contour maps.

c?Range renorm Possible values: true, false.
Analogous set command: set crange

Sets whether the variables c1–c4, used in the construction
of color maps, should be renormalised into the range 0–1
before being passed to the expressions supplied to the set

colmap command, or whether they should contain the exact
data values supplied in the 3rd–6th columns of data to the
colormap plot style. The ? wildcard should be replaced
with an integer in the range 1–4 to alter the renormalisation
of the variables c1 through c4 respectively.

362 CHAPTER 19. CONFIGURING PYXPLOT

c?Range reverse Possible values: true, false.
Analogous set command: set crange

When the variables c1–c4 are set to renormalise in the
c?Range renorm setting, this setting determines whether
the renormalisation into the range 0–1 is inverted such that
the maximum value maps to zero and the minimum value
maps to one. The ? wildcard should be replaced with an
integer in the range 1–4 to alter the renormalisation of the
variables c1 through c4 respectively.

dataStyle Possible values: Any plot style.
Analogous set command: set data style

Sets the plot style used by default when plotting data files.

display Possible values: on, off.
Analogous set command: set display

When set to on, no output is produced until the set

display command is issued. This is useful for speeding up
scripts which produce large multiplots; see Section 10.5.3
for more details.

dpi Possible values: Any floating-point number.
Analogous set command: set terminal dpi

Sets the sampling quality used, in dots per inch, when out-
put is sent to a bitmapped terminal (the bmp, jpeg, gif,
png and tif terminals).

fontSize Possible values: Any floating-point number.
Analogous set command: set fontsize

Sets the fontsize of text, where 1.0 represents 10-point text,
and other values differ multiplicatively.

funcStyle Possible values: Any plot style.
Analogous set command: set function style

Sets the plot style used by default when plotting functions.

grid Possible values: on, off.
Analogous set command: set grid

Sets whether a grid should be displayed on plots.

gridAxisX Possible values: Any integer.
Analogous set command: None
Sets the default horizontal axis to which gridlines should at-
tach, if the set grid command is called without specifying
which axes to use.

gridAxisY Possible values: Any integer.
Analogous set command: None
Sets the default vertical axis to which gridlines should at-
tach, if the set grid command is called without specifying
which axes to use.

19.3. SETTING DEFINITIONS 363

gridAxisZ Possible values: Any integer.
Analogous set command: None
Sets the default z-axis to which gridlines should attach, if
the set grid command is called without specifying which
axes to use.

gridMajColor Possible values: Any recognised color.
Analogous set command: set gridmajcolor

Sets the color of major grid lines.

gridMinColor Possible values: Any recognised color.
Analogous set command: set gridmincolor

Sets the color of minor grid lines.

key Possible values: on, off.
Analogous set command: set key

Sets whether a legend is displayed on plots.

keyColumns Possible values: Any integer ≥ 0.
Analogous set command: set keycolumns

Sets the number of columns into which the legends of plots
should be divided. If a value of zero is given, then the
number of columns is decided automatically for each plot.

keyPos Possible values: top right, top xcenter, top

left, ycenter right, ycenter xcenter, ycenter left,
bottom right, bottom xcenter, bottom left, above,
below, outside.
Analogous set command: set key

Sets where the legend should appear on plots.

key xOff Possible values: Any floating-point number.
Analogous set command: set key

Sets the horizontal offset, in approximate graph-widths,
that should be applied to the legend, relative to its default
position, as set by KEYPOS.

key yOff Possible values: Any floating-point number.
Analogous set command: set key

Sets the vertical offset, in approximate graph-heights, that
should be applied to the legend, relative to its default po-
sition, as set by KEYPOS.

landscape Possible values: on, off.
Analogous set command: set terminal

Sets whether output is in portrait orientation (off), or
landscape orientation (on).

lineWidth Possible values: Any floating-point number.
Analogous set command: set linewidth

Sets the width of lines on plots, as a multiple of the default.

364 CHAPTER 19. CONFIGURING PYXPLOT

multiPlot Possible values: on, off.
Analogous set command: set multiplot

Sets whether multiplot mode is on or off.

numComplex Possible values: on, off.
Analogous set command: set numerics

Sets whether complex arithmetic is enabled, or whether all
non-real results to calculations should raise numerical ex-
ceptions.

numDisplay Possible values: latex, natural, typeable.
Analogous set command: set numerics

Sets whether numerical results are displayed in a nat-
ural human-readable way, e.g. 2 m, in LaTeX, e.g.
$2\,\mathrm{m}$, or in a way which may be pasted back
into Pyxplot, e.g. 2*unit(m).

numErr Possible values: on, off.
Analogous set command: set numerics

Sets whether explicit error messages are thrown when cal-
culations yield undefined results, as in the cases of division
by zero or the evaluation of functions in regions where they
are undefined or infinite. If explicit error messages are dis-
abled, such calculations quietly return nan.

numSF Possible values: Any integer between 0 and 30.
Analogous set command: set numerics

Sets the number of significant figures to which numerical
quantities are displayed by default.

originX Possible values: Any floating point number.
Analogous set command: set origin

Sets the horizontal position, in centimetres, of the default
origin of plots on the page. Most useful when multiplotting
many plots.

originY Possible values: Any floating point number.
Analogous set command: set origin

Sets the vertical position, in centimetres, of the default ori-
gin of plots on the page. Most useful when multiplotting
many plots.

output Possible values: Any string (case sensitive).
Analogous set command: set output

Sets the output filename for plots. If blank, the default
filename of pyxplot.foo is used, where foo is an extension
appropriate for the file format.

19.3. SETTING DEFINITIONS 365

paperHeight Possible values: Any floating-point number.
Analogous set command: set papersize

Sets the height of the papersize for PostScript output in
millimetres.

paperName Possible values: A string matching any of the papersizes
listed in Chapter 16.
Analogous set command: set papersize

Sets the papersize for PostScript output to one of the pre-
defined papersizes listed in Chapter 16.

paperWidth Possible values: Any floating-point number.
Analogous set command: set papersize

Sets the width of the papersize for PostScript output in
millimetres.

pointLineWidth Possible values: Any floating-point number.
Analogous set command: set pointlinewidth

Sets the linewidth used to stroke points onto plots, as a
multiple of the default.

pointSize Possible values: Any floating-point number.
Analogous set command: set pointsize

Sets the sizes of points on plots, as a multiple of their nor-
mal sizes.

samples Possible values: Any integer.
Analogous set command: set samples

Sets the number of samples (datapoints) to be evaluated
along the abscissa axis when plotting a function.

samples method Possible values: inverseSquare, monaghanLattanzio,
nearestNeighbor.
Analogous set command: set samples

Sets the method used to interpolate two-dimensional
non-gridded arrays of datapoints from datafiles within
the interpolate command and when plotting using the
colormap, contourmap and surface plot styles.

samples x Possible values: Any integer.
Analogous set command: set samples

Sets the number of samples (datapoints) to be evaluated
along the first abscissa axis when drawing color maps and
surfaces, and when calculating contour maps.

366 CHAPTER 19. CONFIGURING PYXPLOT

samples x auto Possible values: true, false.
Analogous set command: set samples

Sets whether the number of samples (datapoints) to be eval-
uated along the first abscissa axis when drawing color maps
and surfaces, and when calculating contour maps should
follow the number of samples set with the set samples

command.

samples y Possible values: Any integer.
Analogous set command: set samples

Sets the number of samples (datapoints) to be evaluated
along the second abscissa axis when drawing color maps
and surfaces, and when calculating contour maps.

samples y auto Possible values: true, false.
Analogous set command: set samples

Sets whether the number of samples (datapoints) to be eval-
uated along the second abscissa axis when drawing color
maps and surfaces, and when calculating contour maps
should follow the number of samples set with the set

samples command.

termAntiAlias Possible values: on, off.
Analogous set command: set terminal

Sets whether output sent to the bitmapped graphics output
terminals – i.e. the bmp, jpeg, gif, png and tif terminals –
is antialiased. Antialiasing smooths the color boundaries to
disguise the effects of pixelisation and is almost invariably
desirable.

termEnlarge Possible values: on, off.
Analogous set command: set terminal

When set to on output is enlarged or shrunk to fit the
current paper size.

termInvert Possible values: on, off.
Analogous set command: set terminal

Sets whether jpeg/gif/png output has normal colors (off),
or inverted colors (on).

termTransparent Possible values: on, off.
Analogous set command: set terminal

Sets whether jpeg/gif/png output has transparent back-
ground (on), or solid background (off).

19.3. SETTING DEFINITIONS 367

termType Possible values: bmp, eps, gif, jpg, pdf, png, ps, svg,
tif, X11 multiWindow, X11 persist, X11 singleWindow.
Analogous set command: set terminal

Sets whether output is sent to the screen, using one of the
X11 ... terminals, or to disk. In the latter case, output may
be produced in a wide variety of graphical formats.

textColor Possible values: Any recognised color.
Analogous set command: set textcolor

Sets the color of all text output.

textHAlign Possible values: left, center, right.
Analogous set command: set texthalign

Sets the horizontal alignment of text labels to their given
reference positions.

textVAlign Possible values: top, center, bottom.
Analogous set command: set textvalign

Sets the vertical alignment of text labels to their given ref-
erence positions.

title Possible values: Any string (case sensitive).
Analogous set command: set title

Sets the title to appear at the top of the plot.

title xOff Possible values: Any floating point number.
Analogous set command: set title

Sets the horizontal offset of the title of the plot from its
default central location.

title yOff Possible values: Any floating point number.
Analogous set command: set title

Sets the vertical offset of the title of the plot from its default
location at the top of the plot.

tRange log Possible values: true, false.
Analogous set command: set logscale t

Sets whether the t-axis – used for parametric plotting – is
linear or logarithmic.

tRange max Possible values: Any floating-point number.
Analogous set command: set trange

Sets upper limit of the t-axis, used for parametric plotting.

tRange min Possible values: Any floating-point number.
Analogous set command: set trange

Sets lower limit of the t-axis, used for parametric plotting.

368 CHAPTER 19. CONFIGURING PYXPLOT

unitAbbrev Possible values: on, off.
Analogous set command: set unit

Sets whether physical units are displayed in abbreviated
form, e.g. mm, or in full, e.g. millimetres.

unitAngleDimless Possible values: on, off.
Analogous set command: set unit

Sets whether angles are treated as dimensionless units, or
whether the radian is treated as a base unit.

unitPrefix Possible values: on, off.
Analogous set command: set unit

Sets whether SI prefixes, such as milli- and mega- are
prepended to SI units where appropriate.

unitScheme Possible values: ancient, cgs, imperial, planck, si,
USCustomary.
Analogous set command: set unit

Sets the scheme of physical units in which quantities are
displayed.

uRange log Possible values: true, false.
Analogous set command: set logscale u

Sets whether the u-axis – used for parametric plotting – is
linear or logarithmic.

uRange max Possible values: Any floating-point number.
Analogous set command: set urange

Sets upper limit of the u-axis, used for parametric plotting.

uRange min Possible values: Any floating-point number.
Analogous set command: set urange

Sets lower limit of the t-axis, used for parametric plotting.

vRange log Possible values: true, false.
Analogous set command: set logscale v

Sets whether the v-axis – used for parametric plotting – is
linear or logarithmic.

vRange max Possible values: Any floating-point number.
Analogous set command: set vrange

Sets upper limit of the v-axis, used for parametric plotting.

vRange min Possible values: Any floating-point number.
Analogous set command: set vrange

Sets lower limit of the v-axis, used for parametric plotting.

width Possible values: Any floating-point number.
Analogous set commands: set width, set size

Sets the width of plots in centimetres.

19.3. SETTING DEFINITIONS 369

view xy Possible values: Any floating-point number.
Analogous set commands: set view

Sets the viewing angle of three-dimensional plots in the x-y
plane in degrees.

view yz Possible values: Any floating-point number.
Analogous set commands: set view

Sets the viewing angle of three-dimensional plots in the y-z
plane in degrees.

zAspect Possible values: auto, or any floating-point number.
Analogous set command: set size ratio

Sets the z/x aspect ratio of 3d plots.

19.3.3 The styling section

The styling section can contain any of the following settings in any order:

arrow headAngle Possible values: Any floating-point number.
Sets the angle, in degrees, at which the two sides of arrow
heads meet at its point.

arrow headSize Possible values: Any floating-point number.
Sets the size of all arrow heads. A value of 1.0 corresponds
to Pyxplot’s default size.

arrow headBackIndent Possible values: Any floating-point number.
Sets the size of the indentation in the back of arrow heads.
The default size is 0.2. Sensible values lie in the range 0 (no
indentation) to 1 (the indentation extends the whole length
of the arrow head). Less sensible values may be used by the
aesthetically adventurous.

axes lineWidth Possible values: Any floating-point number.
Sets the line width used to draw graph axes.

axes majTickLen Possible values: Any floating-point number.
Sets the length of major axis ticks. A value of 1.0 corre-
sponds to Pyxplot’s default length of 1.2 mm; other values
differ from this multiplicatively.

axes minTickLen Possible values: Any floating-point number.
Sets the length of minor axis ticks. A value of 1.0 corre-
sponds to Pyxplot’s default length of 0.85 mm; other values
differ from this multiplicatively.

370 CHAPTER 19. CONFIGURING PYXPLOT

axes separation Possible values: Any floating-point number.
Sets the separation between parallel axes on graphs, less the
width of any text labels associated with the axes. A value
of 1.0 corresponds to Pyxplot’s default spacing of 8 mm;
other values differ from this multiplicatively.

axes textGap Possible values: Any floating-point number.
Sets the separation between axes and the text labels which
are associated with them. A value of 1.0 corresponds to
Pyxplot’s default spacing of 3 mm; other values differ from
this multiplicatively.

colorScale margin Possible values: Any floating-point number.
Sets the separation left between the axes of plots drawn us-
ing the colormap plot style, and of the color scales drawn
alongside them. A value of 1.0 corresponds to Pyxplot’s de-
fault spacing; other values differ from this multiplicatively.

colorScale width Possible values: Any floating-point number.
Sets the width of the color scale bars drawn alonside plots
drawn using the colormap plot style. A value of 1.0 cor-
responds to Pyxplot’s width; other values differ from this
multiplicatively.

grid majLineWidth Possible values: Any floating-point number.
Sets the line width used to draw major gridlines (default
1.0).

grid minLineWidth Possible values: Any floating-point number.
Sets the line width used to draw minor gridlines (default
0.5).

baseline lineWidth Possible values: Any floating-point number.
Sets the PostScript line width which corresponds to a
linewidth of 1.0. A value of 1.0 corresponds to Pyxplot’s
default line width of 0.2 mm; other values differ from this
multiplicatively.

baseline pointSize Possible values: Any floating-point number.
Sets the baseline point size which corresponds to a
pointsize of 1.0. A value of 1.0 corresponds to Pyxplot’s
default; other values differ from this multiplicatively.

19.3.4 The terminal section

The terminal section can contain any of the following settings in any order:

19.3. SETTING DEFINITIONS 371

color Possible values: on, off.
Analogous command-line switches: -c, --color, -m,
--monochrome.
Sets whether color highlighting should be used in the in-
teractive terminal. If turned on, output is displayed in
green, warning messages in amber, and error messages in
red; these colors are configurable, as described below. Note
that not all UNIX terminals support the use of color.

color err Possible values: Any recognised terminal color (see be-
low).
Analogous command-line switches: None.
Sets the color in which error messages are displayed when
color highlighting is used. Note that the list of recognised
color names differs from that used in Pyxplot; a list is given
at the end of this section.

color rep Possible values: Any recognised terminal color (see be-
low).
Analogous command-line switches: None.
As above, but sets the color in which Pyxplot displays its
non-error-related output.

color wrn Possible values: Any recognised terminal color (see be-
low).
Analogous command-line switches: None.
As above, but sets the color in which Pyxplot displays its
warning messages.

splash Possible values: on, off.
Analogous command-line switches: -q, --quiet, -V,
--verbose

Sets whether the standard welcome message is displayed
upon startup.

The colors recognised by the COLOR XXX configuration options above are:
Red, Green, Amber, Blue, Purple, Magenta, Cyan, White, Normal. The final
option produces the default foreground color of the terminal.

19.3.5 The units section

The units section can be used to define new physical units for use within
Pyxplot’s mathematical environment. Each line should take the format of

<l_sing> \[/ <s_sing> \] \[/ <lt_sing> \]

\[/ <l_plur> \] \[/ <s_plur> \] \[/ <lt_plur> \]

: <quantity_name> = \[<definition> \]

where

l sing is the long singular name of the unit, e.g. metre.

372 CHAPTER 19. CONFIGURING PYXPLOT

s sing is the short singular name of the unit, e.g. m.
lt sing is the singular name of the unit to be used in latex.
l plur is the long plural name of the unit, e.g. metres.
s plur is the short plural name of the unit, e.g. m.
lt plur is the plural name of the unit to be used in latex.
quantity name is the physical quantity which the unit measures, e.g.

length.
definition is a definition of the unit in terms of other units which

Pyxplot already recognises, e.g. 0.001*km. The syntax used
is identical to that used in the unit() function.

For example, a definition of the metre would look like

metre/m/m/metres/m/m:length=0.001*km

Not all of the various names which a unit may have need to be specified.
If plural names are not specified then they are assumed to be the same as the
singular names. If short and/or latex names are not specified they are assumed
to be the same as the long name. If the definition is left blank then the unit is
assumed to be a new base unit which is not related to any pre-existing units.

19.4 Recognised color names

The following is a complete list of the color names which Pyxplot recognises in
the set textcolor, set axescolor commands, and in the colors section of
its configuration file. A color chart of these can be found in Appendix 17. All
color names are case insensitive.

greenYellow, yellow, goldenrod, dandelion, apricot, peach, melon,

yellowOrange, orange, burntOrange, bittersweet, redOrange,

mahogany, maroon, brickRed, red, orangeRed, rubineRed,

wildStrawberry, salmon, carnationPink, magenta, violetRed,

rhodamine, mulberry, redViolet, fuchsia, lavender, thistle,

orchid, darkOrchid, purple, plum, violet, royalPurple,

blueViolet, periwinkle, cadetBlue, cornflowerBlue, midnightBlue,

navyBlue, royalBlue, blue, cerulean, cyan, processBlue, skyBlue,

turquoise, tealBlue, aquamarine, blueGreen, emerald, jungleGreen,

seaGreen, green, forestGreen, pineGreen, limeGreen, yellowGreen,

springGreen, oliveGreen, rawSienna, sepia, brown, tan, gray,

grey, black, white.

In addition, a scale of 100 shades of grey is available, ranging from grey00,
which is black, to grey99, which is very nearly white. The US spelling, gray??,
is also accepted.

Arbitrary colors may be specified in the forms rgb0:0:0, hsb0:0:0 or cmyk0:0:0:0,
where the colon-separated zeros should be replaced by values in the range of 0
to 1 to represent the components of the desired color in RGB, HSB or CMYK
space respectively.

Part IV

Appendices

373

Appendix A

Other applications of
Pyxplot

In this chapter we present a short cookbook describing a few common yet mis-
cellaneous tasks for which Pyxplot may prove useful.

A.1 Conversion of jpeg images to PostScript

The need to convert bitmap images – for example, those in jpeg format – into
PostScript representations is commonly encountered by users of the latex type-
setting system, since latex’s includegraphics command can only incorporate
Encapsulated PostScript (EPS) images into documents. A small number of
graphics packages provide facilities for making such conversions, including Im-
ageMagick’s convert command, but these almost invariable produce excessively
large PostScript files on account of their failure to use PostScript’s native fa-
cilities for image compression. Pyxplot’s image command can in many cases
perform much more efficient conversion:

set output image.eps

image ’image.jpg’ width 10

A.2 Inserting equations in Powerpoint presen-
tations

The two tools most commonly used for presenting talks – Microsoft Powerpoint
and OpenOffice Impress – have limited facilities for importing text rendered in
latex into slides. Powerpoint does include its own Equation Editor, but its out-
put is considerably less professional than that produced by latex. This can prove
a frustration for anyone who works in a field with notation which makes use of
non-standard characters, but especially for those who work in mathematical and
equation-centric disciplines.

It is possible to import graphic images into Powerpoint, but it cannot read
images in PostScript format, the format in which latex usually produces its

375

376 APPENDIX A. OTHER APPLICATIONS OF PYXPLOT

output. Pyxplot’s gif and png terminals provide a fix for this problem, as the
following example demonstrates:

set term transparent noantialias gif

set term dpi 300

set output ’equation.gif’

set multiplot

Render the Planck blackbody formula in LaTeX

set textcolour yellow

text ’$B_\nu = \frac{8\pi h}{c^3} \

\frac{\nu^3}{\exp \left(h\nu / kT \right) -1 }$’ at 0,0

text ’The Planck Blackbody Formula:’ at 0 , 0.75

The result is a gif image of the desired equation, with yellow text on a
transparent background. This can readily be imported into Powerpoint and
re-scaled to the desired size.

A.3 Delivering talks in Pyxplot

Going one step further, Pyxplot can be used as a stand-alone tool for designing
slides for talks; it has several advantages over other presentation tools. All of
the text which is placed on slides is rendered neatly in latex. Images can be
placed on slides using the jpeg and eps commands, and placed at any arbitrary
coordinate position on the slide. In comparison with programs such as Microsoft
Powerpoint and OpenOffice Impress, the text looks much neater, especially if
equations or unusual characters are required. In comparison with TEX-based
programs such as FoilTEX, it is much easier to incorporate images around text
to create colourful slides which will keep an audience attentive.

As an additional advantage, graphs can be plotted within the scripts describ-
ing each slide, directly from data files in your local filesystem. If you receive
new data shortly before giving a talk, it is a simple matter to re-run the Pyxplot
scripts and your slides will automatically pick up the new data files.

Below, we outline our recipe for designing slides in Pyxplot. There are many
steps, but they do not take much time; many simply involve pasting text into
various files. Readers of the printed version of the manual may find it easier to
copy these files from the HTML version of this manual on the Pyxplot website.

A.3.1 Setting up the infrastructure

First, a bit of infrastructure needs to be set up. Note that once this has been
done for one talk, the infrastructure can be copied directly from a previous talk.

1. Make a new directory in which to put your talk:

mkdir my_talk

cd my_talk

2. Make a directory into which you will put the Pyxplot scripts for your
individual slides:

A.3. DELIVERING TALKS IN PYXPLOT 377

mkdir scripts

3. Make a directory into which you will put any graphic images which you
want to put into your talk to make it look pretty:

mkdir images

4. Make a directory into which Pyxplot will put graphic images of your slides:

mkdir slides

5. Design a background for your slides. Open a paint program such as the
gimp, create a new image which measures 1024×768 pixels, and fill it with
colour. My preference tends to be for a blue colour gradient, running from
bright blue at the top to dark blue at the bottom, but you may be more
inventive than me. You may wish to add institutional and/or project logos
in the corners. Alternatively, you can download a ready-made background
image from the Pyxplot website: http://foo. You should store this image
as images/background.jpg.

6. We need a simple Pyxplot script to set up a slide template. Paste the
following text into the file scripts/slide init; there’s a bit of black
magic in the arrow commands in this script which it isn’t necessary to
understand at this stage:

scale = 1.25 ; inch = 2.54 # cm

width = 10.24*scale ; height = 7.68*scale

x = width/100.0 ; y = height/100.0

set term gif ; set dpi (1024.0/width) * inch

set multiplot ; set nodisplay

set texthalign centre ; set textvalign centre

set textcolour yellow

jpeg "images/background.jpg" width width

arrow -x* 25,-y* 25 to -x* 25, y*125 with nohead

arrow -x* 25, y*125 to x*125, y*125 with nohead

arrow x*125, y*125 to x*125,-y* 25 with nohead

arrow x*125,-y* 25 to -x* 25,-y* 25 with nohead

7. We also need a simple Pyxplot script to round off each slide. Paste the
following text into the file scripts/slide finish:

set display ; refresh

8. Paste the following text into the file compile. This is a simple shell script
which instructs pyxplot watch to compile your slides using Pyxplot every
time you edit any of the them:

#!/bin/bash

pyxplot_watch --verbose scripts/0*

http://foo

378 APPENDIX A. OTHER APPLICATIONS OF PYXPLOT

9. Paste the following text into the file make slides. This is a simple shell
script which crops your slides to measure exactly 1024× 768 pixels, crop-
ping any text boxes which may go off the side of them. It links up with
the black magic of Step 6:

#!/bin/bash

mkdir -p slides_cropped

for all in slides/*.gif ; do

convert $all -crop 1024x768+261+198 ‘echo $all | \

sed ’s@slides@slides_cropped@’ | sed ’s@gif@jpg@’‘

done

10. Make the scripts compile and make slides executable:

chmod 755 compile make_slides

A.3.2 Writing a short example talk

The infrastructure is now completely set up, and you are ready to start designing
slides. We will now design an example talk with three slides.

1. Run the script compile and leave it running in the background. Pyxplot
will then re-run the scripts describing your slides whenever you edit them.

2. As an example, we will now make a title slide. Paste the following script
into the file scripts/0001:

set output ’slides/0001.gif’

load ’scripts/slide_init’

text ’\parbox[t]{10cm}{\center \LARGE \bf \

A Tutorial in the use of Pyxplot \\ \

to present Talks \

} ’ at x*50, y*75

text ’\Large \bf Prof A.N.\ Other’ at x*50, y*45

text ’\parbox[t]{9cm}{\center \

Director, \\ \

Atlantis Island University \

} ’ at x*50, y*38

text ’Annual Lecture, 1st January 2010’ at x*50, y*22

load ’scripts/slide_finish’

Note that the variables x and y are defined to be 1 per cent of the width
and height of your slides respectively, such that the bottom-left of each
slide is at (0, 0) and the top-right of each slide is at (100 ∗ x, 100 ∗ y).

3. Next we will make a second slide with a series of bullet points. Paste the
following script into the file scripts/0002:

A.3. DELIVERING TALKS IN PYXPLOT 379

set output ’slides/0002.gif’

load ’scripts/slide_init’

text ’\Large \textbf{Talk Overview}’ at x*50, y*92

text "\parbox[t]{9cm}{\begin{itemize} \

\item Setting up the Infrastructure. \

\item Writing a Short Example Talk. \

\item Delivering your Talk. \

\item Conclusion. \

\end{itemize} \

} " at x*50 , y*60

set textcol cyan

text ’{\bf With thanks to my collaborator, \

Prof Y.E.\ Tanother.}’ at x*50,y*15

load ’scripts/slide_finish’

4. Finally, we will make a third slide with a graph on it. Paste the following
script into the file scripts/0003:

set output ’slides/0003.gif’

load ’scripts/slide_init’

text ’\Large \bf The Results of Our Model’ at x*50, y*92

set axescolour yellow ; set nogrid

set origin x*17.5, y*20 ; set width x*70

set xrange [0.01:0.7]

set xlabel ’x’

set yrange [0.01:0.7]

set ylabel ’$f(x)$’

set palette Red, Green, Orange, Purple

set key top left

plot x t ’Model 1’, exp(x)-1 t ’Model 2’, \

log(x+1) t ’Model 3’, sin(x) t ’Model 4’

load ’scripts/slide_finish’

5. To view your slides, run the script make slides. Afterwards, you will
find your slides as a series of 1024× 768 pixel jpeg images in the directory
slides cropped. If you have the Quick Image Viewer (qiv) installed,
then you can view them as follows:

qiv slides_cropped/*

If you’re in a hurry, you can skip the step of running the script make slides

and view your slides as images in the slides directory, but note that the
slides in here may not be properly cropped. This approach is generally
preferable when viewing your slides in a semi-live fashion as you are editing
them.

380 APPENDIX A. OTHER APPLICATIONS OF PYXPLOT

6. If you’d like to make the text on your slides larger or smaller, you can do
so by varying the scale parameter in the file scripts/slide init.

A.3.3 Delivering your talk

There are two straightforward ways in which you can give your talk. The quick-
est way is simply to use the Quick Image Viewer (qiv):

qiv slides_cropped/*

Press the left mouse button to move forward through your talk, and the right
mouse button to go back a slide.

This method does lack some of the niceties of Microsoft Powerpoint – for
example, the ability to jump to any arbitrary slide number, compatibility with
wireless remote controls to advance your slides, and the ability to use animated
slide transitions. It may be preferably, therefore, to paste the jpeg images of
your slides into a Powerpoint or OpenOffice Impress presentation before you
give your talk.

Appendix B

Summary of differences
between Pyxplot and
gnuplot

Pyxplot’s command-line interface is based loosely upon that of gnuplot, but
does not completely re-implement the entirety of gnuplot’s command language.
Moreover, Pyxplot’s command language includes many extensions of gnuplot’s
interface. In this Appendix, we outline some of the most significant areas in
which gnuplot and Pyxplot differ. This is far from an exhaustive list, but may
provide a useful reference for gnuplot users.

B.1 The typesetting of text

Pyxplot renders all text labels automatically in the latex typesetting environ-
ment. This brings many advantages: it produces neater labels than the default
typesetting engine used by gnuplot, makes it straightforward to label graphs
with mathematical expressions, and moreover makes it straightforward when
importing graphs into latex documents to match the fonts used in figures with
those used in the main text of the document. It does, however, also necessarily
introduce some incompatibility with gnuplot. Some strings which are valid in
gnuplot are not valid in Pyxplot (see Section 3.6 for more details). For example,

% set xlabel ’x^2’

is a valid label in gnuplot, but is not valid input for latex and therefore fails in
Pyxplot. In Pyxplot, it needs to be written in latex mathmode as:

" set xlabel ’x^2’

A useful introduction to latex’s syntax can be found in Tobias Oetiker’s excellent
free tutorial, The Not So Short Guide to latex 2ε, which is available for free
download from:

http://www.ctan.org/tex-archive/info/lshort/english/lshort.pdf

381

http://www.ctan.org/tex-archive/info/lshort/english/lshort.pdf

382 APPENDIX B. DIFFERENCES BETWEEN PYXPLOT & GNUPLOT

Two built-in functions provide some assistance in generating latex labels.
The texify() takes as its argument a string containing a mathematical ex-
pression, and returns a latex representation of it. The texifyText() takes as
its argument a text string, and returns a latex representation of it, with any
necessary escape characters added. For example:

pyxplot> print texify("sqrt(x**2+1)")

$\displaystyle \sqrt{x\,*\kern-1.5pt *\,\,2+1}\mathrm{}$
pyxplot> a=50

pyxplot> print texifyText("A %d%% increase"%a)

A 50\% increase

pyxplot> set ylabel texify("cos(x**2)") Two built-in functions pro-

vide some assistance in generating latex labels. The texify() takes as its
argument a string containing a mathematical expression, and returns a latex
representation of it. The texifyText() takes as its argument a text string, and
returns a latex representation of it, with any necessary escape characters added.
For example:

pyxplot> print texify("sqrt(x**2+1)")

$\displaystyle \sqrt{x\,*\kern-1.5pt *\,\,2+1}\mathrm{}$
pyxplot> a=50

pyxplot> print texifyText("A %d%% increase"%a)

A 50\% increase

pyxplot> set ylabel texify("cos(x**2)")

B.2 Complex numbers

The syntax used for representing complex numbers in Pyxplot differs from that
used in gnuplot. Whereas gnuplot expects the real and imaginary components
of complex numbers to be represented {a,b}, Pyxplot uses the syntax a+b*i,
assuming that the variable i has been defined to equal sqrt(-1). In addition,
in Pyxplot complex arithmetic must first be enabled using the set numerics

complex command before complex numbers may be entered. This is illustrated
by the following example:

gnuplot> print {1,2} + {3,4}
{4.0, 6.0}

pyxplot> set numerics complex

pyxplot> print (1+2*i) + (3+4*i)

(4+6i)

B.3 The multiplot environment

gnuplot’s multiplot environment, used for placing many graphs alongside one
another, is massively extended in Pyxplot. As well as making it much easier
to produce galleries of plots and inset graphs, a wide range of vector graphs

B.4. PLOTS WITH MULTIPLE AXES 383

objects can also be added to the multiplot canvas. This is described in detail in
Chapter 10.

B.4 Plots with multiple axes

In gnuplot, a maximum of two horizontal and two vertical axes may be associ-
ated with each graph, placed in each case with one on either side of the plot.
These are referred to as the x (bottom) and x2 (top), or y (left) and y2 (right)
axes. This behaviour is reproduced in Pyxplot, and so the syntax

set x2label ’Axis label’

works similarly in both programs. However, in Pyxplot the position of each axis
may be set individually using syntax such as

set axis x2 top

and furthermore up to 128 axes may be placed parallel to one another:

set axis x127 top

set x127label "This is axis number 127"

More details of how to configure axes can be found in Section 8.8.1.

B.5 Plotting parametric functions

The syntax used for plotting parametric functions differs between gnuplot and
Pyxplot. Whereas parametric plotting is enabled in gnuplot using the set

parametric command, in Pyxplot it is enabled on a per-dataset basis by placing
the keyword parametric before the algebraic expression to be plotted:

gnuplot> set parametric
gnuplot> set trange [0:2*pi]
gnuplot> plot sin(t),cos(t)

pyxplot> set trange [0:2*pi]

pyxplot> plot parametric sin(t):cos(t)

This makes it straightforward to plot parametric functions alongside non-parametric
functions. For more information, see Section 8.6.

384 APPENDIX B. DIFFERENCES BETWEEN PYXPLOT & GNUPLOT

Appendix C

The fit command:
mathematical details

In this section, the mathematical details of the workings of the fit command
are described. This may be of interest in diagnosing its limitations, and also in
understanding the various quantities that it outputs after a fit is found. This
discussion must necessarily be a rather brief treatment of a large subject; for a
fuller account, the reader is referred to D.S. Sivia’s Data Analysis: A Bayesian
Tutorial.

C.1 Notation

I shall assume that we have some function f(), which takes nx parameters,
x0...xnx−1, the set of which may collectively be written as the vector x. We
are supplied a datafile, containing a number nd of datapoints, each consisting
of a set of values for each of the nx parameters, and one for the value which
we are seeking to make f(x) match. I shall call of parameter values for the ith
datapoint xi, and the corresponding value which we are trying to match fi. The
data file may contain error estimates for the values fi, which I shall denote σi.
If these are not supplied, then I shall consider these quantities to be unknown,
and equal to some constant σdata.

Finally, I assume that there are nu coefficients within the function f() that
we are able to vary, corresponding to those variable names listed after the via

statement in the fit command. I shall call these coefficients u0...unu−1, and
refer to them collectively as u.

I model the values fi in the supplied data file as being noisy Gaussian-
distributed observations of the true function f(), and within this framework,
seek to find that vector of values u which is most probable, given these obser-
vations. The probability of any given u is written P (u| {xi, fi, σi}).

C.2 The probability density function

Bayes’ Theorem states that:

385

386 APPENDIX C. DETAILS OF THE FIT COMMAND

P (u| {xi, fi, σi}) =
P ({fi} |u, {xi, σi}) P (u| {xi, σi})

P ({fi} | {xi, σi})
(C.1)

Since we are only seeking to maximise the quantity on the left, and the de-
nominator, termed the Bayesian evidence, is independent of u, we can neglect
it and replace the equality sign with a proportionality sign. Furthermore, if we
assume a uniform prior, that is, we assume that we have no prior knowledge
to bias us towards certain more favoured values of u, then P (u) is also a con-
stant which can be neglected. We conclude that maximising P (u| {xi, fi, σi})
is equivalent to maximising P ({fi} |u, {xi, σi}).

Since we are assuming fi to be Gaussian-distributed observations of the true
function f(), this latter probability can be written as a product of nd Gaussian
distributions:

P ({fi} |u, {xi, σi}) =

nd−1∏

i=0

1

σi
√

2π
exp

(
− [fi − fu(xi)]

2

2σ2
i

)
(C.2)

The product in this equation can be converted into a more computation-
ally workable sum by taking the logarithm of both sides. Since logarithms are
monotonically increasing functions, maximising a probability is equivalent to
maximising its logarithm. We may write the logarithm L of P (u| {xi, fi, σi})
as:

L =

nd−1∑

i=0

(
− [fi − fu(xi)]

2

2σ2
i

)
+ k (C.3)

where k is some constant which does not affect the maximisation process. It
is this quantity, the familiar sum-of-square-residuals, that we numerically max-
imise to find our best-fitting set of parameters, which I shall refer to from here
on as u0.

C.3 Estimating the error in u0

To estimate the error in the best-fitting parameter values that we find, we
assume P (u| {xi, fi, σi}) to be approximated by an nu-dimensional Gaussian
distribution around u0. Taking a Taylor expansion of L(u) about u0, we can
write:

L(u) = L(u0) +

nu−1∑

i=0

(
ui − u0

i

) ∂L
∂ui

∣∣∣∣
u0

︸ ︷︷ ︸
Zero at u0 by definition

+ (C.4)

nu−1∑

i=0

nu−1∑

j=0

(
ui − u0

i

) (
uj − u0

j

)

2

∂2L

∂ui∂uj

∣∣∣∣
u0

+O
(
u− u0

)3

Since the logarithm of a Gaussian distribution is a parabola, the quadratic
terms in the above expansion encode the Gaussian component of the probability

C.4. THE COVARIANCE MATRIX 387

distribution P (u| {xi, fi, σi}) about u0.1 We may write the sum of these terms,
which we denote Q, in matrix form:

Q =
1

2

(
u− u0

)T
A
(
u− u0

)
(C.5)

where the superscript T represents the transpose of the vector displacement
from u0, and A is the Hessian matrix of L, given by:

Aij = ∇∇L =
∂2L

∂ui∂uj

∣∣∣∣
u0

(C.6)

This is the Hessian matrix which is output by the fit command. In general,
an nu-dimensional Gaussian distribution such as that given by Equation (C.4)
yields elliptical contours of equi-probability in parameter space, whose princi-
pal axes need not be aligned with our chosen coordinate axes – the variables
u0...unu−1. The eigenvectors ei of A are the principal axes of these ellipses, and
the corresponding eigenvalues λi equal 1/σ2

i , where σi is the standard deviation
of the probability density function along the direction of these axes.

This can be visualised by imagining that we diagonalise A, and expand
Equation (C.5) in our diagonal basis. The resulting expression for L is a sum of
square terms; the cross terms vanish in this basis by definition. The equations
of the equi-probability contours become the equations of ellipses:

Q =
1

2

nu−1∑

i=0

Aii
(
ui − u0

i

)2
= k (C.7)

where k is some constant. By comparison with the equation for the logarithm
of a Gaussian distribution, we can associate Aii with −1/σ2

i in our eigenvector
basis.

The problem of evaluating the standard deviations of our variables ui is more
complicated, however, as we are attempting to evaluate the width of these el-
liptical equi-probability contours in directions which are, in general, not aligned
with their principal axes. To achieve this, we first convert our Hessian matrix
into a covariance matrix.

C.4 The covariance matrix

The terms of the covariance matrix Vij are defined by:

Vij =
〈(
ui − u0

i

) (
uj − u0

j

)〉
(C.8)

Its leading diagonal terms may be recognised as equalling the variances of each of
our nu variables; its cross terms measure the correlation between the variables.
If a component Vij > 0, it implies that higher estimates of the coefficient ui
make higher estimates of uj more favourable also; if Vij < 0, the converse is
true.

1The use of this is called Gauss’ Method. Higher order terms in the expansion represent
any non-Gaussianity in the probability distribution, which we neglect. See MacKay, D.J.C.,
Information Theory, Inference and Learning Algorithms, CUP (2003).

388 APPENDIX C. DETAILS OF THE FIT COMMAND

It is a standard statistical result that V = (−A)−1. In the remainder of
this section we prove this; readers who are willing to accept this may skip onto
Section C.5.

Using ∆ui to denote
(
ui − u0

i

)
, we may proceed by rewriting Equation (C.8)

as:

Vij =

∫
· · ·
∫ ∞

ui=−∞
∆ui∆ujP (u| {xi, fi, σi}) dnuu (C.9)

=

∫
·· ·
∫∞
ui=−∞∆ui∆uj exp(−Q) dnuu
∫
·· ·
∫∞
ui=−∞ exp(−Q) dnuu

The normalisation factor in the denominator of this expression, which we de-
note as Z, the partition function, may be evaluated by nu-dimensional Gaussian
integration, and is a standard result:

Z =

∫
· · ·
∫ ∞

ui=−∞
exp

(
1

2
∆uTA∆u

)
dnuu (C.10)

=
(2π)nu/2

Det(−A)

Differentiating loge(Z) with respect of any given component of the Hessian
matrix Aij yields:

− 2
∂

∂Aij
[loge(Z)] =

1

Z

∫
· · ·
∫ ∞

ui=−∞
∆ui∆uj exp(−Q) dnuu (C.11)

which we may identify as equalling Vij :

Vij = −2
∂

∂Aij
[loge(Z)] (C.12)

= −2
∂

∂Aij

[
loge((2π)nu/2)− loge(Det(−A))

]

= 2
∂

∂Aij
[loge(Det(−A))]

This expression may be simplified by recalling that the determinant of a matrix
is equal to the scalar product of any of its rows with its cofactors, yielding the
result:

∂

∂Aij
[Det(−A)] = −aij (C.13)

where aij is the cofactor of Aij . Substituting this into Equation (C.12) yields:

Vij =
−aij

Det(−A)
(C.14)

Recalling that the adjoint A† of the Hessian matrix is the matrix of cofactors
of its transpose, and that A is symmetric, we may write:

C.5. THE CORRELATION MATRIX 389

Vij =
−A†

Det(−A)
≡ (−A)−1 (C.15)

which proves the result stated earlier.

C.5 The correlation matrix

Having evaluated the covariance matrix, we may straightforwardly find the stan-
dard deviations in each of our variables, by taking the square roots of the terms
along its leading diagonal. For datafiles where the user does not specify the
standard deviations σi in each value fi, the task is not quite complete, as the
Hessian matrix depends critically upon these uncertainties, even if they are
assumed the same for all of our fi. This point is returned to in Section C.6.

The correlation matrix C, whose terms are given by:

Cij =
Vij
σiσj

(C.16)

may be considered a more user-friendly version of the covariance matrix for
inspecting the correlation between parameters. The leading diagonal terms
are all clearly equal unity by construction. The cross terms lie in the range
−1 ≤ Cij ≤ 1, the upper limit of this range representing perfect correlation
between parameters, and the lower limit perfect anti-correlation.

C.6 Finding σi

Throughout the preceding sections, the uncertainties in the supplied target val-
ues fi have been denoted σi (see Section C.1). The user has the option of
supplying these in the source datafile, in which case the provisions of the previ-
ous sections are now complete; both best-estimate parameter values and their
uncertainties can be calculated. The user may also, however, leave the uncer-
tainties in fi unstated, in which case, as described in Section C.1, we assume all
of the data values to have a common uncertainty σdata, which is an unknown.

In this case, where σi = σdata ∀ i, the best fitting parameter values are
independent of σdata, but the same is not true of the uncertainties in these values,
as the terms of the Hessian matrix do depend upon σdata. We must therefore
undertake a further calculation to find the most probable value of σdata, given
the data. This is achieved by maximising P (σdata| {xi, fi}). Returning once
again to Bayes’ Theorem, we can write:

P (σdata| {xi, fi}) =
P ({fi} |σdata, {xi}) P (σdata| {xi})

P ({fi} | {xi})
(C.17)

As before, we neglect the denominator, which has no effect upon the max-
imisation problem, and assume a uniform prior P (σdata| {xi}). This reduces the
problem to the maximisation of P ({fi} |σdata, {xi}), which we may write as a
marginalised probability distribution over u:

390 APPENDIX C. DETAILS OF THE FIT COMMAND

P ({fi} |σdata, {xi}) =

∫
· · ·
∫ ∞

−∞
P ({fi} |σdata, {xi} ,u)× (C.18)

P (u|σdata, {xi}) dnuu

Assuming a uniform prior for u, we may neglect the latter term in the in-
tegral, but even with this assumption, the integral is not generally tractable,
as P ({fi} |σdata, {xi} , {ui}) may well be multimodal in form. However, if we
neglect such possibilities, and assume this probability distribution to be ap-
proximate a Gaussian globally, we can make use of the standard result for an
nu-dimensional Gaussian integral:

∫
· · ·
∫ ∞

−∞
exp

(
1

2
uTAu

)
dnuu =

(2π)nu/2

√
Det (−A)

(C.19)

We may thus approximate Equation (C.18) as:

P ({fi} |σdata, {xi}) ≈ P
(
{fi} |σdata, {xi} ,u0

)
× (C.20)

P
(
u0|σdata, {xi, fi}

) (2π)nu/2

√
Det (−A)

As in Section C.2, it is numerically easier to maximise this quantity via its
logarithm, which we denote L2, and can write as:

L2 =

nd−1∑

i=0

(
− [fi − fu0(xi)]

2

2σ2
data

− loge (2π
√
σdata)

)
+ (C.21)

loge

(
(2π)nu/2

√
Det (−A)

)

This quantity is maximised numerically, a process simplified by the fact that
u0 is independent of σdata.

Appendix D

ChangeLog

2012 Sep 19: Pyxplot 0.9.2

Version 0.9.2 corrects a large number of minor bugs.

2012 Aug 29: Pyxplot 0.9.1

Version 0.9.1 is a minor update with new support for running Pyxplot on Rasp-
berry Pi. It fixes SIGBUS errors in Pyxplot’s math engine when run on armhf
architectures.

2012 Aug 1: Pyxplot 0.9.0

Version 0.9 is a major update. Many new data types have been introduced,
each of which has methods which can be called in an object-orientated fashion.
These include:

• Colors, which can be stored in variables for subsequent use in vector
graphics commands. The addition and subtraction operators act on colors
to allow color mixing.

• Dates, which can be imported from calendar dates, unix times or Julian
dates. Dates can be subtracted to give time intervals.

• Lists and dictionaries, which can be iterated over, or used to feed cal-
culated data into the plot and tabulate commands.

• Vectors and matrices, which allow matrix algebra. These types interface
cleanly with Pyxplot’s vector-graphics commands, allowing positions to be
specified as vector expressions.

• File handles, which allow Pyxplot to read data from files, or write data
or logs to files.

• Modules and classes, which allow object-orientated programming.

In addition, Pyxplot’s range of operators has been extended to include most
of those in the C programming language, allowing expressions such as

391

392 APPENDIX D. CHANGELOG

pyxplot> print (a=3)+(b=2)

5

pyxplot> print a>0?"yes":"no"
yes

pyxplot> print "%s %s"%(++a,b++)

4 2

pyxplot> print (a+=10 , b+=10 , a+b)

27

to be written.

Incompatibilities with Pyxplot 0.8

The extensions to Pyxplot in version 0.9 mean that some minor changes to
syntax have been necessary. These include:

• Some functions and variables have been renamed. Variables whose names
used to begin phy now live in a module called phy. They may be accessed
as, for example, phy.c. Similarly, random number generating functions
now live in a module called random; statistics functions in a module called
stats; time-handling functions in time; operating system functions in os;
and astronomy functions in ast. The contents of these modules can be
listed by typing, for example, print phy.

• Custom colors, which used to be specified using syntax such as rgb0.2:0.3:0.4,
should now be specified using the rgb(r,g,b) functions, as, for example,
rgb(0.2,0.3,0.4). Custom colors can now be stored in variables for later
use (see Section 6.6).

• The range of escape characters which can be used in strings has been in-
creased, so that, for example, \n is a newline and \t a tab. As in python,
prepending the string with the character r disables all escape character ex-
pansion. As backslashes are common characters in latex command strings,
the easiest approach is to always prepend latex strings with an r. As in
python, triple quotes, e.g. r"""2 \times 3""" can be used where required
(see Section 3.6).

• In the foreach command, square brackets should be used to delimit lists
of items to iterate over. The Pyxplot 0.8 syntax foreach i in (1,2,3)

should now be written foreach i in [1,2,3] (see Section 7.3).

2011 Jan 7: Pyxplot 0.8.4

Summary:

This is a minor bugfix release.

Details:

• Two-dimensional parametric grid plotting implemented.

• Bugfix to the dots plot style; filled triangles replaces with filled circles.

393

• Bugfix to linewidths used when drawing line icons on graph legends.

• Bugfix to Makefile to ensure libraries link correctly under Red Hat and
SUSE.

• Code cleanup to ensure correct compilation with -O2 optimisation.

2010 Sep 15: Pyxplot 0.8.3

Summary:

This is a minor bugfix release.

Details:

• @ macro expansion operator implemented.

• assert command implemented.

• for command behaviour changed such that for i=1 to 10 includes a final
iteration with i=10.

• Point types rearranged into a more logical order.

• Improved support for newer Windows bitmap images.

• Bugfix to the set unit preferred command.

• Binary not operator bugfixed.

• Bugfix to handling of comma-separated horizontal datafiles.

• Mathematical function finite() added.

2010 Aug 4: Pyxplot 0.8.2

Summary:

This release introduces three-dimensional plotting, as well as the ability to plot
two-dimensional maps of functions as either color maps, contour plots, or as
three-dimensional surfaces. A large number of bugs have also been fixed.

Details:

• 3D plotting implemented.

• New plot styles colormap, contourmap and surface added.

• Interpolation of 2D datagrids and bitmap images implemented.

• Stepwise interpolation mode added.

• Dependency on libkpathsea relaxed to make installation under MacOS
easier; linking to the library is still strongly recommended on systems
where it is readily available.

394 APPENDIX D. CHANGELOG

• Mathematical functions frac-tal julia(), fractal mandelbrot() and
prime() added.

• Many bug fixes, especially to the ticking of axes.

2010 Jun 1: Pyxplot 0.8.1

Summary:

This release has no major new features, but fixes several significant bugs in
version 0.8.0.

Details:

• Mathematical functions time fromunix(), time unix(), zernike() and
zernikeR() added.

• Bug fix to the ticking of linked axes.

• Bug fix to the ticking of axes with blank axis tick labels.

• Makefile and configure script improved for portability.

2010 May 19: Pyxplot 0.8.0

Summary:

This release is a major update, for which Pyxplot’s original python code has
been completely rewritten in C with the addition of many new features. Because
of the scale of this update, there is some minor syntax incompatibility with
previous versions where features have undergone particularly heavy change. The
most apparent change is the increase in speed and efficiency resultant from the
use of a compiled language: especially when handling large data files, Pyxplot
0.8.0 can run more than an order-of-magnitude faster than previous versions.

Details:

• The handling of large data files has been streamlined to require around
an order-of-magnitude less time and memory.

• Pyxplot’s mathematical environment has been extended to handle com-
plex numbers and quantities with physical units.

• The range of mathematical functions built into Pyxplot has been massively
extended.

• The solve command has been added to allow the solution of systems of
equations.

• The maximize and minimize commands have been added to allow searches
for local extrema of functions.

• An fft command has been added for performing Fourier transforms on
data.

395

• New plot styles – filledregion and yerrorshaded – have been added
for plotting filled error regions.

• The configuration of linked axes has been entirely redesigned.

• Parametric function plotting has been implemented.

• Colours can now be specified by RGB, HSB or CMYK components, as
well as by name.

• Several commands, e.g. box, circle, ellipse, etc., have been added to
allow vector graphics to be produced in Pyxplot’s multiplot environment.

• The jpeg command has been generalised to allow the incorporation of
not only jpeg images, but also bmp, gif and png images, onto multiplot
canvases. The command has been renamed image in recognition of its
wider applicability. Image transparency is now supported in gif and png

images.

• The spline command, now renamed the interpolate command, has
been extended up provide many types of interpolation between datapoints.

• A wide range of conditional and flow control structures have been added
to Pyxplot’s command language – these are the do, for, foreach, if and
while commands and the conditionalS and conditionalN mathematical
functions.

• Input filters have been introduced as a mechanism by which datafiles in
arbitrary formats can be read.

• Pyxplot’s command-line interface now supports tab completion.

• The show command has been reworked to produce pastable output.

• Many minor bugs have been fixed.

2009 Nov 17: Pyxplot 0.7.1

Summary:

This release has no major new features, but fixes several serious bugs in version
0.7.0.

Details:

• The exec command did not work in Pyxplot 0.7.0; this issue has been
resolved.

• The xyerrorrange plot style did not work in Pyxplot 0.7.0; this issue has
been resolved.

• Pyxplot 0.7.0 produces large numbers of python deprecation error mes-
sages when run under python 2.6; the code has been updated to remove
references to deprecated python functions.

396 APPENDIX D. CHANGELOG

Details – Change of System Requirements:

• In order to fix some of the bugs listed above, it has been necessary to fix
bugs in the PyX graphics library as well as those in Pyxplot. As a result,
and to ensure that these bugfixes reach users as quickly as possible, we
have opted to ship our own modified version of PyX 0.10, called dcfPyX
with Pyxplot.

2008 Oct 14: Pyxplot 0.7.0

Summary:

Third Pyxplot beta-release. The code has undergone significant streamlining,
and now runs approximately twice as fast as version 0.6.3 when handling large
datafiles. Memory usage has also been radically reduced. Two new data pro-
cessing commands have been introduced. The tabulate command can be used
to produce textual datafiles, allowing the user to read data in from files, apply
some analysis, and then write the processed data back to file. The histogram

command can be used to estimate the frequency densities of sets of data points,
either by binning them into a bar chart, or by fitting a functional form to their
frequency density.

Details – New and Extended Commands:

• tabulate

• histogram

• set label and text commands extended to allow a color to be specified.

Details – API changes

• diff dx() and int dx() functions – the function to be differentiated or
integrated must now be placed in quotation marks.

Details – Change of System Requirements:

• Requirement of PyX version 0.9 has been updated to PyX version 0.10.
Note that new versions of the PyX graphics library are not generally back-
wardly compatible.

2007 Feb 26: Pyxplot 0.6.3

Summary:

Second Pyxplot beta-release. The most significant change is the introduction
of a new command-line parser, with greatly improved handling of complex ex-
pressions and much more meaningful syntax error messages. Multi-platform
compatibility has also been massively improved, and dependencies loosened. A
small number of new commands have been added; most notable among them
are the jpeg and eps commands, which embed images in multiplots.

397

Details – New and Extended Commands:

• jpeg

• eps

• set xtics and set mxtics

• text and set label commands extended to allow text rotation.

• set log command extended to allow the use of logarithms with bases
other than 10.

• set preamble

• set term enlarge | noenlarge

• set term pdf

• set term x11 persist

Details – Eased System Requirements:

• Requirement on Python 2.4 minimum eased to version 2.3 minimum.

• Requirements on scipy and readline eased; Pyxplot will now work in re-
duced form when they are absent, though they are still strongly recom-
mended.

• dvips and Ghostscript are no longer required.

Details – Removed Commands:

Due to a general refinement of Pyxplot’s API, some of the less sensible pieces
of syntax from Version 0.5 are no longer supported. The author apologises for
any inconvenience caused.

• The delete arrow, delete text, move text, undelete arrow and undelete text

commands have been removed from the Pyxplot API. The move, delete
and undelete commands should now be used to act upon all types of
multiplot objects.

• The set terminal command no longer accepts the enhanced and noenhanced

modifiers. The postscript and eps terminals should be used instead.

• The select modifier, used after the plot, replot, fit and spline com-
mand can now only be used once; to specify multiple select criteria, use
the and logical operator.

2006 Sep 09: Pyxplot 0.5.8

First beta-release.

Index

=∼ operator, 93
? command, 222
% operator, 21, 90

above keyword, 152
abs(z) function, 285
abs(z) function, 45
accented characters, 23
acos(z) function, 285
acosec(z) function, 285
acosech(z) function, 285
acosh(z) function, 285
acot(z) function, 285
acoth(z) function, 286
acsc(z) function, 286
acsch(z) function, 286
Adobe Acrobat, 29
airy ai(z) function, 286
airy ai diff(z) function, 286
airy bi(z) function, 286
airy bi diff(z) function, 286
alignment

text, 167
amsmath package, 217
angles, handling of, 47
append(x) function, 319, 321, 323
arc command, 208, 222
arg(z) function, 286
arg(z) function, 45
arrow command, 195, 196, 223
arrows, 165
arrows plot style, 142
arrows head plot style, 141, 142
arrows nohead plot style, 142
arrows twohead plot style, 142
asec(z) function, 286
asech(z) function, 286
asin(z) function, 286
asinh(z) function, 286
assert command, 44, 123, 223
assertions, 123

ast.Lcdm age(H0,ΩM,ΩΛ) function,
298

ast.Lcdm angscale(z,H0,ΩM,ΩΛ) func-
tion, 299

ast.Lcdm DA(z,H0,ΩM,ΩΛ) function,
299

ast.Lcdm DL(z,H0,ΩM,ΩΛ) function,
299

ast.Lcdm DM(z,H0,ΩM,ΩΛ) function,
299

ast.Lcdm t(z,H0,ΩM,ΩΛ) function,
299

ast.Lcdm z(t,H0,ΩM,ΩΛ) function, 299
ast.moonphase(d) function, 299
ast.sidereal time(d) function, 299
ast Lcdm z(t,H0,ΩM,ΩΛ) function, 163
atan(z) function, 287
atan2(x, y) function, 287
atanh(z) function, 287
autofreq keyword, 157, 277
axes

color, 156
setting ranges, 31

axis keyword, 157, 277

backquote character, 124
backslash character, 23
backup files, 191
bar charts, 138
beginsWith(x) function, 321
below keyword, 152
besselI(l, x) function, 287
besseli(l, x) function, 287
besselJ(l, x) function, 287
besselj(l, x) function, 287
besselK(l, x) function, 287
besselk(l, x) function, 287
besselY(l, x) function, 288
bessely(l, x) function, 287
best fit lines, 71, 73
beta(a, b) function, 288

398

INDEX 399

binorigin modifier, 82, 234
bins modifier, 82, 234
binwidth modifier, 82, 234
bitmap output

resolution, 189
bmp output, 190
border keyword, 157, 277
both keyword, 157, 277
bottom keyword, 151, 167
box command, 193, 207, 223, 224
boxes plot style, 83, 138, 141, 234
break command, 116, 224

call command, 95, 118, 225
call(f, a) function, 98, 288
cd command, 124, 225
ceil(x) function, 288
center keyword, 167
CGS units, 50, 273
ChangeLog, 391
chr(x) function, 288
circle command, 193, 207, 208, 225
class() function, 314
classOf(x) function, 288
clear command, 197, 225
close() function, 108, 317
cmp(a, b) function, 288
cmyk(c,m, y, k) function, 288
color keyword, 223
color modifier, 129, 243
color output, 190
colormap plot style, 173, 251–253, 260,

265, 360, 365
colors

axes, 156
charts, 345
CMYK, 372
configuration file, 372
grid, 164
HSB, 372
inverting, 190
RGB, 372
setting for datasets, 129, 243
setting the palette, 132
shades of gray, 345
text, 166

colors.spectrum(spec, norm) function,
103, 300

colors.wavelength(λ,norm) function,
103, 300

columns keyword, 27
command line syntax, 16
command scripts

comment lines, 18
command-line syntax, 15
comment lines, 18

in datafiles, 27, 69
complex numbers, 44
componentsCMYK() function, 315
componentsHSB() function, 315
componentsRGB() function, 315
configuration file

colors, 372
configuration files, 355
conjugate(z) function, 288
conjugate(z) function, 45
constants, 38
contents() function, 314
continue command, 116, 226
contourmap plot style, 253, 265, 360,

365
coordinate systems

axis<n>, 166
first, 165
graph, 166
page, 166
second, 165

copy(o) function, 288
correlation matrix, 389
cos(z) function, 288
cosec(z) function, 289
cosech(z) function, 289
cosh(z) function, 289
cot(z) function, 289
coth(z) function, 289
count(x) function, 319
covariance matrix, 387
cross(a, b) function, 289
csc(z) function, 289
csch(z) function, 289
csv files, 17

data() function, 314
datafile format, 25
datafiles

globbing, 27
horizontal, 27

Debian Linux, 12
deepcopy(o) function, 289
degrees(x) function, 290

400 INDEX

delete command, 197, 226
delete(s) function, 316, 318, 321
det() function, 320
diagonal() function, 320
diff dx(e, x, step) function, 290
diff dx() function, 52, 53
differentiation, 52
discontinuous modifier, 28
do command, 116, 227
dots plot style, 134
dump(x) function, 108, 317

eigenvalues() function, 320
eigenvectors() function, 320
ellipse command, 193, 212, 227
ellipticintE(k) function, 290
ellipticintK(k) function, 290
ellipticintP(k, n) function, 290
else command, 228, 235
else if command, 235
Encapsulated PostScript, 190
endsWith(x) function, 322
enlarging output, 191
eof() function, 108, 317
eps command, 207, 228, 376
erf(x) function, 290
erfc(x) function, 290
errorbars, 137
errorbars plot style, 137
errorrange plot style, 138
eval(s) function, 290
every modifier, 25, 28, 70, 71, 82, 230,

234, 281
exec command, 123, 229
exit command, 15, 16, 229
exp(z) function, 290
expint(n, x) function, 291
expm1(x) function, 291
extend(x) function, 319, 323

factors(x) function, 291
fft command, 76, 77, 229
fftw, 11
fillcolor modifier, 130, 139, 243
filter(f) function, 319, 323
find(x) function, 322
findAll(x) function, 322
finite(x) function, 291
fit command, 71–73, 230, 385
FITS format, 68

floor(x) function, 291
flush() function, 108, 317
font

changing, 192
fontsize, 166
for command, 112, 113, 231
foreach command, 97, 113, 232
foreach datum command, 114, 115, 232
fractal mandelbrot(z,m) function, 179
fractals.julia(z,zc,m) function, 300
fractals.mandelbrot(z,m) function,

301
fsteps plot style, 141
FTP, 68
function splicing, 39
functions

pre-defined, 18

gamma(x) function, 291
gcc, 11
gcd(...) function, 291
General Public License, 9
Gentoo Linux, 11
getPos() function, 108, 317
Ghostscript, 12
Ghostview, 12, 125
gif output, 190

transparency, 190
global command, 232, 233, 238
globals() function, 291
globbing, 27
gray(x) function, 291
grey(x) function, 291
grid, 164

color, 164
GSL, 53
gsl, 12
gunzip, 12
gzip, 17

hasKey(x) function, 317, 318, 321
hcf(...) function, 291
head keyword, 165, 223
heaviside(x) function, 292
height keyword, 206
help command, 34, 233
Hessian matrix, 387
histeps plot style, 141
histogram command, 65, 82, 233, 234,

250, 359

INDEX 401

history command, 17, 234
horizontal datafiles, 27
hsb(h, s, b) function, 292
HTTP, 68
hyperg 0F1(c, x) function, 292
hyperg 1F1(a, b, x) function, 292
hyperg 2F0(a, b, x) function, 292
hyperg 2F1(a, b, c, x) function, 292
hyperg U(a, b, x) function, 292
hypot(...) function, 292

if command, 111, 235
ifft command, 76, 77, 235
Im(z) function, 292
Im(z) function, 45
image command, 193, 206, 207, 235,

375
image resolution, 189
ImageMagick, 12, 375
imperial units, 50, 273
impulses plot style, 138, 139
index modifier, 25, 71, 82, 230, 234
index(x) function, 319
insertn, x) function, 319
insert(n, x) function, 323
installation, 13

system-wide, 14
under Debian, 12
under Gentoo, 11
under Ubuntu, 11, 12
user-level, 13

int dx(e,min,max) function, 293
int dx() function, 52, 53
integration, 52
interpolate command, 73, 236, 237,

365
inv() function, 320
inward keyword, 157, 277
isalnum() function, 322
isalpha() function, 322
isdigit() function, 322
isOpen() function, 108, 317
items() function, 317, 318, 321

jacobi cn(u,m) function, 293
jacobi dn(u,m) function, 293
jacobi sn(u,m) function, 293
jpeg command, 237, 376
jpeg images, 375
jpeg output, 190

keys, 151
keys() function, 317, 318, 321
Kuhn, Marcus, 191

lambert W0(x) function, 293
lambert W1(x) function, 293
landscape orientation, 190
latex, 12, 217, 381
lcm(...) function, 293
ldexp(x, y) function, 293
left keyword, 151, 152, 167
legendreP(l, x) function, 294
legendreQ(l, x) function, 294
legends, 151
len(o) function, 294
len() function, 317–319, 321–323
let command, 37, 238
libkpathsea, 12
libpng, 12
libxml, 12
license, 9
line command, 193, 196
lines plot style, 28, 30, 134
linespoints plot style, 30, 134
linetype keyword, 223
linetype modifier, 130, 243
linetype plot style, 31
linewidth keyword, 223
linewidth modifier, 130, 243
list command, 197, 238
list() function, 323
ln(z) function, 294
load command, 16, 238
local command, 238
locals() function, 294
log(z) function, 294
log10(z) function, 294
logn(x, n) function, 294
lower() function, 322
lower-limit datapoints, 134
lowerlimits plot style, 134
lrange([f],l,[s]) function, 294
lstrip() function, 322

MacOS, 11
MacOS X, 13
MacPorts, 13
macros, 122
make, 11
map(f) function, 319, 323

402 INDEX

matrix(...) function, 294
max() function, 319
max(...) function, 295
maximize command, 56, 57, 239
methods() function, 314
Microsoft Excel, 17
Microsoft Powerpoint, 375, 376
min() function, 319
min(...) function, 295
minimize command, 56, 239
mod(x, y) function, 295
module(...) function, 295
monochrome output, 190
move command, 197, 240
multiple windows, 187
multiplot, 194

NaN, 44
natural units, 50
nohead keyword, 165, 223
norm() function, 323
not a number, 44
Not So Short Guide to latex 2ε, The,

381
numerical errors, 43

open(x[,y]) function, 107, 295
OpenOffice, 375, 376
operators, 18
ord(s) function, 295
ordinal(x) function, 295
os.chdir(x) function, 301
os.getcwd() function, 301
os.getegid() function, 301
os.geteuid() function, 301
os.getgid() function, 301
os.gethomedir() function, 301
os.gethostname() function, 301
os.getlogin() function, 301
os.getpgrp() function, 301
os.getpid() function, 301
os.getppid() function, 301
os.getrealname() function, 301
os.getuid() function, 301
os.glob(x) function, 302
os.path.atime(x) function, 302
os.path.ctime(x) function, 302
os.path.exists(x) function, 302
os.path.expanduser(x) function, 303
os.path.filesize(x) function, 303

os.path.join(...) function, 303
os.path.mtime(x) function, 303
os.popen(x,[y]) function, 302
os.stat(x) function, 302
os.stderr function, 302
os.stdin function, 302
os.stdout function, 302
os.system(x) function, 302
os.tmpfile() function, 108, 302
os.uname() function, 302
outside keyword, 152
outward keyword, 157, 277
overwriting files, 191

palette, 132
paper sizes, 191
pdf format, 29
pdf output, 190
phy.Bv(ν, T) function, 303
phy.Bvmax(T) function, 303
physical constants, 38
physical units, 45
piechart command, 193, 214, 215, 240
pipes, 68
plot axes command, 241
plot command, 16, 27, 102, 129, 240,

247
plot label command, 241
plot styles

arrows, 142
arrows head, 141, 142
arrows nohead, 142
arrows twohead, 142
boxes, 83, 138, 141, 234
colormap, 173, 251–253, 260, 265,

360, 365
contourmap, 253, 265, 360, 365
dots, 134
errorbars, 137
errorrange, 138
fsteps, 141
histeps, 141
impulses, 138, 139
lines, 28, 30, 134
linespoints, 30, 134
linetype, 31
lowerlimits, 134
points, 30, 134
pointtype, 31
shadedregion, 138

INDEX 403

stars, 134
steps, 141
surface, 265, 365
upperlimits, 134
wboxes, 138, 139, 141
xerrorbars, 137
xerrorrange, 137
xyerrorbars, 137
xyerrorrange, 138
yerrorbars, 30, 137
yerrorrange, 138
yerrorshaded, 138

plot title command, 242
plot with command, 242
png output, 190

transparency, 190
point command, 193, 212, 243, 244
pointlinewidth modifier, 130, 243
points plot style, 30, 134
pointsize modifier, 130, 243
pointtype modifier, 130, 243
pointtype plot style, 31
polygon command, 193
pop() function, 319
portrait orientation, 190
PostScript

Encapsulated, 190
PostScript output, 190
pow(x, y) function, 295
presentations, 195, 375
prime(x) function, 295
primeFactors(x) function, 295
print command, 20, 244
pwd command, 124, 244
PyX, 10
pyxplot watch, 125

Quick Image Viewer, 379, 380
quit command, 15, 16, 244

radians(x) function, 295
raise(e, s) function, 296, 300
raise(x) function, 317
random.binomial(p, n) function, 83,

303
random.chisq(ν) function, 83, 304
random.gaussian(σ) function, 83, 304
random.lognormal(ζ, σ) function, 83,

304
random.poisson(n) function, 83, 304

random.random() function, 83, 304
random.tdist(ν) function, 83, 304
range([f],l,[s]) function, 296
Re(z) function, 296
Re(z) function, 45
read() function, 108, 318
readline, 12
readline() function, 108, 318
readlines() function, 108, 318
rectangle command, 207, 244
reduce(f) function, 320, 323
refresh command, 30, 198, 245
regular expressions, 93
replot command, 28, 183, 204, 245
reset command, 24, 246
reverse() function, 320, 324
rgb(r, g, b) function, 296
right keyword, 151, 167
romanNumeral(x) function, 296
root(z, n) function, 296
rotate keyword, 166, 195, 206
round(x) function, 296
rows keyword, 27
rstrip() function, 322

sans-serif, 192
save command, 16, 17, 246
sec(z) function, 296
sech(z) function, 296
sed shell command, 93
select modifier, 28, 70, 71, 82, 230,

234, 281
set arrow command, 165, 166, 246,

247
set autoscale command, 32, 247
set axescolor command, 156, 248, 358
set axis command, 152, 154, 248
set axisunitstyle command, 153, 249,

358
set backup command, 191, 250, 359
set bar command, 250, 359
set binorigin command, 250, 359
set binwidth command, 250, 359
set boxfrom command, 139, 251, 359
set boxwidth command, 139, 251, 359
set c1format command, 172, 179
set c1label command, 251
set c1range command, 172, 181
set c1tics command, 179
set c<n>range command, 174

404 INDEX

set calendar command, 62, 63, 252,
359

set clip command, 165, 252, 360
set colkey command, 360
set colorkey command, 179, 252
set colormap command, 173, 174, 253
set command, 24, 197, 198, 246, 353,

354
set contour command, 180, 181, 360
set contours command, 253
set crange command, 253, 360–362
set data style command, 254, 362
set display command, 199, 254, 362
set filter command, 255
set fontsize command, 166, 255, 362
set function style command, 255,

362
set grid command, 164, 255, 362
set gridmajcolor command, 164, 256,

363
set gridmincolor command, 164, 256,

363
set key command, 151, 256, 363
set keycolumns command, 152, 257,

363
set label command, 165, 166, 195,

217, 257
set linewidth command, 258, 363
set logscale c command, 360
set logscale command, 33, 259
set logscale t command, 367
set logscale u command, 368
set logscale v command, 368
set multiplot command, 194, 259, 364
set mxtics command, 260
set mytics command, 260
set mztics command, 260
set noarrow command, 165, 260
set noaxis command, 260
set nobackup command, 260
set noclip command, 260
set nocolorkey command, 260
set nodisplay command, 199, 261
set nogrid command, 261
set nokey command, 151, 261
set nolabel command, 261
set nologscale command, 33, 261
set nomultiplot command, 194, 262
set nostyle command, 262
set notitle command, 262

set noxtics command, 158, 262, 277
set noytics command, 262
set noztics command, 262
set numeric complex command, 44
set numeric errors explicit com-

mand, 44
set numeric errors quiet command,

44, 47, 73
set numeric real command, 44
set numerics command, 262, 364
set numerics complex command, 9
set numerics display command, 52
set numerics sigfig command, 51,

159, 275
set numerics typeable command, 24
set origin command, 194, 263, 364
set output command, 29, 189, 263,

364
set palette command, 132, 264
set papersize command, 191, 264, 365
set pointlinewidth command, 264,

365
set pointsize command, 265, 365
set preamble command, 192, 217, 265,

354
set sample grid command, 147
set samples command, 30, 70, 75, 183,

237, 265, 281, 365, 366
set samples grid command, 172
set samples interpolate command,

172
set seed command, 83, 266
set size command

noratio modifier, 266
ratio modifier, 266
square modifier, 267

set size command, 30, 183, 266, 368
set size ratio command, 30, 358, 369
set size square command, 30
set style command, 267
set style data command, 31, 267
set style function command, 31, 267
set terminal command

antialias modifier, 268
gif modifier, 268
color modifier, 268
dpi modifier, 189, 268
enlarge modifier, 269
eps modifier, 269
gif modifier, 269

INDEX 405

invert modifier, 269
jpeg modifier, 269
landscape modifier, 269
monochrome modifier, 269
noantialias modifier, 270
noenlarge modifier, 270
noinvert modifier, 270
pdf modifier, 270
png modifier, 270
portrait modifier, 270
postscript modifier, 270
solid modifier, 270
transparent modifier, 271
X11 multiWindow modifier, 271
X11 persist modifier, 271
X11 singleWindow modifier, 271

set terminal command, 29, 30, 187,
189, 191, 267, 268, 360, 363,
366, 367

set terminal dpi command, 189, 362
set textcolor command, 167, 195, 271,

367
set texthalign command, 167, 195,

271, 367
set textvalign command, 167, 195,

272, 367
set timezone command, 272
set title command, 272, 367
set trange command, 145, 272, 367
set unit command, 273, 368
set unit of command, 50, 51, 273
set unit preferred command, 51, 273
set unit scheme command, 50, 273
set urange command, 147, 274, 368
set view command, 183, 274, 369
set viewer command, 12, 189, 274
set vrange command, 147, 275, 368
set width command, 30, 275, 368
set x1format command, 251
set xformat command, 54, 154, 159,

160, 275
set xlabel command, 276
set xrange command, 32, 276
set xtics command, 157, 277
set yformat command, 278
set ylabel command, 278
set yrange command, 278
set ytics command, 278
set zformat command, 278
set zlabel command, 278

set zrange command, 278
set ztics command, 278
setPos(x) function, 108, 318
sgn(x) function, 297
shadedregion plot style, 138
shell commands

executing, 124
substituting, 124

show command, 24, 197, 278, 353
show palette command, 132
show variables command, 38
show xtics command, 157, 277
SI prefixes, 51
sin(z) function, 297
sinc(z) function, 297
sinh(z) function, 297
size() function, 320
Solaris, 11
solve command, 54–56, 279
sort() function, 320, 324
sortOn(f) function, 320
sortOnElement(n) function, 320
splicing functions, 39
spline command, 74, 237, 280
split() function, 322
splitOn(...) function, 322
spreadsheets, importing data from, 17
sqrt(z) function, 297
stars plot style, 134
stats.binomialCDF(k, p, n) function,

304
stats.binomialPDF(k, p, n) function,

304
stats.chisqCDF(x, ν) function, 305
stats.chisqCDFi(P, ν) function, 305
stats.chisqPDF(x, ν) function, 305
stats.gaussianCDF(x, σ) function, 305
stats.gaussianCDFi(x, σ) function, 305
stats.gaussianPDF(x, σ) function, 305
stats.lognormalCDF(x, ζ, σ) function,

305
stats.lognormalCDFi(x, ζ, σ) function,

305
stats.lognormalPDF(x, ζ, σ) function,

305
stats.poissonCDF(x, µ) function, 306
stats.poissonPDF(x, µ) function, 306
stats.tdistCDF(x, ν) function, 306
stats.tdistCDFi(P, ν) function, 306
stats.tdistPDF(x, ν) function, 306

406 INDEX

stdin, 68
steps plot style, 141
str(< format >,< timezone >) func-

tion, 315
str() function, 314
string operators

concatenation, 90
search and replace, 93
substitution, 21

strip() function, 322
subroutine command, 117
sum(...) function, 297
surface plot style, 265, 365
svg output, 190
swap command, 198, 280
symmetric() function, 321
system requirements, 11

tabulate command, 65, 69, 281
tan(z) function, 297
tanh(z) function, 297
temperature conversions, 48
texify(s) function, 297
texify() function, 22, 382
texifyText(s) function, 297
texifyText() function, 22, 382
text

alignment, 167
color, 166
size, 166

text command, 193–195, 217, 282
tiff output, 190
time.fromCalendar(year,month, day, hour,min, sec)

function, 104
time.fromCalendar(year,month, day, hour,min, sec,<

timezone >) function, 306
time.fromJD(t) function, 104, 306
time.fromMJD(t) function, 104, 307
time.fromUnix(t) function, 104, 307
time.interval(t2, t1) function, 307
time.intervalStr(t2, t1, format) func-

tion, 307
time.intervalStr(t1,t2,format) func-

tion, 64
time.now() function, 104, 307
time.sleep(t) function, 307
time.sleepUntil(t) function, 307
time.string(t, < format >,< timezone >)

function, 308
title modifier, 151

Tobias Oetiker, 381
toCMYK() function, 315
toDayOfMonth(< timezone >) func-

tion, 61, 315
toDayOfMonth() function, 105
toDayWeekName(< timezone >) func-

tion, 61, 316
toDayWeekName() function, 105
toDayWeekNum(< timezone >) func-

tion, 61, 316
toDayWeekNum() function, 105
toHour(< timezone >) function, 61,

316
toHour() function, 105
toHSB() function, 315
toJD() function, 61, 105, 316
toMinute(< timezone >) function, 61,

316
toMinute() function, 105
toMJD() function, 61, 105, 316
toMonthName(< timezone >) function,

61, 316
toMonthName() function, 105
toMonthNum(< timezone >) function,

61, 316
toMonthNum() function, 106
top keyword, 151, 167
tophat(x, σ) function, 298
toRGB() function, 315
toSecond(< timezone >) function, 61,

316
toSecond() function, 106
toUnix() function, 61, 106, 316
toYear(< timezone >) function, 62,

316
toYear() function, 106
transparent terminal, 190
transpose() function, 321
twohead keyword, 165, 223
twoway keyword, 165
type() function, 314
typeOf(o) function, 298
types.boolean(...) function, 308
types.color(...) function, 309
types.date(...) function, 309
types.dictionary(...) function, 309
types.exception(...) function, 309
types.fileHandle(...) function, 309
types.function(...) function, 309
types.instance(...) function, 310

INDEX 407

types.list(...) function, 310
types.matrix(...) function, 310
types.module(...) function, 310
types.null(...) function, 310
types.number(...) function, 311
types.string(...) function, 311
types.type(...) function, 311
types.vector(...) function, 311

Ubuntu Linux, 11, 12
undelete command, 197, 283
unit() function, 45
unit(...) function, 298
units, 45

angle, 47
CGS, 50, 273
dimensional analysis, 46
imperial, 50, 273
list, 329
natural, 50
SI prefixes, 46, 51
temperature, 48
unit schemes, 50, 273

unset axis command, 152
unset command, 24, 283, 353
upper() function, 323
upper-limit datapoints, 134
upperlimits plot style, 134
using columns modifier, 27
using modifier, 25, 69–71, 82, 230, 234,

281
using rows modifier, 27

values() function, 317, 318, 321
variables

string, 89
vector() function, 320
vector(...) function, 298
via keyword, 71, 230

watching scripts, 125
wboxes plot style, 138, 139, 141
wget, 12
while command, 115, 116, 283, 284
width keyword, 206
wildcards, 27, 113
window functions, 80
with modifier, 195, 223
write(x) function, 108, 318

X11 terminal, 187

xcenter keyword, 151
xerrorbars plot style, 137
xerrorrange plot style, 137
xyerrorbars plot style, 137
xyerrorrange plot style, 138

ycenter keyword, 151
yerrorbars plot style, 30, 137
yerrorrange plot style, 138
yerrorshaded plot style, 138

zernike(n,m, r, φ) function, 298
zernikeR(n,m, r) function, 298
zeta(x) function, 298
zlib, 12

	I Introduction to Pyxplot
	Introduction
	What is Pyxplot?
	Compatibility with gnuplot
	The structure of this manual
	An introductory tour
	License
	Spelling conventions
	Acknowledgments

	Installation
	Installation within Linux distributions
	System requirements
	Dependencies in Debian and Ubuntu
	Dependencies in MacOS

	Installation from source archive
	System-wide installation

	First steps with Pyxplot
	Getting started
	First plots
	Comments
	Splitting long commands
	Printing text
	Axis labels and titles
	Removing labels and titles

	Querying the values of settings
	Plotting data files
	Plotting many data files at once
	Horizontally arranged data files
	Choosing which data to plot

	The replot command
	Directing where output goes
	Setting the size of output
	Plotting styles
	Setting axis ranges
	Interactive help

	Performing calculations
	Variables
	Physical constants
	Functions
	Spliced functions

	Handling numerical errors
	Working with complex numbers
	Working with physical units
	Treatment of angles in Pyxplot
	Converting between different temperature scales

	Configuring how numbers are displayed
	Display of physical units
	Changing the accuracy to which numbers are displayed
	Creating pastable text

	Numerical integration and differentiation
	Solving systems of equations
	Searching for minima and maxima of functions
	Working with time-series data
	Calendars
	Time intervals

	Working with data
	Input filters
	Reading data from a pipe
	Including data within command scripts
	Special comment lines in data files
	Tabulating functions and slicing data files
	Function fitting
	Datafile interpolation
	Two-dimensional interpolation

	Fourier transforms
	Window functions

	Histograms
	Random data generation

	Programming: Pyxplot's data types
	Instantiating objects
	Strings
	The string substitution operator
	Converting strings to numbers
	Slicing strings
	String methods
	Regular expressions

	Lists
	Using lists as stacks
	Using lists as buffers
	Sorting lists
	Iterating over lists
	Calling functions with lists of arguments
	List mapping and filtering
	Vectors versus lists

	Dictionaries
	Vectors and matrices
	Dot and cross products
	Matrix algebra
	Plotting data from vectors

	Colors
	Color representations of the electromagnetic spectrum

	Dates
	Modules and classes
	File handles
	Storing data structures in text files

	Programming: flow control
	Conditionals
	For loops
	Foreach loops
	Foreach datum loops
	While and do loops
	The break and continue statements
	The conditional operator
	Subroutines
	Macros
	The exec command
	Assertions
	Raising exceptions
	Shell commands
	Script watching: pyxplot_watch

	II Plotting and vector graphics
	Plotting: a complete guide
	The with modifier
	The palette
	Default settings

	Pyxplot's plot styles
	Lines and points
	Error bars
	Shaded regions
	Barcharts and histograms
	Steps
	Arrows
	Color maps, contour maps and surface plots

	Labelling datapoints
	The style keyword
	Plotting functions in exotic styles
	Plotting parametric functions
	Two-dimensional parametric surfaces

	Graph legends
	Configuring axes
	Adding additional axes
	Selecting which axes to plot against
	Plotting quantities with physical units
	Specifying the positioning of axes
	Configuring the appearance of axes
	Setting the color of axes
	Specifying where ticks should appear along axes
	Configuring how tick marks are labelled
	Linked axes

	Gridlines
	Clipping behaviour
	Labelling graphs
	Arrows
	Text labels

	Color maps
	Custom color mappings
	Color scale bars

	Contour maps
	Three-dimensional plotting
	Surface plotting

	Producing image files
	The set terminal command
	Previewing graphs on the screen
	Producing images on disk
	The complete syntax of the set terminal command

	The default terminal
	PostScript output
	Paper sizes

	Backing up over-written files
	Changing font

	Producing vector graphics
	Adding other vector graphics objects
	Multiplot mode
	The text command
	The arrow and line commands
	Editing items on the canvas
	Settings associated with multiplot items
	Reordering multiplot items
	The construction of large multiplots

	Linked axes and galleries of plots
	The replot command revisited

	The polygon command
	The image command
	The eps command
	The box and circle commands
	The arc command
	The point command
	The ellipse command
	The piechart command
	LaTeX and Pyxplot

	III Reference manual
	Command reference
	?
	!
	arc
	arrow
	assert
	box
	break
	call
	cd
	circle
	clear
	continue
	delete
	do
	ellipse
	else
	eps
	exec
	exit
	fft
	fit
	for
	foreach
	foreach datum
	global
	help
	histogram
	history
	if
	ifft
	image
	interpolate
	jpeg
	let
	list
	load
	local
	maximize
	minimize
	move
	piechart
	plot
	axes
	label
	title
	with

	point
	print
	pwd
	quit
	rectangle
	refresh
	replot
	reset
	save
	set
	arrow
	autoscale
	axescolor
	axis
	axisunitstyle
	backup
	bar
	binorigin
	binwidth
	boxfrom
	boxwidth
	c1format
	c1label
	calendar
	clip
	colorkey
	colormap
	contours
	c<n>range
	data style
	display
	filter
	fontsize
	function style
	grid
	gridmajcolor
	gridmincolor
	key
	keycolumns
	label
	linewidth
	logscale
	multiplot
	mxtics
	mytics
	mztics
	noarrow
	noaxis
	nobackup
	noclip
	nocolorkey
	nodisplay
	nogrid
	nokey
	nolabel
	nologscale
	nomultiplot
	nostyle
	notitle
	noxtics
	noytics
	noztics
	numerics
	origin
	output
	palette
	papersize
	pointlinewidth
	pointsize
	preamble
	samples
	seed
	size
	style
	style data | style function
	terminal
	textcolor
	texthalign
	textvalign
	timezone
	title
	trange
	unit
	urange
	view
	viewer
	vrange
	width
	xformat
	xlabel
	xrange
	xtics
	yformat
	ylabel
	yrange
	ytics
	zformat
	zlabel
	zrange
	ztics

	show
	solve
	spline
	swap
	tabulate
	text
	undelete
	unset
	while

	List of in-built functions
	The ast module
	The colors module
	The exceptions module
	The fractals module
	The os module
	The os.path module
	The phy module
	The random module
	The stats module
	The time module
	The types module

	List of data types
	Methods common to all data types
	The boolean type
	The color type
	The date type
	The dictionary type
	The exception type
	The fileHandle type
	The function type
	The instance type
	The list type
	The matrix type
	The module type
	The null type
	The number type
	The string type
	The type type
	The vector type

	List of physical constants
	List of physical units
	List of paper sizes
	Color tables
	Line and point types
	Configuring Pyxplot
	Configuration files
	An example configuration file
	Setting definitions
	The filters section
	The settings section
	The styling section
	The terminal section
	The units section

	Recognised color names

	IV Appendices
	Other applications of Pyxplot
	Conversion of jpeg images to PostScript
	Inserting equations in Powerpoint presentations
	Delivering talks in Pyxplot
	Setting up the infrastructure
	Writing a short example talk
	Delivering your talk

	Summary of differences between Pyxplot and gnuplot
	The typesetting of text
	Complex numbers
	The multiplot environment
	Plots with multiple axes
	Plotting parametric functions

	The fit command: mathematical details
	Notation
	The probability density function
	Estimating the error in u0
	The covariance matrix
	The correlation matrix
	Finding i

	ChangeLog

