
PyXPlot Users’ Guide

A Commandline Plotting Package,

with Interface similar to that of Gnuplot,

which produces

Publication-Quality Output.

Version 0.5.5

Dominic Ford
Trinity College

Cambridge
CB2 1TQ

UK
Email: dcf21@mrao.cam.ac.uk

July 2006

Contents

1 Introduction 1

1.1 Overview . 1

1.2 System Requirements . 3

1.3 Installation . 3

1.4 Credits . 4

1.5 Legal Blurb . 4

2 First Steps With PyXPlot 5

2.1 Getting Started . 5

2.2 First Plots . 6

2.3 Plotting Datafiles . 8

2.4 Directing Where Output Goes 9

2.5 Data Styles . 11

2.6 Function Fitting . 11

2.7 Interactive Help . 13

2.8 Differences Between PyXPlot and Gnuplot 13

3 Extensions of Gnuplot’s Interface 15

3.1 The Commandline Environment 15

3.2 Formatting and Terminals . 15

3.3 Plotting . 18

3.4 Sundry Items (Arrows, Text Labels, and More) 24

3.5 Multi-plotting . 26

3.6 Barcharts and Histograms . 29

3.6.1 Basic Operation . 29

3.6.2 Stacked Bar Charts 30

3.6.3 Steps . 31

3.7 Function Splicing . 31

3.8 Datafile Interpolation: Spline Fitting 32

3.9 Numerical Integration and Differentiation 33

3.10 Script Watching: pyxplot watch 34

i

ii CONTENTS

4 Configuring PyXPlot 35
4.1 Overview . 35
4.2 Configuration Files . 35
4.3 An Example Configuration File 36
4.4 Configuration File Options 37
4.5 Colour names . 41

5 Examples 43
5.1 Example 1: Plotting Functions – A Simple First Plot 43
5.2 Example 2: Stacking Many Plots Together – Multiplot 44
5.3 Example 3: Plotting A Datafile – Using Multiple Axes 45
5.4 Example 4: Something Completely Different 47
5.5 Example 5: Multiplot – Linked Axes 49
5.6 Example 6: Bar Charts and Steps 51
5.7 Example 7: Bar Charts – Box Widths 53
5.8 Example 8: Fitting Functions to Data 55
5.9 Example 9: Simple Examples of Function Splicing 56
5.10 Example 10: Removal of Unwanted Axes 58
5.11 Example 11: The Arrows Plot Style 61
5.12 Output Produced by Examples 62

6 ChangeLog 69

Chapter 1

Introduction

1.1 Overview

PyXPlot is a commandline graphing package, which, for ease of use, has an
interface based heavily upon that of gnuplot – perhaps UNIX’s most widely-
used plotting package. Despite the shared interface, however, PyXPlot is
intended to significantly improve upon the quality of gnuplot’s output, pro-
ducing publication-quality figures. The commandline interface has also been
extended, providing a wealth of new features, and short-cuts for some oper-
ations which were felt to be excessively cumbersome in the original.

The motivation behind PyXPlot’s creation was the apparent lack of a
free plotting package which combined both high-quality output and a simple
interface. Some – pgplot for one – provided very attractive output, but
required a program to be written each time a plot was to be produced – a
potentially time consuming task. Others, gnuplot being the prime example,
were quick and simple to use, but produced less attractive results.

PyXPlot attempts to fill that gap, offering the best of both worlds.
Though the interface is based upon that of gnuplot, text is now rendered
with all of the beauty and flexibility of the LATEX typesetting environment;
the “multiplot” environment is made massively more flexible, making it easy
to produce galleries of plots; and the range of possible output formats is ex-
tended – to name but a few of the enhancements. A number of examples of
the results of which PyXPlot is capable can be seen in section 5.12.

As well as the ease of use and flexibility of gnuplot’s commandline in-
terface – it can be used either interactively, read a list of commands from
a file, or receive instructions through a UNIX pipe from another process –
I believe it to bring another distinct advantage. It insists upon data being
written to a datafile on disk before being plotted. Packages which allow, or
more often require, plotting to be done from within a programming language
can encourage the calculation of data and its plotting to occur in the same
program. I believe this to be a dangerous temptation, as the storage of raw

1

2 CHAPTER 1. INTRODUCTION

datapoints to disk can then often be seen as a secondary priority. Months
later, when the need arises to replot the same data in a different form, or
to compare it with newer data, remembering how to use a hurriedly written
program can prove tricky, but remembering how to plot a simple datafile
less so.

The similarity of the interface to that of gnuplot is such that simple
scripts written for gnuplot should work with PyXPlot with minimal modi-
fication; gnuplot users should be able to get started very quickly. However,
as PyXPlot remains work in progress, it supports only a subset of the func-
tionality and configurability of gnuplot, and some features may be found to
be missing. These will be discussed further in section 2.8. A preliminary
overview of those features which have been added to the interface can be
found in chapter 3.

A brief overview of gnuplot’s interface is provided for novice users in
chapter 2. However, the attention of past gnuplot users is drawn to one of the
key changes to the interface – namely that all textual labels on plots are now
printed using the LATEX typesetting environment. This does unfortunately
introduce some incompatibility with the original, since some strings which
were valid before are no longer valid. For example:

set xlabel ’x^2’

would have been valid in gnuplot, but now needs to be written in LATEX
mathmode as:1

set xlabel ’x^2’

It is the view of the author, however, that the nuisance of this incompatibility
is far outweighed by the power that LATEX brings. Users with no prior
knowledge of LATEX are advised that they don’t know what they’re missing,
and that they should straight away download and read a copy of Tobias
Oetiker’s excellent introduction, The Not So Short Guide to LATEX2ε2.

1As in gnuplot, all textual labels in PyXPlot should be enclosed in either single or
double quotes. If one were to want to render a string containing apostrophes, it would
be necessary to enclose the string in double quotes, to prevent confusion between the
apostrophe in the LATEX, and the closing quote at the end of the line. However, to
allow for those wanting to render LATEX strings containing both single and double quote
characters – for example, “J\"org’s Data” – PyXPlot recognises the backslash character
to be an escape character when followed by either ’ or ” in a LATEX string. This is the only

case in which PyXPlot considers \ an escape character. Consequently, in the example
above, the “\"” would need to be double escaped: “J\\"org’s Data”.

2Download from:
http://www.ctan.org/tex-archive/info/lshort/english/lshort.pdf

1.2. SYSTEM REQUIREMENTS 3

1.2 System Requirements

PyXPlot is presently only supported for Linux. It requires that the following
software packages (not included) be installed:

bash (The bash shell)
python (Version 2.4 or later)
scipy (Python Scientific Library)
latex (Used for all textual labels)
dvips (Needed to render textual labels)
gs (Ghostscript; needed for the landscape terminal)
convert (ImageMagick; needed for the gif, png and jpg terminals)

The following package is not required for installation, but it is not pos-
sible to use the X11 terminal, i.e. to display plots on screen, without it:

gv (Ghostview; used for the X11 terminal)

Debian users can find this software in the packages tetex-extra, gv,
imagemagick, python2.4, python2.4-scipy.

1.3 Installation

The following steps describe the installation of PyXPlot from a .tar.gz

archive. It is assumed that the packages listed above have already been
installed.

� Unpack the distributed .tar.gz:

tar xvfz pyxplot_0.5.4.tar.gz

cd pyxplot

� Run the installation script:

./configure

make

make install

where the final step needs to be executed as root. By default, the
PyXPlot excutable installs to /usr/local/bin/pyxplot. If desired,
this installation path may be modified in the file Makefile.skel, by
changing the variable USRDIR in line 1. This will be necessary for users
who do not have root access to their machines, for example.

4 CHAPTER 1. INTRODUCTION

� Finally, start PyXPlot:

pyxplot

1.4 Credits

Before proceeding any further, the author would like to express his gratitude
to those people who have contributed to PyXPlot – first and foremost, to
Jörg Lehmann and André Wobst, for writing the PyX graphics library for
python, upon which this software is heavily built. Thanks must also go
to Ross Church for his many useful comments and suggestions during its
development.

1.5 Legal Blurb

This manual, and the software which it describes, are both copyright (C)
Dominic Ford 2006. They are both distributed under the GNU General
Public License (GPL) Version 2, a copy of which is provided in the COPYING
file in this distribution. Alternatively, it may be downloaded from:
http://www.gnu.org/copyleft/gpl.html.

Chapter 2

First Steps With PyXPlot

In this chapter, I shall provide a brief overview of the basic operation of
PyXPlot, essentially covering those areas of syntax which are borrowed di-
rectly from gnuplot. Users who are already familiar with gnuplot may wish
to skim or skip this chapter, though section 2.8, detailing which parts of
gnuplot’s interface are and are not supported in PyXPlot, may be of inter-
est. In the following chapter, I shall go on to describe PyXPlot’s extensions
of gnuplot’s interface.

Describing gnuplot’s interface in its entirity is a substantial task, and
what follows is only an overview; novice users can find many excellent tuto-
rials on the web which will greatly supplement what is provided below.

2.1 Getting Started

The simplest way to start PyXPlot is simply to type “pyxplot” at a shell
prompt, to start an interactive session. A PyXPlot commandline prompt
will appear, into which commands can be typed. PyXPlot can be exitted
either by typing “exit”, “quit”, or by pressing CTRL-D.

Alternatively, a list of commands to be executed may be stored in a
command script, and executed by passing the filename of the command
script to PyXPlot on the shell commandline, for example:

pyxplot foo

In this case, PyXPlot would exit immediately after finishing executing the
commands from the file foo. Several filenames may be passed on the com-
mandline, to be executed in sequence:

pyxplot foo1 foo2 foo3

Wildcards can also be used; the following would execute all command scripts
in the presenting working directory whose filenames end with a .plot suffix:

5

6 CHAPTER 2. FIRST STEPS WITH PYXPLOT

pyxplot *.plot

It is possible to use PyXPlot both interactively, and from command
scripts, in the same session. One way to do this is to pass the magic filename
‘–’ on the commandline:

pyxplot foo1 - foo2

This magic filename represents an interactive session, which commences after
the execution of foo1, and should be terminated in the usual way after use,
with the “exit” or “quit” commands. Afterwards, the command script
foo2 would execute.

From within an interactive session, it is possible to run a command script
using the load command:

pyxplot> load ’foo’

This example would have the same effect as typing the contents of the file
foo into the present session.

A related command is “save”, which stores a history of the commands
executed in the present interactive session to file.

All command files can include comment lines, which should begin with
a hash character, for example:

This is a comment

2.2 First Plots

The basic workhorse command of PyXPlot is the plot command, which
is used to produce all plots. The following simple example would plot the
function sin(x):

plot sin(x)

It is also possible to plot data from files. The following would plot data
from a file ‘datafile’, taking the x-coordinate of each point from the first
column of the datafile, and the y-coordinate from the second. The datafile is
assumed to be in plain text format, with columns separated by whitespace1:

plot ’datafile’

Several items can be plotted on the same graph by separating them by
commas:

1If the filename of a datafile ends with a .gz suffix, it is assuming to be gzipped
plaintext, and is decoded accordingly.

2.2. FIRST PLOTS 7

plot ’datafile’, sin(x), cos(x)

It is possible to define one’s own variables and functions, and then plot them:

a = 2

b = 1

c = 1.5

f(x) = a*(x**2) + b*x + c

plot f(x)

Labels can be applied to the two axes of the plot, and a title put at the
top:

set xlabel ’This is the X axis’

set ylabel ’This is the Y axis’

set title ’A Plot of sin(x)’

plot sin(x)

All such text labels are displayed using LATEX, and so any LATEXcommands
can be used, for example to put equations on axes:

set xlabel ’$\frac{x^2}{c^2}$’

As a caveat, however, this does mean that care needs to be taken to escape
any of LATEX’s reserved characters –i.e.: \ & % # { }

�
ˆ or ∼.

Having set labels and titles, they may be removed thus:

set xlabel ’’

set ylabel ’’

set title ’’

These are two other ways of removing the title from a plot:

set notitle

unset title

The unset command may be followed by essentially any word that can
follow the set command, such as xlabel or title, to return that setting
to its default configuration. The reset command restores all configurable
parameters to their default states.

8 CHAPTER 2. FIRST STEPS WITH PYXPLOT

2.3 Plotting Datafiles

In the simple example of the previous section, we plotted the first column of
a datafile against the second. It is also possible to plot any arbitrary column
of a datafile against any other; the syntax for doing this is:

plot ’datafile’ using 3:5

This example would plot the fifth column of the file datafile against the
third. Algebraic expressions may also be used in place of column numbers,
for example:

plot ’datafile’ using (3+$1+$2):(2+$3)

In algebraic expressions, column numbers should be prefixed by dollar signs,
to distinguish them from numerical constants. The example above would
plot the sum of the values in the first two columns of the datafile, plus three,
on the horizontal axis, against two plus the value in the third column on the
vertical axis. A more advanced example might be:

plot ’datafile’ using 3.0:$($2)

This would place all of the datapoints on the line x = 3, drawing their
vertical positions from the value of some column n in the datafile, where the
value of n is itself read from the second column of the datafile.

Later, in section 3.3, I shall discuss how to plot rows of datafiles against
one another, in horizontally arranged datafiles.

It is also possible to plot data from only a range of lines within a datafile.
When PyXPlot reads a datafile, it looks for any blank lines in the file. It
divides the datafile up into “data blocks”, each being separated by single
blank lines. The first datablock is numbered 0, the next 1, and so on.

When two or more blank lines are found together, the datafile is divided
up into “index blocks”. Each index block may be made up of a series of data
blocks. To clarify this, a labelled example datafile is shown in figure 2.1.

By default, when a datafile is plotted, all data blocks in all index blocks
are plotted. To plot only the data from one index block, the following syntax
may be used:

plot ’datafile’ index 1

To achieve the default behaviour of plotting all index blocks, the index

modifier should be followed by a negative number.
It is also possible to specify which lines and/or data blocks to plot from

within each index. For this purpose the every modifier is used, which takes
six values, separated by colons:

plot ’datafile’ every a:b:c:d:e:f

The values have the following meanings:

2.4. DIRECTING WHERE OUTPUT GOES 9

0.0 0.0 Start of index 0, data block 0.
1.0 1.0

2.0 2.0

3.0 3.0

A single blank line marks the start of a new data block.
0.0 5.0 Start of index 0, data block 1.
1.0 4.0

2.0 2.0

A double blank line marks the start of a new index.
...

0.0 1.0 Start of index 1, data block 0.
1.0 1.0

A single blank line marks the start of a new data block.
0.0 5.0 Start of index 1, data block 1.

<etc>

Figure 2.1: An Example PyXPlot Datafile – the datafile is shown in the two
left-hand columns, and commands are shown to the right.

a Plot data only from every a th line in datafile.
b Plot only data from every b th block within each index block.
c Plot only from line c onwards within each block.
d Plot only data from block d onwards within each index block.
e Plot only up to the e th line within each block.
f Plot only up to the f th block within each index block.

Any or all of these values can be omitted, and so the following would both
be valid statements:

plot ’datafile’ index 1 every 2:3

plot ’datafile’ index 1 every :::3

The first would plot only every other data point from every third data block;
the second from the third line onwards within each data block.

2.4 Directing Where Output Goes

By default, when PyXPlot is used interactively, all plots are displayed on
the screen. It is also possible to produce postscript output, to be read into
other programs or embedded into LATEX documents, as well as a variety of
other graphic formats. The set terminal command is used to specify the
output format that is required, and the set output command the file to
which output should be directed. For example,

set terminal postscript

set output ’myplot.eps’

plot sin(x)

10 CHAPTER 2. FIRST STEPS WITH PYXPLOT

would produce a postscript plot of sin(x) to the file myplot.eps.

The set terminal command can also be used to configure further as-
pects of the output file format. For example, the following would produce
black-and-white and colour output respectively:

set terminal monochrome

set terminal colour

The former is useful for preparing plots for black-and-white publications,
the latter for preparing plots for colourful presentations.

Both encapsulated and non-encapsulated postscript can be produced.
Following gnuplot’s slightly bizarre syntax, the word enhanced is used to
produce encapsulated postscript, and noenhanced to produce normal postscript.
The former is recommended for producing figures to embed into documents,
the latter for plots which are to be printed without further processing:

set terminal noenhanced

set terminal enhanced

It is also possible to produce plots in the gif, png and jpeg graphic
formats, as follows:

set terminal gif

set terminal png

set terminal jpg

More than one of the above keywords can be combined on a single line,
for example:

set terminal postscript noenhanced colour

set terminal gif monochrome

To return to the default state of displaying plots on screen, the x11

terminal should be selected:

set terminal x11

For more details of the set terminal command, including how to pro-
duce transparent gifs and pngs, see section 3.2.

We finally note that, after changing terminals, the replot command is
especially useful; it repeats the last plot command.. If any plot items are
placed after it, they are added to the last plot.

2.5. DATA STYLES 11

2.5 Data Styles

By default, data from files is plotted with points, and functions are plotted
with lines. However, either kinds of data can be plotted in a variety of ways.
To plot a function with points, for example, the following syntax is used2:

plot sin(x) with points

The number of points displayed (i.e. the number of samples of the function)
can be set as follows:

set samples 100

Likewise, datafiles can be plotted with lines:

plot ’datafile’ with lines

A variety of other styles are available. linespoints combines both the
points and lines styles, drawing lines through points. Errorbars can also
be drawn, as follows:

plot ’datafile’ with yerrorbars

In this case, three columns of data need to be specified: the x- and y-
coordinates of each datapoint, plus the size of the vertical errorbar on that
datapoint. By default, the first three columns of the datafile are used, but
once again (see section 2.3), the using modifier can be used:

plot ’datafile’ using 2:3:7 with yerrorbars

More details of the errorbars plot style can be found in section 3.3. Other
plots styles supported by PyXPlot are listed in section 2.8, and their details
can be found in many gnuplot tutorials. Bar charts will be discussed further
in section 3.6.

2.6 Function Fitting

It is possible to fit functional forms to data points in datafiles using the fit
command. A simple example might be:

f(x) = a*x+b

fit f(x) ’datafile’ index 1 using 2:3 via a,b

2Note that when a plot command contains both using/every modifiers, and the with

modifier, the latter must come last.

12 CHAPTER 2. FIRST STEPS WITH PYXPLOT

The coefficients to be varied are listed after the keyword “via”; the
keywords index, every and using have the same meanings as in the plot
command.

This is useful for producing best-fit lines3, and also has applications for
estimating the gradients of datasets. The syntax is essentially identical to
the used by gnuplot, though a few points are worth noting:

� When fitting a function of n variables, at least n+1 columns (or rows –
see section 3.3) must be specified after the using modifier. By default,
the first n + 1 columns are used. These correspond to the values of
each of the n inputs to the function, plus finally the value which the
output from the function is aiming to match.

� If an additional column is specified, then this is taken to contain the
standard error in the value that the output from the function is aiming
to match, and can be used to weight the datapoints which are input
into the fit command.

� By default, the starting values for each of the fitting parameters is
1.0. However, if the variables to be used in the fitting process are
already set before the fit command is called, these initial values are
used instead. For example, the following would use the initial values
{a = 100, b = 50}:

f(x) = a*x+b

a = 100

b = 50

fit f(x) ’datafile’ index 1 using 2:3 via a,b

� As with all numerical fitting procedures, the fit command comes with
caveats. It uses a generic fitting algorithm, and may not work well with
poorly behaved or ill-constrained problems. It works best when all of
the values it is attempting to fit are of order unity. For example, in a
problem where a was of order 1010, the following might fail:

f(x) = a*x

fit f(x) ’datafile’ via a

However, better results might be achieved if a were artificially made
of order unity, as in the following script:

f(x) = 1e10*a*x

fit f(x) ’datafile’ via a

3Another way of producing best-fit lines is a to use a cubic spline; more details in given
in section 3.8

2.7. INTERACTIVE HELP 13

At the end of the fitting process, the best-fitting values of each parameter
are output to the terminal, along with an estimate of the uncertainty in
each. Additionally, the Hessian, covariance and correlation matrices are
output in both human-readable and machine-readable formats, allowing a
more complete assessment of the probability distribution of the parameters.

2.7 Interactive Help

In addition to this Users’ Guide, PyXPlot also has a help command, which
provides a hierachical source of information. Typing ‘help’ alone gives a
brief introduction to the help system, as well as a list of topics on which
help is available. To display help on any given topic, type ‘help’ followed by
the name of the topic. For example:

help commands

provides information on PyXPlot’s commands. Some topics have subtopics,
which are listed at the end of each page. To view them, add further words
to the end of your help request – an example might be:

help commands help

which would display help on the help command itself.

2.8 Differences Between PyXPlot and Gnuplot

The commands supported by PyXPlot are only a subset of those available
in gnuplot, although most of its functionality is present. Features which are
supported by this version include:

� Allocation of user-defined variables and functions.

� The print, help, exit and quit commands.

� The reset and clear commands.

� The ! command, to execute the remainder of the line as a shell com-
mand, e.g. !ls.

� The cd and pwd commands, to change and display the current working
directory.

� The use of ‘ ‘ back-quotes to substitute the output of a shell command.4

4It should be noted that back-quotes can only be used outside quotes. For example,
set xlabel ’‘ls‘’ will not work. The best way to do this would be: set xlabel ‘echo

"’" ; ls ; echo "’"‘.

14 CHAPTER 2. FIRST STEPS WITH PYXPLOT

� Set plot titles, axis labels, axis ranges, pointsize, linestyles, etc.

� Fitting of functions to data via the fit command.

� Basic 2d plotting and replotting of functions and datafiles, with the
following styles: lines, points, linespoints, dots, boxes, steps,
fsteps, histeps, impulses, csplines, acsplines and errorbars of
all flavours (see section 3.3 for details of changes to errorbars).

� Automatic and manual selection of linestyles, linetypes, linewidths,
pointtypes and pointsizes.

� Use of dual axes. Note: Operation here differs slightly from original
gnuplot; dual axes are displayed whenever they are defined, there is no
need to set xtics nomirror. See the details in the following section.

� Placing arrows and textual labels on plots.

� Putting grids on plots (colour can be set, but not linestyle).

� Setting plot aspect ratios with set size ratio or set size square.

� Multiplot (which is very significantly improved over gnuplot; see sec-
tion 3.5)

Gnuplot features which PyXPlot does not presently support include:

� Parametric function plotting.

� Three-dimensional plotting (i.e. the splot command).

� Setting major/minor tics (but PyXPlot always gets this right without
being told anyway ,).5

5An effect similar to that of gnuplot’s set notics command can be obtained with the
magic nolabelstics axis label, described in section 3.3.

Chapter 3

Extensions of Gnuplot’s
Interface

A large number of new functions are available in PyXPlot which were not
originally present in gnuplot. This chapter describes these extensions. From
here onwards I shall presume that the user is familiar with the basic opera-
tion of gnuplot, and shall concentrate on the differences between PyXPlot’s
interface and that of gnuplot. In addition to having read the previous chap-
ter, novice users may also find it of use to consult one of the many gnuplot
tutorials which are to be found on the web before proceeding.

3.1 The Commandline Environment

PyXPlot uses the Gnu Readline commandline environment, which means
that the up and down arrow keys can be used to repeat previously executed
commands. Each user’s command history is stored in his homespace in a
history file called ‘.pyxplot history’, allowing PyXPlot to remember com-
mand histories between sessions. Additionally, a save command is provided,
allowing the user to save his command history from the present session to a
text file; this has the following syntax:

save ’output_filename’

3.2 Formatting and Terminals

In this section I shall outline the new and modified commands for controlling
the output of PyXPlot. The set width command is a new command for
setting the size of plot output; the set key command, for putting legends
on plots, has enhanced syntax; and some new terminals are available in the
set terminal command.

15

16 CHAPTER 3. EXTENSIONS OF GNUPLOT’S INTERFACE

set width x — A new command, which sets the width of postscript
output to x centimetres.

set key — As well as the top, bottom, left, right, below and
outside positioning options which gnuplot permits,
PyXPlot also allows xcentre and ycentre, which are
self-explanatory. In addition, a positional offset may
be specified – the first value is assumed to be an
x-offset, and the second a y-offset, in units approxi-
mately equal to the size of the plot. For example:

set key bottom left 0.0 -0.5

would display a key below the bottom left corner of
the graph.

X11 terminal — By default, each time a new plot is generated, the X11
terminal will replace the old plot with the new one,
thus keeping only one plot window open at a time. To
keep old plots visible when plotting further graphs,
the X11 multiwindow terminal should be used:

set terminal X11_singlewindow

plot sin(x)

plot cos(x) <-- first plot window disappears

c.f.:

set terminal X11_multiwindow

plot sin(x)

plot cos(x) <-- first plot window remains

As there are some changes to the syntax of the set terminal command,
the settings allowed in PyXPlot are listed below:

x11 singlewindow Displays plots on the screen (in X11 windows, using
ghostview). Each time a new plot is generated, it re-
places the old one, preventing the desktop from be-
coming flooded with old plots.1 [default when run-
ning interactively; see below]

x11 multiwindow As above, but each new plot appears in a new window,
and the old plots remain visible. As many plots as may
be desired can be left on the desktop simultaneously.

1The author is aware of a bug, that this terminal can occasionally go blank when a
new plot is generated. This is a known bug in ghostview, and can be worked around by
selecting File → Reload within the ghostview window.

3.2. FORMATTING AND TERMINALS 17

postscript Sends output to a postscript file. The filename for this
file should be set using set output. [default when
running non-interactively; see below]

eps Equivalent to ‘postscript enhanced’.
colour Allows datasets to be plotted in colour. Automatically

they will be displayed in a series of different colours, or
alternatively colours may be specified using the with

colour plot modifier (see below). [default]
color Equivalent to the above; provided for users of nation-

alities which can’t spell. ,

monochrome Opposite to the above; all datasets will be plotted in
black.

enhanced Modifier for the postscript terminal; sets it to produce
encapsulated postscript (eps) files. These can be em-
bedded in documents, but do not print reliably.

noenhanced Modifier for the postscript terminal; opposite to the
above; sets it to produce printable postscript files.

portrait Sets plots to be displayed in upright (normal) orien-
tation. [default]

landscape Opposite of the above; produces side-ways plots. Not
very useful when displayed on the screen, but you fit
more on a sheet of paper that way around.

gif Sends output to a gif image file; as above, the filename
should be set using set output.

png As above, but produces a png image.
jpg As above, but produces a jpeg image.
invert Modifier for the gif, png and jpg terminals; produces

output with inverted colours.2

noinvert Modifier for the gif, png and jpg terminals; opposite
to the above. [default]

transparent Modifier for the gif and png terminals; produces out-
put with a transparent background.

solid Modifier for the gif and png terminals; opposite to the
above. [default]

The default terminal is normally x11 singlewindow, matching approx-
imately the behaviour of gnuplot. However, there is an exception to this.
When PyXPlot is used non-interactively – i.e. one or more command scripts
is specified on the commandline, and PyXPlot exits as soon as it finishes
executing them – the x11 singlewindow is not a very sensible terminal to

2This terminal setting is useful for producing plots to embed in talk slideshows, which
often contain bright text on a dark background. It only works when producing bitmapped
output, though a similar effect can be achieved in postscript using the set textcolour

and set axescolour commands (see section 3.4).

18 CHAPTER 3. EXTENSIONS OF GNUPLOT’S INTERFACE

use. Any plot window would close as soon as PyXPlot exitted. The default
terminal in this case changes to postscript.

One exception to this is when the special ‘–’ filename is specified in a list
of command scripts on the commandline, to produce an interactive terminal
between running a series of scripts. In this case, PyXPlot detects that
the session will be interactive, and defaults to the usual x11 singlewindow

terminal.
An additional exception is on machines where the DISPLAY environment

variable is not set. In this case, PyXPlot detects that it has access to no X-
terminal on which to display plots, and defaults to the postscript terminal.

The gif, png and jpg terminals result in some loss of quality, since
the plot has to be sampled into a bitmapped graphic format. By default,
this sampling is performed at 300 dpi, though it may be changed using the
command set dpi <value>. Alternatively, it may be changed using the
DPI option in the settings section of a configuration file (see section 4.1).

3.3 Plotting

In this section I outline some of the extensions of the plot command, to
give greater flexibility in the appearance of graphs.

multiple axes — Gnuplot only allowed you to have at most two of each
kind of axes – one on one side of the plot, and the
other on the other. PyXPlot allows an unlimited num-
ber of axes to be used. Declare them using statements
such as set x3label ’foo’ and plot sin(x) axes

x3y1. Odd-numbered x-axes appear on below the plot,
and even numbered x-axes above it; a similar rule ap-
plies for y-axes, to the left and to the right.

removal of un-
wanted axes

— Having made axes with the above commands, they
may subsequently be removed as follows:

unset axis x3

unset axis x3x5y3 y7

The top statement, for example, would unconfigure
axis x3. The command unset axis on its own, with
no axes specified, returns all axes to their default con-
figuration.
A subtly different task is that of removing labels from
axes, or setting axes not to display. For this, a number
of special axis labels are used.

3.3. PLOTTING 19

Labelling an axis “nolabels” has the effect that no
title or numerical labels are placed upon it. Labelling
it “nolabelstics” is stronger still; this removes all
tick marks from it as well (similar in effect to set

noxtics in gnuplot). Finally, labelling it “invisible”
makes an axis completely invisible.
Several examples of effects which can be achieved with
these commands can be found in Example 10 (see sec-
tion 5.10). In the unlikely event of wanting to label a
normal axis with one of these magic words, this may
be achieved by prefixing the magic word with a space.
There is one further magic axis label, linkaxis, which
will be described in section 3.5.

plot colours — In the with clause of the plot command, the modifier
colour, (abbrev. ‘c’), allows the colour of the dataset
to be manually selected. It should be followed either
by an integer, to set a colour from the present palette,
or by a colour name. A list of valid colour names is
given in section 4.5. For example:

plot sin(x) with c 5

plot sin(x) with colour blue

The colour modifier can also be used when defining
linestyles.

set palette — PyXPlot has a palette of colours which it assigns se-
quentially to datasets when colours are not manually
assigned. This is also the palette to which integers
passed to set colour refer – the ‘5’ above, for exam-
ple. It may be set using the set palette command,
which differs in syntax from gnuplot. It should be
followed by a comma-separated list of colours, for ex-
ample:

set palette red,green,blue

Another way of setting the palette, in a configuration
file, is described in section 4.2; a list of valid colour
names is given in section 4.5.

20 CHAPTER 3. EXTENSIONS OF GNUPLOT’S INTERFACE

plot linewidths — For an unknown reason, gnuplot doesn’t allow set

linewidth 2 as valid syntax. This setting is al-
lowed to be made in PyXPlot. Furthermore, set

pointlinewidth 2 will set the linewidth to be used
when drawing data points. A similar effect can be
achieved via:

plot sin(x) with points pointlinewidth 2

In both cases, the abbreviation plw is valid.
dots plot style — When using the dots style, for example

plot sin(x) with dots

the size of the plotted dots can be varied with the
pointsize modifier, unlike in gnuplot, where the dots
were of a fixed size. For example, to display big dots,
use:

plot sin(x) with dots pointsize 10

arrows plot style — A new plotting style, arrows, is available, which takes
four columns of data, x1, y1, x2, y2, and for each
data point draws an arrow from the point (x1, y1) to
(x2, y2). Three different kinds of arrows can be drawn:
ones with normal arrow heads, ones with no arrow
heads, which just appear as lines, and ones with ar-
row heads on both ends. The syntax is:

plot ’datafile’ with arrows_head

plot ’datafile’ with arrows_nohead

plot ’datafile’ with arrows_twohead

The syntax ‘with arrows’ is a shorthand for ‘with
arrows head’.

lower and upper
limit datapoints

— PyXPlot can plot datapoints using the standard
upper- and lower-limit symbols. No special syntax is
required for this; these symbols are pointtypes 12 and
13, obtained as follows:

plot ’upperlimits’ with points pointtype 12

plot ’lowerlimits’ with points pointtype 13

3.3. PLOTTING 21

plotting functions
with errorbars
and other plot
styles

— In gnuplot, when a function (as opposed to a datafile)
is plotted, only those plot styles which accept two
columns of data can be used – for example, lines

or points. It is not possible to plot a function with
errorbars, for example. In PyXPlot, by contrast, this
is possible using the following syntax:

plot f(x):g(x) with yerrorbars

Two functions are supplied, separated by a colon; plot-
ting proceeds as if a datafile had been supplied, con-
taining values of x in column 1, values of f(x) in col-
umn 2, and values of g(x) in column 3. This may be
useful, for example, if g(x) measures the intrinsic un-
certainty in f(x). The using modifier may also be
used:

plot f(x):g(x) using 2:3

Here, g(x) would be plotted on the y-axis, against
f(x) on the x-axis. It should be noted, however, that
the range of values of x used would correspond to the
range of the plot’s horizontal axis. If the above were to
be attempted with an autoscaling horizontal axis, the
result might be rather unexpected – PyXPlot would
find itself autoscaling the x-axis range to the spread
of values of f(x), but find that this itself changed de-
pending upon the range of the x-axis.

horizontally
arranged datafiles

— The command syntax for plotting columns of datafiles
against one another was previously described in sec-
tion 2.3. In an extension of gnuplot’s interface, it is
also possible to plot rows of data against one another
in horizontally-arranged datafiles. For this, the key-
word ‘rows’ is placed after the using modifier:

plot ’datafile’ index 1 using rows 1:2

The syntax ‘using columns’ is also accepted, to spec-
ify the default bahaviour of plotting columns against
one another:

plot ’datafile’ index 1 using columns 1:2

22 CHAPTER 3. EXTENSIONS OF GNUPLOT’S INTERFACE

When plotting horizontally-arranged datafiles, the
meanings of the index and every modifiers (see sec-
tion 2.3) are altered slightly. The former continues to
refer to vertical blocks of data separated by two blank
lines. Blocks, as referenced in the every modifier, con-
tinue to be vertical blocks of datapoints, separated by
single blank lines. The row numbers passed to the
using modifier are counted from the top of the cur-
rent block.
However, the line-numbers specified in the everymod-
ifier – i.e. variables a, c and e in the system above –
now refer to horizontal columns, rather than lines. For
example:

plot ’datafile’ using rows 1:2 every 2::3::9

would plot the data in row 2 against that in row 1,
using only the values in every other column, between
columns 3 and 9.

errorbars — In gnuplot, when one used errorbars, one could either
specify the size of the errorbar, or the min/max range
of the errorbar. Both of these usages shared a common
syntax, and gnuplot’s behaviour depended upon the
number of data columns provided:

plot ’datafile’ with yerrorbars

Given a datafile with three columns, this would take
the third column to indicate the size of the y-errorbar,
and given a four-column datafile, it would take the
third and fourth columns to indicate the min/max
range to be marked out by the errorbar.
To avoid confusion, a different syntax is adopted in
PyXPlot. The syntax:

plot ’datafile’ with yerrorbars

now always assumes the third column of the datafile to
indicate the size of the errorbar, regardless of whether
a fourth is present. The syntax:

plot ’datafile’ with yerrorrange

3.3. PLOTTING 23

always assumes the third and fourth columns to indi-
cate the min/max range of the errorbar.

For clarity, a complete list of errorbar styles is given
below:
yerrorbars Vertical errorbars; size drawn

from the third data-column.
xerrorbars Horizontal errorbars; size drawn

from the third data-column.
xyerrorbars Horizontal and vertical error-

bars; sizes drawn from the third
and fourth data-columns respec-
tively.

errorbars Shorthand for yerrorbars.
yerrorrange Vertical errorbars; minimum

drawn from the third data-
column, maximum from the
fourth.

xerrorrange Horizontal errorbars; minimum
drawn from the third data-
column, maximum from the
fourth.

xyerrorrange Horizontal and vertical error-
bars; horizontal minimum drawn
from the third data-column, and
maximum from the fourth; ver-
tical minimum drawn from the
fifth, and maximum from the
sixth.

errorrange Shorthand for yerrorrange.
datafile wildcards — PyXPlot allows the wildcards ‘*’ and ‘?’ to be used

both in the filenames of datafiles following the plot

command, and also when specifying command files on
the commandline and with the load command. For
example, the following would plot all datafiles in the
current directory with a ‘.dat’ suffix, using the same
plot options:

plot ’*.dat’ with linewidth 2

In the legend, full filenames are displayed, allowing the
datafiles to be distinguished.

24 CHAPTER 3. EXTENSIONS OF GNUPLOT’S INTERFACE

As in gnuplot, a blank filename passed to the plot com-
mand causes the last used datafile to be used again.

backing up over-
written files

— By default, when plotting to a file, if the output file-
name matches that of an existing file, that file is over-
written. This behaviour may be changed with the set
backup command, which has syntax:

set backup on

set backup off

When this switch is turned on, pre-existing files will
be renamed with a tilda at the end of their filenames,
rather than being overwritten.

3.4 Sundry Items (Arrows, Text Labels, and More)

This section describes how to put arrows and text labels on plots; the syntax
is similar to that used by gnuplot, but slightly changed. It is now possible,
for example, to set the linestyles and colours with which arrows should be
drawn. Also covered is how to put grids onto plots, and how to change the
size and colour of textual labels on plots.

set arrow — As in gnuplot, the set arrow command can be used
to put arrows on plots. A simple example would be:

set arrow 1 from 0,0 to 1,1

The number ‘1’ immediately following ‘set arrow’ spec-
ifies an identification number for the arrow, allowing
it to be subsequently removed via:

unset arrow 1

In PyXPlot, the set arrow command can be followed
by the keyword ‘with’, to specify the style of the
arrow. For example, the specifiers ‘nohead’, ‘head’
and ‘twohead’, after the keyword ‘with’, can be used
to make arrows with no arrow heads, normal arrow
heads, or two arrow heads. ‘twoway’ is an alias for
‘twohead’. For example:

set arrow 1 from 0,0 to 1,1 with nohead

3.4. SUNDRY ITEMS (ARROWS, TEXT LABELS, AND MORE) 25

In addition, linestyles and colours can be specified:

set arrow 1 from 0,0 to 1,1 with nohead \

linetype 1 c blue

As in gnuplot, the coordinates for the start and end
points of the arrow can be specified in a range of co-
ordinate systems. ‘first’, the default, measures the
graph using the x and y-axes. ‘second’ uses the x2
and y2-axes. ‘screen’ and ‘graph’ both measure in
centimetres from the origin of the graph. In the fol-
lowing example, we use these specifiers, and specify
coordinates using variables rather than doing so ex-
plicitly:

x0 = 0.0

y0 = 0.0

x1 = 1.0

y1 = 1.0

set arrow 1 from first x0, first x1 \

to screen x1, screen x1 \

with nohead

In addition to these four options, which are those avail-
able in gnuplot, the syntax ‘axisn’ may also be used,
to use the n th x- or y-axis – for example, ‘axis3’.3

This allows arrows to reference any arbitrary axis in
plots which make use of large numbers of parallel axes
(see section 3.3).

set grid — When applying a grid to a plot with multiple axes,
it is possible to specify which axes the grid will at-
tach to, i.e. the ticks of which axes the gridlines will
correspond with. The syntax for doing this is:

set grid x1y2

3This syntax can also be used in the set label command, whose syntax is otherwise
identical to that understood by gnuplot.

26 CHAPTER 3. EXTENSIONS OF GNUPLOT’S INTERFACE

If one of the specified axes does not exist, then no
gridlines will be drawn in that direction. It is possible
to draw gridlines from the ticks of several axes in the
same direction, for example:

set grid x1x2x3x4

Gridlines could subsequently be removed from some
of these axes via:

unset grid x2x3

set fontsize — The size of text labels (titles, labels, axis labels, keys,
etc.), can be set using the set fontsize x command.
The value given should be an integer in the range
−4 ≤ x ≤ 5. The default is zero, which corresponds
to LATEX’s normalsize; -4 corresponds to tiny and 5
to Huge.

set textcolour — This sets the colour of all text output. It is espe-
cially useful when producing plots to be embedded in
presentation slideshows, where bright text on a dark
background may be desired. It should be followed ei-
ther by an integer, to set a colour from the present
palette, or by a colour name. A list of the recognised
colour names can be found in section 4.5. For example:

set textcolour 2

set textcolour blue

set axescolour — As above, but sets the colour of graph axes.
set

gridmajcolour

— As above, but sets the colour of graph grid major grid-
lines.

set

gridmincolour

— As above, but sets the colour of graph grid minor grid-
lines.

3.5 Multi-plotting

Gnuplot has a plotting mode called “multiplot” which allows many graphs
to be plotted together, and display side-by-side. The basic syntax of this
mode is reproduced in PyXPlot, but is hugely extended.

The mode is entered by the command “set multiplot”. This can be

3.5. MULTI-PLOTTING 27

compared to taking a blank sheet of paper on which to place plots. Plots
are then placed on that sheet of paper, as usual, with the plot command.
The position of each plot is set using the set origin command, which
takes a comma-separated x, y coordinate pair, measured in centimetres. The
following, for example, would plot a graph of sin(x) to the left of a plot of
cos(x):

set multiplot

plot sin(x)

set origin 10,0

plot cos(x)

The multiplot page may subsequently be cleared with the clear com-
mand, and multiplot mode may be left using the “set nomultiplot” com-
mand.

At this point we move beyond the syntax available in gnuplot. Each time
a plot is placed on the multiplot page in PyXPlot, it is allocated a reference
number, which is output to the terminal. Reference numbers count up from
zero each time the multiplot page is cleared. A number of commands exist
for modifying plots after they have been placed on the page, selecting them
by making reference to their reference numbers.

Plots may be removed from the page with the delete command, and
restored with the undelete command:

delete <number>

undelete <number>

The reference numbers of deleted plots are not reused until the page is
cleared, as they may always be restored with the undelete command; the
plots simply do not appear.

Plots may also be moved with the move command. For example, the
following would move plot 23 to position (8,8) measured in centimetres:

move 23 8,8

The axes of plots can be linked together, in such a way that they always
share a common scale. This can be useful when placing plots next to one
another, firstly, of course, if it is of intrinsic interest to ensure that they
are on a common scale, but also because the two plots then do not both
need their own axis labels, and space can be saved by one sharing the labels
from the other. In PyXPlot, an axis which borrows its scale and labels from
another is called a “linked axis”.

Such axes are declared by setting the label of the linked axis to a magic
string such as “linkaxis 0’. This magic label would set the axis to borrow
its scale from an axis from plot zero. The general syntax is “linkaxis n

28 CHAPTER 3. EXTENSIONS OF GNUPLOT’S INTERFACE

m”, where n and m are two integers, separated by a comma or whitespace.
The first, n, indicates the plot from which to borrow an axis; the second,
m, indicates whether to borrow the scale of axis x1, x2, x3, etc. By default,
m = 1. The linking will fail, and a warning result, if an attempt is made to
link to an axis which doesn’t exist.

The specimen plots in section 5.12 show numerious examples of the use
of linked axes.

In multiplot mode, the replot command can be used to modify the last
plot added to the page. For example, the following would change the title
of the latest plot to “foo”, and add a plot of cos(x) to it:

set title ’foo’

replot cos(x)

Additionally, it is possible to modify any plot on the page, by first se-
lecting it with the edit command. Subsequently, the replot will act upon
the selected plot. The following example would produce two plots, and then
change the colour of the text on the first:

set multiplot

plot sin(x)

set origin 10,0

plot cos(x)

edit 0 # Select the first plot ...

set textcolour red

replot # ... and replot it.

The edit command can also be used to view the settings which are
applied to any plot on the multiplot page – after executing “edit 0”, the
show command will show the settings applied to plot zero.

When a new plot is added to the page, replot always switches to act
upon this most recent plot.

In addition to placing plots of the multiplot page, text labels may be
inserted, independently of any plots, using the text command. This has
the following syntax:

text ’This is some text’ x,y

In this case, the string “This is some text” would be rendered at po-
sition (x, y) on the multiplot. As with plots, each text item has a unique
identification number, and can be moved around, deleted or undeleted:

delete_text <number>

undelete_text <number>

move_text <number> x,y

3.6. BARCHARTS AND HISTOGRAMS 29

It should be noted that the text command can also be used outside of
the multiplot environment, to render a single piece of short text instead of
a graph. This has limited applications, but one is illustrated in section 5.4.

Arrows may also be placed on multiplot pages, independently of any
plots, using the arrow command, which has syntax:

arrow from x,y to x,y

As above, arrows receive unique identification numbers, and can be
deleted and undeleted, though they cannot be moved:

delete_arrow <number>

undelete_arrow <number>

The arrow command may be followed by the ‘with’ keyword to specify
to style of the arrow. The style keywords which are accepted are identical to
those accepted by the set arrow command (see section 3.4). For example:

arrow from x1,y1 to x2,y2 \

with twohead colour red

The refresh command is rather similar to the replot command, but
produces an exact copy of the latest display. This can be useful, for example,
after changing the terminal type, to produce a second copy of a multiplot
page in a different format. But the crucial difference between this command
and replot is that it doesn’t replot anything. Indeed, there could be only
textual items and arrows on the present multiplot page, and no graphs to

replot.

3.6 Barcharts and Histograms

3.6.1 Basic Operation

As in gnuplot, bar charts and histograms can be produced using the boxes

plot style:

plot ’datafile’ with boxes

Horizontally, the interfaces between the bars are, by default, at the mid-
points along the x-axis between the specified datapoints (see, for example,
panel (a) of figure 5.7, and the script which produced it, in section 5.7).
Alternatively, the widths of the bars may be set using the set boxwidth

command. In this case, all of the bars will be centred upon their speci-
fied x-coordinates, and have total widths equalling that specified in the set

boxwidth command. Consequently, there may be gaps between them, or
they may overlap, as seen in panel (c) of figure 5.7.

30 CHAPTER 3. EXTENSIONS OF GNUPLOT’S INTERFACE

Having set a fixed box width, the default automatic width mode may
be restored either with the unset boxwidth command, or by setting the
boxwidth to a negative width.

As a third alternative, it is also possible to specify different widths for
each bar manually, in a column of the input datafile. For this, the wboxes

plot style should be used:

plot ’datafile’ using 1:2:3 with wboxes

This plot style expects three columns of data to be specified: the x and y
coordinates of each bar, and the width in the third column. Panel (b) of
figure 5.7 shows an example of this plot style in use.

By default, the bars all originate from the line y = 0, as is normally
wanted for a histogram. However, should it be desired for the bars to start
from a different vertical point, that may be achieved with the set boxfrom

command, for example:

set boxfrom 5

All of the bars would then originate from the line y = 5. Panel (f) of
figure 5.6 shows the kind of effect that is achieved; for comparison, panel
(b) of the same figure shows the same bar chart with the boxes starting from
their default position at y = 0.

The bars may be filled using the with fillcolour modifier, followed by
the name of a colour:

plot ’datafile’ with boxes fillcolour blue

plot ’datafile’ with boxes fc 4

Additionally, the word ‘auto’ may be used in place of a colour name, to fill
the bar with the line colour being used to draw it. Panels (c) and (d) of
figure 5.7 demonstrate the use of filled bars.

Finally, the impulses plot style, as in gnuplot, produces bars of zero
width; see panel (e) of figure 5.6 for an example.

3.6.2 Stacked Bar Charts

If several datapoints are supplied at a common x-coordinate to the boxes

or wboxes plot styles, then the bars are stacked one above another into a
stacked barchart. Consider the following datafile:

1 1

2 2

2 3

3 4

3.7. FUNCTION SPLICING 31

The second bar at x = 2 would be placed on top of the first, spanning
the range 2 < y < 5, and having the same width as the first. If plot colours
are being automatically selected from the palette, then a different palette
colour is used to plot the upper bar.

3.6.3 Steps

As an alternative to solid boxes, a graph may also be plotted with “steps”;
see panels (a), (c) and (d) of figure 5.6 for examples. As is illustrated by
these panels, three flavours of steps are available (exactly as in gnuplot):

plot ’datafile’ with steps

plot ’datafile’ with fsteps

plot ’datafile’ with histeps

When using the steps plot style, the datapoints specify the right-most
edges of each step. By contrast, they specify the left-most edges of the steps
when using the fsteps plot style. The histeps plot style works rather like
the boxes plot style; the interfaces between the steps occur at the horizontal
midpoints between the datapoints.

3.7 Function Splicing

In PyXPlot, as in gnuplot, user-defined functions may be declared on the
commandline:

f(x) = x*sin(x)

As an extension to what is possible in gnuplot, it is also possible to declare
functions which are only valid over a certain range of argument space. For
example, the following fuction would only be valid in the range −2 < x < 2:4

f(x)[-2:2] = x*sin(x)

The following function would only be valid when all of a, b, c were in the
range −1 → 1:

f(a,b,c)[-1:1][-1:1][-1:1] = a+b+c

If an attempt is made to evaluate a function outside of its specified
range, then an error results. This may be useful, for example, for plotting a
function, but not continuing it outside some specified range. The following
would print the function sin(x), but only in the range −2 < x < 7:

4The syntax [-2:2] can also be written [-2 to 2].

32 CHAPTER 3. EXTENSIONS OF GNUPLOT’S INTERFACE

f(x)[-2:7] = sin(x)

plot f(x)

The output of this particular example can be seen in panel (a) of figure 5.9.

It is possible to make multiple declarations of the same function, over
different regions of argument space; if there is an overlap in the valid argu-
ment space for multiple definitions, then later declarations take precedence.
This makes it possible to use different functional forms for a function in
different parts of parameter space, and is especially useful when fitting a
function to data, if different functional forms are to be spliced together to
fit different regimes in the data.

Another application of function splicing is to work with functions which
do not have analytic forms, or which are, by definition, discontinuous, such
as top-hat functions or Heaviside functions. The following example would
define f(x) to be a Heaviside function:

f(x) = 0

f(x)[0:] = 1

The declaration of a function similar to a top-hat function is demonstrated
in panel (b) of figure 5.9. The following example would define f(x) to follow
the Fibonacci sequence, though it is not at all computationally efficient, and
it is inadvisable to evaluate it for x > 8:

f(x) = 1

f(x)[2:] = f(x-1) + f(x-2)

plot [0:8] f(x)

3.8 Datafile Interpolation: Spline Fitting

Gnuplot allows data to be interpolated using its csplines plot style, for
example:

plot ’datafile’ with smooth csplines

plot ’datafile’ with smooth acsplines

where the upper statement fits a spline through all of the datapoints, and
the lower applies some smoothing to the data first. This syntax is supported
in PyXPlot but deprecated. A similar effect can be achieved with the new,
more powerful, spline command. This has a syntax similar to that of the
fit command, for example:

spline f() ’datafile’ index 1 using 2:3

3.9. NUMERICAL INTEGRATION AND DIFFERENTIATION 33

The function f(x) now becomes a special function, representing a spline
fit to the given datafile. It can be plotted or otherwise used in exactly the
same way as any other function. This approach is more flexible than gnu-
plot’s syntax, as the spline f(x) can subsequently be spliced together with
other functions (see the previous section), or used in any mathematical op-
eration. The following code snippet, for example, would fit splines through
two datasets, and then plot the interpolated differences between them, re-
gardless, for example, of whether the two datasets were sampled at exactly
the same x coordinates:

spline f() ’datafile1’

spline g() ’datafile2’

plot f(x)-g(x)

Smoothed splines can also be produced:

spline f() ’datafile1’ smooth 1.0

where the value 1.0 determines the degree of smoothing to apply; the higher
the value, the more smoothing is applied. The default behaviour is not to
smooth at all (equivalent to smooth 0.0); a value of 1.0 corresponds to the
default amount of smoothing applied in the acsplines plot style.

3.9 Numerical Integration and Differentiation

Special functions are available for performing numerical integration and dif-
ferentiation of expressions: int dx() and diff dx(). In each case, the “x”
may be replaced with any valid variable name, to integrate or differentiate
with respect to any given variable.

The function int dx() takes three parameters – firstly the expression to
be integrated, followed by the minimum and maximum integration limits.
For example, the following would plot the integral of the function sin(x):

plot int_dt(sin(t),0,x)

The function diff dx() takes two parameters and an optional third
– firstly the expression to be differentiated, then the point at which the
differential should be evaluated, and then an optional parameter, ε. The
following example would evaluate the differential of the function cos(x) with
respect to x at x = 1.0:

print diff_dx(cos(x), 1.0)

34 CHAPTER 3. EXTENSIONS OF GNUPLOT’S INTERFACE

Differentials are evaluated by a simple differencing algorithm, and the
parameter ε controls the spacing with which to perform the differencing
operation:

df

dx

∣

∣

∣

∣

x=x0

≈
f(x0 + ε/2) − f(x0 − ε/2)

ε

By default, ε = 10−6.
Advanced users may be interested to know the integration is performed

using the quad function of the integrate package of the scipy numerical
toolkit for Python – a general purpose integration routine.

3.10 Script Watching: pyxplot watch

PyXPlot includes a simple tool for watching command script files, and exe-
cuting them whenever they are modified. This may be useful when develop-
ing a command script, if one wants to make small modifications to it, and
see the results in a semi-live fashion. This tool is invoked by calling the
pyxplot watch command from a shell prompt. The commandline syntax of
pyxplot watch is similar to that of PyXPlot itself, for example:

pyxplot_watch script

would set pyxplot watch to watch the command script file script. One
difference, however, is that if multiple script files are specified on the com-
mandline, they are watched and executing independently, not sequentially,
as PyXPlot itself would do. Wildcard characters can also be used to set
pyxplot watch to watch multiple files.

This is especially useful when combined with GhostView’s watch facility.
For example, suppose that a script foo produces postscript output foo.ps.
The following two commands could be used to give a live view of the result
of executing this script:

gv --watch foo.ps &

pyxplot_watch foo

Chapter 4

Configuring PyXPlot

4.1 Overview

As is the case in gnuplot, PyXPlot can be configured using the set command
– for example:

set output ’foo.eps’

would set it to send its plotted output to the file foo.eps. Typing ‘set’ on
its own returns a list of all recognised ‘set’ configuration parameters. The
unset command may be used to return settings to their default values; it
recognises a similar set of parameter names, and once again, typing ‘unset’
on its own gives a list of them. The show command can be used to display
the values of settings.

4.2 Configuration Files

PyXPlot can also be configured by means of a configuration file, with file-
name .pyxplotrc, which is scanned once upon startup. This file may be
placed either in the user’s current working directory, or in his home directory.
In the event of both files existing, settings in the former override those in
the latter; in the event of neither file existing, PyXPlot uses its own default
settings.

The configuration file should take the form of a series of sections, each
headed by a section heading enclosed in square brackets, and followed by
variables declared using the format:

OUTPUT=foo.eps

The following sections are used, although they do not all need to be
present in any given file:

35

36 CHAPTER 4. CONFIGURING PYXPLOT

� settings – contains parameters similar to those which can be set with
the set command. A complete list is given below.

� variables – contains variable definitions. Any variables defined in
this section will be predefined in the PyXPlot mathematical environ-
ment upon startup.

� functions – contains function definitions.

� colours – contains a variable ‘palette’, which should be set to a
comma-separated list of the sequence of colours in the palette used to
plot datasets. The first will be called colour 1 in PyXPlot, the second
colour 2, etc. A list of recognised colour names is given in section 4.5.

� latex – contains a variable ‘preamble’, which is prefixed to the begin-
ning of all LATEX text items, before the \begin{document} statement.
It can be used to define custom LATEX macros, or to include packages
using the \includepackage{} command.

4.3 An Example Configuration File

As an example, the following is a configuration file which would represent
PyXPlot’s default configuration:

[settings]

ORIGINX=0.0

ORIGINY=0.0

MULTIPLOT=OFF

TITLE=

TIT_XOFF=0.0

TIT_YOFF=0.0

TERMTYPE=X11_singlewindow

OUTPUT=

BACKUP=OFF

ENHANCED=ON

LANDSCAPE=OFF

TERMINVERT=OFF

TERMTRANSPARENT=OFF

DPI=300

WIDTH=8.0

ASPECT=1.0

AUTOASPECT=ON

POINTSIZE=1.0

POINTLINEWIDTH=1.0

FONTSIZE=0

4.4. CONFIGURATION FILE OPTIONS 37

TEXTCOLOUR=Black

AXESCOLOUR=Black

GRIDMAJCOLOUR=Grey60

GRIDMINCOLOUR=Grey90

LINEWIDTH=1.0

DATASTYLE=points

FUNCSTYLE=lines

SAMPLES=250

COLOUR=ON

KEY=ON

KEYPOS=TOP RIGHT

KEY_XOFF=0.0

KEY_YOFF=0.0

GRID=OFF

GRIDAXISX=1

GRIDAXISY=1

BOXWIDTH=0

BOXFROM=0

[variables]

pi = 3.1415928

[colours]

palette = Black, Red, Blue, Magenta, Cyan, Brown, Salmon, Gray,

Green, NavyBlue, Periwinkle, PineGreen, SeaGreen, GreenYellow,

Orange, CarnationPink, Plum

[latex]

PREAMBLE=

4.4 Configuration File Options

The following table provides a brief description of the function of each of
the parameters in the above configuration file, with a list of possible values
for each:

ORIGINX Possible values: Any floating point number.
Analogous set command: set origin

Sets the horizontal position, in centimetres of the ori-
gin of the plot on the page. Most useful when multi-
plotting many plots.

38 CHAPTER 4. CONFIGURING PYXPLOT

ORIGINY Possible values: Any floating point number.
Analogous set command: set origin

Sets the vertical position, in centimetres of the origin
of the plot on the page. Most useful when multiplot-
ting many plots.

MULTIPLOT Possible values: ON / OFF
Analogous set command: set multiplot

Sets whether multiplot mode is on or off.
TITLE Possible values: Any string.

Analogous set command: set title

Sets the title to appear at the top of the plot.
TIT XOFF Possible values: Any floating point number.

Analogous set command: set title

Sets the horizontal offset of the title of the plot from
its default central location.

TIT YOFF Possible values: Any floating point number.
Analogous set command: set title

Sets the vertical offset of the title of the plot from its
default location at the top of the plot.

TERMTYPE Possible values: X11 singlewindow,
X11 multiwindow, PS, PNG, JPG, GIF
Analogous set command: set terminal

Sets whether output is sent to the screen or to disk,
and, in the latter case, the format of the output. The
ps option should be used for both encapsulated and
normal postscript output; these are distinguished us-
ing the ENHANCED option, below.

OUTPUT Possible values: Any string.
Analogous set command: set output

Sets the output filename for plots. If blank, the de-
fault filename of pyxplot.foo is used, where ‘foo’ is an
extension appropriate for the file format.

BACKUP Possible values: ON / OFF
Analogous set command: set backup

When this switch is set to ‘ON’, and plot output is
being directed to file, attempts to write output over
existing files cause a copy of the existing file to be
preserved, with a tilda after its old filename (see sec-
tion 3.3).

ENHANCED Possible values: ON / OFF
Analogous set command: set terminal

Sets whether the postscript terminal produces en-
capsulated postscript (ON), or printable postscript
(OFF).

4.4. CONFIGURATION FILE OPTIONS 39

LANDSCAPE Possible values: ON / OFF
Analogous set command: set terminal

Sets whether output is in portrait orientation (OFF),
or landscape orientation (ON).

TERMINVERT Possible values: ON / OFF
Analogous set command: set terminal

Sets whether jpeg/gif/png output has normal colours
(OFF), or inverted colours (ON).

TERMTRANSPARENT Possible values: ON / OFF
Analogous set command: set terminal

Sets whether jpeg/gif/png output has transparent
background (ON), or solid background (OFF).

DPI Possible values: Any floating-point number.
Analogous set command: set dpi

Sets the sampling quality used, in dots per inch,
when output is sent to a bitmapped terminal (the
jpeg/gif/png terminals).

WIDTH Possible values: Any floating-point number.
Analogous set command: set width / set size

Sets the width of plots in centimetres.
ASPECT Possible values: Any floating-point number.

Analogous set command: set size ratio

Sets the aspect ratio of plots.
AUTOASPECT Possible values: ON / OFF

Analogous set command: set size ratio

Sets whether plots have the automatic aspect ratio,
which is the golden ratio. If ON, then the above setting
is ignored.

POINTSIZE Possible values: Any floating-point number.
Analogous set command: set pointsize / plot

with pointsize

Sets the sizes of points on plots, as a multiple of their
normal sizes.

POINTLINEWIDTH Possible values: Any floating-point number.
Analogous set command: set pointlinewidth /
plot with pointlinewidth

Sets the linewidth used to stroke points onto plots, as
a multiple of the default.

FONTSIZE Possible values: Integers in the range −4 → 5.
Analogous set command: set fontsize

Sets the fontsize of text, varying between LATEX’s tiny
(-4) and Huge (5).

40 CHAPTER 4. CONFIGURING PYXPLOT

TEXTCOLOUR Possible values: Any recognised colour.
Analogous set command: set textcolour

Sets the colour of text.
AXESCOLOUR Possible values: Any recognised colour.

Analogous set command: set axescolour

Sets the colour of axis lines and ticks.
GRIDMAJCOLOUR Possible values: Any recognised colour.

Analogous set command: set gridmajcolour

Sets the colour of major grid lines.
GRIDMINCOLOUR Possible values: Any recognised colour.

Analogous set command: set gridmincolour

Sets the colour of minor grid lines.
LINEWIDTH Possible values: Any floating-point number.

Analogous set command: set linewidth

Sets the width of lines on plots, as a multiple of the
default.

DATASTYLE Possible values: Any plot style.
Analogous set command: set data style

Sets the plot style used by default when plotting
datafiles.

FUNCSTYLE Possible values: Any plot style.
Analogous set command: set function style

Sets the plot style used by default when plotting func-
tions.

SAMPLES Possible values: Any integer.
Analogous set command: set samples

Sets the number of samples (datapoints) to be evalu-
ated along the x-axis when plotting a function.

COLOUR Possible values: ON / OFF
Analogous set command: set terminal

Sets whether output should be colour (ON) or
monochrome (OFF).

KEY Possible values: ON / OFF
Analogous set command: set key

Sets whether a legend is displayed on plots.
KEYPOS Possible values: “TOP RIGHT”, “TOP MIDDLE”,

“TOP LEFT”, “MIDDLE RIGHT”, “MIDDLE MID-
DLE”, “MIDDLE LEFT”, “BOTTOM RIGHT”,
“BOTTOM MIDDLE”, “BOTTOM LEFT”, “BE-
LOW”, “OUTSIDE”.
Analogous set command: set key

Sets where the legend should appear on plots.

4.5. COLOUR NAMES 41

KEY XOFF Possible values: Any floating-point number.
Analogous set command: set key

Sets the horizontal offset, in approximate graph-
widths, that should be applied to the legend, relative
to its default position, as set by KEYPOS.

KEY YOFF Possible values: Any floating-point number.
Analogous set command: set key

Sets the vertical offset, in approximate graph-heights,
that should be applied to the legend, relative to its
default position, as set by KEYPOS.

GRID Possible values: ON / OFF
Analogous set command: set grid

Sets whether a grid should be displayed on plots.
GRIDAXISX Possible values: Any integer.

Analogous set command: None
Sets the default x-axis to which the grid should be
attached, if the set grid command is called, with
specifying which axes to use.

GRIDAXISY Possible values: Any integer.
Analogous set command: None
Sets the default y-axis to which the grid should be
attached, if the set grid command is called, with
specifying which axes to use.

BOXWIDTH Possible values: Any floating-point number.
Analogous set command: set boxwidth

Sets the default width of boxes on barcharts. If nega-
tive, then the boxes have automatically selected width,
so that the interfaces between bars occur at the hori-
zontal midpoints between the specified datapoints.

BOXFROM Possible values: Any floating-point number.
Analogous set command: set boxfrom

Sets the horizontal point from which bars on bar charts
appear to eminate.

4.5 Colour names

The following is a complete list of the colour names which PyXPlot recog-
nises in the set textcolour, set axescolour commands, and in the colours
section of its configuration file. It should be noted that they are case-
insensitive:

GreenYellow, Yellow, Goldenrod, Dandelion, Apricot, Peach, Melon,
YellowOrange, Orange, BurntOrange, Bittersweet, RedOrange, Mahogany,
Maroon, BrickRed, Red, OrangeRed, RubineRed, WildStrawberry, Salmon,

42 CHAPTER 4. CONFIGURING PYXPLOT

CarnationPink, Magenta, VioletRed, Rhodamine, Mulberry, RedViolet, Fuch-
sia, Lavender, Thistle, Orchid, DarkOrchid, Purple, Plum, Violet, Roy-
alPurple, BlueViolet, Periwinkle, CadetBlue, CornflowerBlue, Midnight-
Blue, NavyBlue, RoyalBlue, Blue, Cerulean, Cyan, ProcessBlue, SkyBlue,
Turquoise, TealBlue, Aquamarine, BlueGreen, Emerald, JungleGreen, Sea-
Green, Green, ForestGreen, PineGreen, LimeGreen, YellowGreen, Spring-
Green, OliveGreen, RawSienna, Sepia, Brown, Tan, Gray, Grey, Black,
White, white, black.

The following further colours provide a scale of shades of grey from dark
to light, also case-insensitive:

grey05, grey10, grey15, grey20, grey25, grey30, grey35, grey40, grey45,
grey50, grey55, grey60, grey65, grey70, grey75, grey80, grey85, grey90,
grey95.

The US mis-spelling of grey (“gray”) is also accepted.
For a colour chart of these colours, the reader is referred to Appendix B

of the PyX Reference Manual.1

1http://pyx.sourceforge.net/manual/colorname.html

Chapter 5

Examples

This chapter contains a few example PyXPlot plot scripts to illustrate its
features. For each example, the plotting script is given, and an illustration
of the resulting output.

5.1 Example 1: Plotting Functions – A Simple
First Plot

As a simple first example, we plot two trigonometric functions. The syntax
here is exactly as would have been used in the original gnuplot. The output
is shown in figure 5.1.

PyXPlot Script:

A very simple first example... plots sin(x)

and cos(x)

reset

set xlabel ’x’

set ylabel ’y’

set term eps

set output ’examples/eps/example1.eps’

plot sin(x), cos(x)

Produce a gif copy

set term gif

set dpi 207

set output ’examples/eps/example1.gif’

refresh

43

44 CHAPTER 5. EXAMPLES

5.2 Example 2: Stacking Many Plots Together –
Multiplot

In this example, we use the multiplot environment to produce a gallery of
several plots. The set origin command is used to position each one. We
also make use of multiple y-axes in the top-left plot: the functions sin(x)
and sin2(x) are plotting together, but on different y scales. The output is
shown in figure 5.2.

PyXPlot Script:

Example 2

Uses multiplot to produce a gallery of

trigonometric functions.

reset

set term eps

set output ’examples/eps/example2.eps’

set multiplot

set xlabel ’x’

set ylabel ’y’

Plot 0 (bottom left)

plot sin(x)

Plot 1 (bottom right)

set origin 11,0

plot cos(x)

Plot 2 (top left)

set origin 0,6.2

plot sin(x) ax x1y1, sin(x)**2 ax x1y2

Plot 3 (top right)

set origin 11,6.2

plot sin(x)+cos(x)

Produce a gif copy

set term gif

set dpi 98

set output ’examples/eps/example2.gif’

refresh

5.3. EXAMPLE 3: PLOTTING A DATAFILE – USING MULTIPLE AXES45

5.3 Example 3: Plotting A Datafile – Using Mul-
tiple Axes

This is a more complicated example. First of all, we plot two datafiles, one
using a line, and another using points. We label our lines using arrows and
text labels, using the same syntax that gnuplot uses. We also have multiple
axes, this time having three x-axes on the same plot. The output is shown
in figure 5.3.

PyXPlot Script:

Example 3

A rather more complicated plot to show off multiple axes,

and LaTeXed labels on plots.

reset

A few physical constants

min = 5

max = 200

phy_h = 6.626068e-34

phy_c = 3e8

phy_ev = 1.6e-19

Set up plot basics...

set output ’examples/eps/example3.eps’

set terminal postscript eps monochrome

set grid

set key bottom right

set width 10

set log x

set log y

set title ’Simulated infrared dust spectrum for an \

{\mbox{\normalsize H\thinspace\footnotesize II}\kern3pt} region’

X-axis is wavelength, lambda

set xlabel ’λ/μm’

Y-axis is emitted flux, integrated over grainsize a

set ylabel ’$\int F_{\nu}(a)\mathrm{d}a \cdot 4\pi r^2 / \

\mathrm{W} \, \mathrm{Hz}^{-1}\, \mathrm{m}^2 \, \

\mathrm{H}^{-1}$’

Make a second X-axis, in units of frequency, nu

set x2range [phy_c/(min*1e-6):phy_c/(max*1e-6)]

46 CHAPTER 5. EXAMPLES

set log x2

set x2label ’ν/Hz’

And a third X-axis, in units of photon energy, in eV

set x3range [phy_h*phy_c/(min*1e-6)/phy_ev:phy_h*phy_c/ \

(max*1e-6)/phy_ev]

set log x3

set x3label ’Photon Energy / eV’

Put an arrow and label on our plot, labelling one

of the lines

set arrow 1 from 60, 2e-5 to 38, 1e-5

set label 1 "$F_\nu=\nu^{\beta}B_\nu(30\mathrm{K})$" \

at 62, 1.8e-5

Make f(x) a 30K greybody

T=30.0

h=6.626e-34

k=1.38e-23

c=3e8

f(x)=((c/(x*1e-6))**(3+2))/(exp(h*c/(x*1e-6*k*T))-1.0)

Finally, plot all of our data

plot [min:max][1e-7:1e-3] ’examples/example2a.dat’ using 1:2 \

t ’Nikoli\v{c}-Ford Dust Code’ with lines, \

’examples/example2b.dat’ t ’IRAS Photometry’ using \

($1):(($2)/3e8*((($1)*1e-6)**2)*1.375191e+13/3.668333e+17), \

f(x)/f(60)*1.375191e+13/(3e8/(60e-6**2)) t ’$\beta=2$ Greybody’

Produce a gif copy

set term gif

set dpi 168

set output ’examples/eps/example3.gif’

refresh

5.4. EXAMPLE 4: SOMETHING COMPLETELY DIFFERENT 47

5.4 Example 4: Something Completely Different

In this example, we demonstrate something rather different that PyXPlot
can do. There is a common problem of trying to incorporate LATEXed
equations into various multimedia/graphics packages: the postscript for-
mat which LATEX produces is not supported by programs such as Microsoft
Powerpoint. PyXPlot offers a very quick and simple solution to this prob-
lem.

First of all, we set our terminal to produce png output. To overlay our
output onto a Powerpoint slide, we will want it to have a transparent back-
ground, and so we also use the “transparent” terminal option (see section 3.2
for a discussion of PyXPlot terminal options). Finally, if we’re producing a
Powerpoint presentation with light-coloured text on a dark background, we
will want to invert the colours to have white text, and so use the “invert”
terminal option.

We can now produce plots which can readily be imported into Power-
point. To produce LATEXed equations, we use the multiplot environment’s
text command (see section 3.5).

Finally, as such a figure would not be very easy to incorporate into this
User Manual, we produce a normal eps version of our equation, illustrating
how to use the refresh command to produce multiple copies of the same
figure in different graphic formats.

The output is shown in figure 5.4.

PyXPlot Script:

Example 4

Demonstrates how an equation might be output as a gif

for inclusion in a slideshow in Microsoft Powerpoint.

reset

Set terminal to produce transparent gif output

set term gif trans invert

set dpi 450

set output ’examples/eps/example4.gif’

set multiplot

Render the Planck blackbody formula in LaTeX

text ’$B_\nu = \frac{8\pi h}{c^3} \

\frac{\nu^3}{\exp \left(h\nu / kT \right) -1 }$’ 0,0

text ’This is an example equation:’ 0 , 0.75

48 CHAPTER 5. EXAMPLES

Produce a second copy of this plot as an eps file

set output ’examples/eps/example4.eps’

set term eps

refresh

5.5. EXAMPLE 5: MULTIPLOT – LINKED AXES 49

5.5 Example 5: Multiplot – Linked Axes

In this example, we illustrate how to link the axes of plots on a multiplot, so
that they share a common scale, and also demonstrate how to set the colours
of datasets using the with colour plot modifier. In the top-right panel, we
also make use of the multiplot environment to add a plot inset. Finally, we
render this plot using the landscape terminal setting, showing how to fit
more plot onto our sheet of paper. The output is shown in figure 5.5.

Notice how the linked axes autoscale intelligently. The right two plots
both require larger vertical ranges than those plots to their lefts, to whose
vertical axes they are linked. But once they are linked, the plots autoscale
together, to ensure that they all have sufficient range for their data.

PyXPlot Script:

Example 5

A gallery of trigonometric functions demonstrating

the use of linked axes.

reset

set term landscape eps

set output ’examples/eps/example5.eps’

set multiplot

set xlabel ’x’

set ylabel ’y’

set xrange [-10.9:10.9]

width = 8

height = 5.75

Plot 0 (bottom left)

set key bottom right

set origin 0*width, 0*height

plot sin(x) with colour 3

Plot 1 (bottom right)

set key top right

set origin 1*width, 0*height

set ylabel ’linkaxis 0’

plot cos(x)-1 with colour seagreen

Plot 2 (top left)

50 CHAPTER 5. EXAMPLES

set key top right

set origin 0*width, 1*height

set xlabel ’linkaxis 0’

set ylabel ’y’

plot cos(x) with colour 7

Plot 3 (top right)

set key bottom right

set origin 1*width, 1*height

set xlabel ’linkaxis 1’

set ylabel ’linkaxis 2’

plot sin(x)**2 + 1 with colour green

Plot 4 (inset plot)

set xlabel ’’

set ylabel ’’

set key top ycentre

set fontsize -3

set origin 1.1*width, 1.15*height

set width width/3

p [-5:5] x**2

Produce a gif copy

set term gif

set dpi 100

set output ’examples/eps/example5.gif’

refresh

5.6. EXAMPLE 6: BAR CHARTS AND STEPS 51

5.6 Example 6: Bar Charts and Steps

In this example, we illustrate the boxes, impulses and steps plot styles,
described in section 3.6, which operate similarly to how they operate in
gnuplot. Panels (a) and (b) illustrates the impulses plot style for a sine
wave, using the set boxfrom command to define the point from which the
lines originate. Panel (c) illustrates the fsteps plot style, (d) steps, (e)
histeps and (f) boxes. The output is shown in figure 5.6.

PyXPlot Script:

Example 6

A gallery showing different styles of barcharts

and steps.

reset

set multiplot

set samples 25

width=7

gold_ratio = 1/((1+sqrt(5))/2)

set terminal eps

set output ’examples/eps/example6.eps’

set width width

set xrange [-10.9:10.9]

set yrange [-1.2:1.2]

set nokey

Plot 0 (bottom left)

set xlabel ’x’

set ylabel ’y’

set label 1 ’(a)’ at -9,0.8

set label 2 ’histeps’ -3.7,0.8

plot sin(x) with histeps, sin(x) with points

Plot 1 (bottom right)

set origin 1*width, 0*width*gold_ratio

set xlabel ’x’

set ylabel ’linkaxis 0’

set label 1 ’(b)’ at -9,0.8

set label 2 ’boxes’ -3.7,0.8

plot sin(x) with boxes, sin(x) with points

52 CHAPTER 5. EXAMPLES

Plot 2 (middle left)

set origin 0*width, 1*width*gold_ratio

set xlabel ’linkaxis 0’

set ylabel ’y’

set label 1 ’(c)’ at -9,0.8

set label 2 ’fsteps’ -3.7,0.8

plot sin(x) with fsteps, sin(x) with points

Plot 3 (middle right)

set origin 1*width, 1*width*gold_ratio

set xlabel ’linkaxis 1’

set ylabel ’linkaxis 2’

set label 1 ’(d)’ at -9,0.8

set label 2 ’steps’ -3.7,0.8

plot sin(x) with steps, sin(x) with points

Plot 4 (top left)

set origin 0*width, 2*width*gold_ratio

set xlabel ’linkaxis 0’

set ylabel ’y’

set label 1 ’(e)’ at -9,0.8

set label 2 ’impulses’ -3.7,0.8

plot sin(x) with impulses, sin(x) with points

Plot 5 (top right)

set origin 1*width, 2*width*gold_ratio

set boxfrom -0.5

set xlabel ’linkaxis 1’

set ylabel ’linkaxis 4’

set label 1 ’(f)’ at -9,0.8

set label 2 ’boxes’ -3.7,0.8

plot sin(x) with boxes, sin(x) with points

Produce a gif copy

set term gif

set dpi 129

set output ’examples/eps/example6.gif’

refresh

5.7. EXAMPLE 7: BAR CHARTS – BOX WIDTHS 53

5.7 Example 7: Bar Charts – Box Widths

In this example, we demonstrate different ways of specifying the widths of
bars on a bar chart. In panel (a), the widths are automatically determined
from the data, changing bar midway between datapoints. In panel (b), the
wboxes plot style is used, which reads the widths of the bars from a third
column in the datafile. In panel (c), we demonstrate how the set boxfrom

command can be applied to bar charts, as well as to impulses. And in
panel (d) we illustrate how the fillcolour modifier can be used to produce
coloured bars. The output is shown in figure 5.7.

PyXPlot Script:

Example 7

Continued gallery of different barchart styles

reset

set multiplot

width=7

gold_ratio = 1/((1+sqrt(5))/2)

set terminal eps

set output ’examples/eps/example7.eps’

set width width

set xrange [0.1:10.4]

set yrange [0:1.1]

set nokey

Plot 0 (bottom left)

set xlabel ’x’

set ylabel ’y’

set label 1 ’(a)’ 8.2,0.9

plot ’examples/example7.dat’ with boxes

Plot 1 (bottom right)

set origin 1*width, 0*width*gold_ratio

set xlabel ’x’

set ylabel ’linkaxis 0’

set label 1 ’(b)’ 8.2,0.9

plot ’examples/example7.dat’ with wboxes

Plot 2 (top left)

set origin 0*width, 1*width*gold_ratio

54 CHAPTER 5. EXAMPLES

set xlabel ’linkaxis 0’

set ylabel ’y’

set boxwidth 0.4

set label 1 ’(c)’ 8.2,0.9

plot ’examples/example7.dat’ with boxes fc 2

Plot 3 (top right)

set origin 1*width, 1*width*gold_ratio

set xlabel ’linkaxis 1’

set ylabel ’linkaxis 2’

set boxwidth 0.0

set boxfrom 0.5

set samples 40

set label 1 ’(d)’ 8.2,0.9

plot sin(x)*sin(x) with boxes fc 3 c 1, \

cos(x)*cos(x) with boxes fc 2 c 1

Produce a gif copy

set term gif

set dpi 131

set output ’examples/eps/example7.gif’

refresh

5.8. EXAMPLE 8: FITTING FUNCTIONS TO DATA 55

5.8 Example 8: Fitting Functions to Data

The fit command works in PyXPlot in essentially the same way as in
gnuplot (see section 2.6). In this example, we take a series of data points, and
first fit parabolas through them. For the first fit, f(x), we do not take the
errorbars into account; in the second, g(x), we do. Then, we use the spline
command to fit a spline, h(x), through the same data (see section 3.8).
Strong oscillation is seen in this example because of the angular nature of
the data; it is not well-fit by a spline. The output is shown in figure 5.8.

PyXPlot Script:

Example 8

An example of fitting functions to a datafile.

reset

Functional forms to be fitted -- parabolas

f(x) = a * x**2 + b * x + c

g(x) = d * x**2 + e * x + f

First of all, fit data neglecting errorbars

fit f(x) ’examples/example8.dat’ via a,b,c

Now fit data taking errorbars into account

fit g(x) ’examples/example8.dat’ using 1:2:3 via d,e,f

Now fit a spline through the data

spline h() ’examples/example8.dat’

Plot the resulting functions

set width 12

set key top xcentre

set xlabel ’x’

set ylabel ’y’

set term eps

set output ’examples/eps/example8.eps’

plot [0:8][0:5] \

’examples/example8.dat’ with yerrorbars, f(x), g(x), h(x)

Produce a gif copy

set term gif

set dpi 154

set output ’examples/eps/example8.gif’

refresh

56 CHAPTER 5. EXAMPLES

5.9 Example 9: Simple Examples of Function Splic-
ing

Here, we demonstrate simple use of function splicing (see section 3.7). In
panel (a), we plot the function sin(x), but specify that we only want it to
be drawn in the range −2 < x < 7. In panel (b), we show how to define
a discontinuous function similar to a top-hat function, also demonstrating
how to set movable boundaries between the spliced components of functions,
in this case using the variable a for this purpose.

Panels (c) and (d) demonstrate a more complex example, involving the
splicing of a two-dimensional function.

PyXPlot Script:

Example 9

Two Simple Examples of Function Splicing

reset

set multiplot

width=9

gold_ratio = 1/((1+sqrt(5))/2)

set terminal eps

set output ’examples/eps/example9.eps’

set width width

Plot 0 (bottom left)

f(x)[-2:7] = sin(x)

set xlabel ’x’

set ylabel ’y’

set xrange [-10.9:10.9]

set label 1 ’(a)’ -9,0.8

plot f(x)

Plot 1 (bottom right)

g(x,a) = a/10

g(x,a)[:-a] = -a/10

g(x,a)[a:] = -a/10

set ylabel ’linkaxis 0’

set label 1 ’(b)’ -9,0.8

set origin width,0

set key bottom xcentre

5.9. EXAMPLE 9: SIMPLE EXAMPLES OF FUNCTION SPLICING 57

plot g(x,2), g(x,5), g(x,7)

Plot 2 (top left)

h(x,y) = 1

h(x,y)[1:][1:] = x*y

h(x,y)[1:][:1] = x

h(x,y)[:1][1:] = y

set nokey

set xlabel ’linkaxis 0’

set ylabel ’y’

set yrange [0.1:25]

set label 1 ’(c)’ -9,22

set origin 0,width*gold_ratio

plot h(x,cos(x)+1) w l

Plot 3 (top right)

set xlabel ’linkaxis 1’

set ylabel ’linkaxis 2’

set label 1 ’(d)’ -9,22

set origin width,width*gold_ratio

plot h(x,min(tan(x),10)) w l

Produce a gif copy

set term gif

set dpi 103

set output ’examples/eps/example9.gif’

refresh

58 CHAPTER 5. EXAMPLES

5.10 Example 10: Removal of Unwanted Axes

In this example, we use the magic axis labels nolabels, nolabelsticks
and invisible, which were described in section 3.3. In the lower-left plot,
we show how to create a graph without mirrored x- and y-axes on the top
and right sides of the plot. In the lower-right panel, we produce a plot with
only x-axes visible, using them to produce a gallery showing the appearance
resulting from the use of each of these magic labels. The top-left plot shows
a simple sketch-graph with completely unlabelled axes. We also draw arrows
over the top of the axes in this example, to give them arrowheads. Finally,
in the top-right panel, we show one artistic application of plotting functions
with no axes visible at all, creating a simple logo. The output is shown in
figure 5.10.

PyXPlot Script:

Example 10

Example of the Removal of Unwanted Axes

reset

set multiplot

set width 8

set terminal eps

set output ’examples/eps/example10.eps’

Plot 0 (bottom left)

set x2label ’invisible’

set y2label ’invisible’

set xlabel ’x’

set ylabel ’y’

plot [0:5] (sin(x) ** 2)

Plot 1 (bottom right)

set ylabel ’invisible’

set xlabel ’’

set x3label ’nolabels’

set x5label ’nolabelstics’

set x7label ’invisible’

set label 1 "From top to bottom:" screen 0.5 , screen 2.0

set label 2 "normal axis, \texttt{nolabels} axis," screen 0.5 , \

screen 1.5

set label 3 "\texttt{nolabelstics} axis, and \texttt{invisible} \

axis." screen 0.5 , screen 1.0

5.10. EXAMPLE 10: REMOVAL OF UNWANTED AXES 59

set origin 9.5,2.5

plot

Plot 2 (top left)

unset label

unset axis x3x5x7

xmin = -0.5 ; xmax = 1.5

ymin = -0.5 ; ymax = 1.0

set arrow 1 from xmin,ymin to xmax,ymin

set arrow 2 from xmin,ymin to xmin,ymax

set arrow 3 from 0.6,0 to 0.5,0.20

set label 1 ’A sketch of a parabola’ at 0, -0.2

set xlabel ’nolabelstics’

set ylabel ’nolabelstics’

set nokey

set origin 0,6.5

plot [xmin:xmax][ymin:ymax] x ** 2

Plot 3 (top right)

unset arrow

unset label

set xlabel ’invisible’

set ylabel ’invisible’

set linewidth 2

logo_x = 9.5

logo_y = 6.5

set textcolour Grey80

text ’\large $\frac{\hbar^2}{2m}\frac{\partial^2 \psi}{\partial \

x^2} + V\psi = E\psi$’ logo_x+2.1, logo_y+0.5

text ’\large $d \sin \theta = n\lambda$’ logo_x+0.5, logo_y+3.5

set textcolour Grey70

text ’\Large $\nabla \cdot D = \rho_{\mathrm{free}}$’ \

logo_x+2.9, logo_y+4.6

text ’\Large $\nabla \times E = - \frac{\partial \bf B} \

{\partial t}$’ logo_x+1.2, logo_y+4.0

text ’\Large $\nabla \cdot B = 0$’ logo_x+0.9, logo_y+1.2

text ’\Large $\nabla \times H = J_{\mathrm{free}} - \

\frac{\partial \bf D}{\partial t}$’ logo_x+3.8,logo_y+1.8

set textcolour Grey55

text ’\Large $ds^2=\left(1-\frac{2GM}{rc^2}\right) \

dt^2$’ logo_x+0.4, logo_y+2

text ’\large $H(t)=\frac{\dot R}{R}$’ logo_x+6.1,logo_y+3.1

60 CHAPTER 5. EXAMPLES

text ’$q(t) = - \frac{\ddot R R}{\dot R^2}$’ logo_x+5.3, logo_y+3.9

text ’\large $d_\mathrm{L} = \left(\frac{L}{4\pi F} \right) \

^\frac{1}{2}$’ logo_x+3.7, logo_y+1.2

text ’\Large $\ddot x^a + \Gamma^a_{bc} \

\dot x^b \dot x^c = 0$’ logo_x+4.5, logo_y+2.5

set textcolour Black

set label 1 ’\Huge \textbf{PyXPlot}’ at -8.5 , 0.05

set arrow 1 from 0.0 , -0.590 to 2.75 , -0.590 \

with nohead lines linetype 3 colour 1

set arrow 2 from 2.5 , -0.590 to 2.5 , -0.325 with twoway

set label 2 ’\Large ${\bf \Delta \phi}$’ at 2.7, -0.5

set origin logo_x, logo_y

p [-9.5:4.8][-0.75:0.60] - x*exp(-x**2) + \

(1/(exp((x-1)*3)+1) - 0.5)/4 - 0.2 with lines colour 1

Produce a gif copy

set term gif

set dpi 103

set output ’examples/eps/example10.gif’

refresh

5.11. EXAMPLE 11: THE ARROWS PLOT STYLE 61

5.11 Example 11: The Arrows Plot Style

Here, we show two possible applications of the arrows plot style (see sec-
tion 3.3). In the left panel, we plot a map of fluid flow around a vortex core,
the dotted circle showing the outline of the vortex core. The source for this
is a datafile mapping fluid velocity as a function of position. In the right
panel, we show a series of datapoints before and after some correction factor
is applied to them, showing how the data are moved in the process. The
output of this example is shown in figure 5.11.

PyXPlot Script:

Example 11

Examples of the ’arrows’ plotting style

reset

set multiplot

width=15

set terminal eps

set output ’examples/eps/example11.eps’

set width width

set size square

set fontsize 2

set nokey

Plot 0 (left)

set xlabel ’x’

set ylabel ’y’

plot [-10.9:10.9][-10.9:10.9] \

’examples/example11.dat’ i 0 u 1:2:($1+$3):($2+$4) w arrows, \

4*sin(x/10.9*pi):4*cos(x/10.9*pi) u 2:3 w lt 2 col black

Plot 1 (right)

set origin width, 0

set ylabel ’linkaxis 0’

set key bottom right

plot [-10.9:10.9] \

’examples/example11.dat’ i 1 t ’’ with arrows, \

’examples/example11.dat’ i 1 t ’Before correction’ u 1:2 w p, \

’examples/example11.dat’ i 1 t ’After correction’ u 3:4 w p

Produce a gif copy

set term gif

set dpi 63

set output ’examples/eps/example11.gif’

refresh

62 CHAPTER 5. EXAMPLES

5.12 Output Produced by Examples

−1

−0.5

0

0.5

1

yy

−10 −5 0 5 10

xx

sin(x)

cos(x)

Figure 5.1: The output produced by example script 1, Plotting Functions –

A Simple First Plot.

−1

−0.5

0

0.5

1

yy

−10 −5 0 5 10

xx

sin(x)

−1

−0.5

0

0.5

1

yy

−10 −5 0 5 10

xx

cos(x)

−1

−0.5

0

0.5

1

yy

0

0.25

0.5

0.75

1

−10 −5 0 5 10

xx

sin(x)

sin(x)**2

−2

−1

0

1

2

yy

−10 −5 0 5 10

xx

sin(x)+cos(x)

Figure 5.2: The output produced by example script 2, Stacking Many Plots

Together – Multiplot.

5.12. OUTPUT PRODUCED BY EXAMPLES 63

10−7

10−6

10−5

10−4

10−3

∫

F
ν
(a

)d
a
·4

π
r2

/W
H

z−
1
m

2
H

−
1

∫

F
ν
(a

)d
a
·4

π
r2

/W
H

z−
1
m

2
H

−
1

5 10 20 50 100 200

λ/µmλ/µm

2 · 10125 · 10121 · 10132 · 10135 · 1013

ν/Hzν/Hz

0.010.020.050.10.2

Photon Energy / eVPhoton Energy / eV

Nikolič-Ford Dust Code

IRAS Photometry

β = 2 Greybody

Simulated infrared dust spectrum for an H II region

Fν = νβBν(30K)

Figure 5.3: The output produced by example script 3, Plotting A Datafile –

Using Multiple Axes.

Bν = 8πh
c3

ν3

exp(hν/kT)−1

This is an example equation:

Figure 5.4: The output produced by example script 4, Something Completely

Different.

64 CHAPTER 5. EXAMPLES

−
2

−
1 0 1

yy

−
10

−
5

0
5

10

xx

sin
(x

)

−
10

−
5

0
5

10

xx

co
s(x

)-1

−
1 0 1 2

yy

cos(x
)

sin
(x

)**
2+

1
0

2
0

−
5

0
5

x
*
*
2

Figure 5.5: The output produced by example script 5, Multiplot – Linked

Axes.

5.12. OUTPUT PRODUCED BY EXAMPLES 65

−1

−0.5

0

0.5

1

yy

−10 −5 0 5 10

xx

(a) histeps

−10 −5 0 5 10

xx

(b) boxes

−1

−0.5

0

0.5

1

yy

(c) fsteps (d) steps

−1

−0.5

0

0.5

1

yy

(e) impulses (f) boxes

Figure 5.6: The output produced by example script 6, Bar Charts and Steps.

66 CHAPTER 5. EXAMPLES

0

0.25

0.5

0.75

1

yy

2 4 6 8 10

xx

(a)

2 4 6 8 10

xx

(b)

0

0.25

0.5

0.75

1
yy

(c) (d)

Figure 5.7: The output produced by example script 7, Bar Charts – Box

Widths.

0

1

2

3

4

5

yy

0 2 4 6 8

xx

‘examples/example8.dat’

f(x)

g(x)

h(x)

Figure 5.8: The output produced by example script 8, Fitting Functions to

Data.

5.12. OUTPUT PRODUCED BY EXAMPLES 67

−1

−0.5

0

0.5

1

yy

−10 −5 0 5 10

xx

f(x)(a)

−10 −5 0 5 10

xx

g(x,2)

g(x,5)

g(x,7)

(b)

5

10

15

20

25

yy

(c) (d)

Figure 5.9: The output produced by example script 9, Simple Examples of

Function Splicing.

0

0.25

0.5

0.75

1

yy

0 1 2 3 4 5

xx

(sin(x)**2)

−10 −5 0 5 10

From top to bottom:

normal axis, nolabels axis,

nolabelstics axis, and invisible axis.

A sketch of a parabola
h̄2

2m

∂2ψ

∂x2 + V ψ = Eψ

d sin θ = nλ

∇ ·D = ρfree

∇× E = −∂B

∂t

∇ ·B = 0
∇×H = Jfree −

∂D

∂t
ds2 =

(

1 − 2GM
rc2

)

dt2

H(t) = Ṙ
R

q(t) = − R̈R

Ṙ2

dL =
(

L
4πF

)
1

2

ẍa + Γa
bcẋ

bẋc = 0
PyXPlot

∆φ

Figure 5.10: The output produced by example script 10, Removal of Un-

wanted Axes.

68 CHAPTER 5. EXAMPLES

−10

−5

0

5

10

yy

−10 −5 0 5 10
xx

−10 −5 0 5 10
xx

Before correction
After correction

Figure 5.11: The output produced by example script 11, The Arrows Plot

Style.

Chapter 6

ChangeLog

2006 Jul 25: PyXPlot 0.5.5

� pyxplot watch implemented.

� fit command now gives error estimates, as well as correlation matrices.

� Many new pointtypes added, including upper and lower limit symbols.

� Handling of SIGINT improved; now exits current command in inter-
active mode, and exits PyXPlot when running a script.

� Quote characters can now be escaped in LaTeX strings, to allow strings
with both ’ and ” characters to be rendered.

� Installer no longer creates any files belonging to root in the user’s
homespace.

� show xlabel and show xrange implemented.

� Bug fix: cd command no longer crashes if target directory doesn’t
exist.

� Bug fix: some commands, e.g. plot, which previously didn’t work
when capitalised, now do.

� Major bug fix to int dx and diff dx functions.

2006 Jul 3: PyXPlot 0.5.4

� edit command implemented.

� Numerical integration and differentiation functions implemented.

� New makefile installer added.

� man page added.

69

70 CHAPTER 6. CHANGELOG

� Brief tour of gnuplot syntax added to documentation.

� Many minor bug fixes.

2006 Jun 27: PyXPlot 0.5.3

� set bar and set palette implemented.

� Stacked barcharts implemented.

� Command history files and the save command implemented.

� Plotting of functions with errorbars implemented.

� Ability to define a LaTeX preamble implemented.

� Bug fix to smoothed splines, to ensure that smoothing is always applied
to a sensible degree by default.

� Bug fix to the autoscaling of bar charts, histograms and errorbars, to
ensure that their full extent is contained within the plot area.

� Bug fix to arrow plotting, to prevent PyX from crashing if arrows of
zero lengths are plotting (they have no direction...)

2006 Jun 14: PyXPlot 0.5.2

� spline command, and csplines/acsplines plot styles implemented.

� Syntax plot[0:1], with no space, now allowed.

� Automatic names of datasets in legends no longer have full paths, but
only the path in the form that the user specified it.

� Bug fix to the handling of LaTeX special characters in the automatic
names of datasets, e.g. file paths containing underscores.

� Error messages now sent to stderr, rather than stdout.

� multiplot mode now plots items in the order that they are plotted;
previously all arrows and text labels had been plotted in front of plots.

� set backup command implemented, for keeping backups of overwritten
files.

� Bug fix, enabling the use of axis x5 without axis x3, and likewise for
y.

� unset axis command implemented, for removing axes from plots.

� ‘invisible’, ‘nolabels’, and ‘nolabelsticks’ axis title implemented, for
producing axes without text labels.

71

� plot ’every’ modifier re-implemented, to use the same syntax as gnu-
plot.

� fit command re-implemented to work with functions of > 1 variable.

� plot with pointlines defined as alias for ‘linespoints’.

� plot using rows syntax implemented, for plotting horizontally-arranged
datafiles.

� Bug fix to replot command in multiplot mode, to take account of any
move commands applied to the last plot.

� Bug fix to errorbar pointsizes. pointsize modifier now produces sensi-
ble output with all errorbar plot styles.

� show command re-implemented to accept any word that the set com-
mand will.

2006 Jun 2: PyXPlot 0.5.1

� Pling and cd commands implemented; ‘ ‘ shell command substitution
implemented.

� Arrows (both from set arrow and the arrow command) can now have
linetypes and colours set.

� Colours can now be specified as either palette indices or PyX colour
names in all contexts – e.g. ‘plot with colour red’.

� Function plotting fixed to allow plotting of functions which are not
valid across the whole range of the x-axis.

� Transparent terminals now have anti-aliasing disabled.

� Warnings now issued when too many columns are specified in plot
command; duplicate errors filtered out in two-pass plotting.

� Function splicing implemented.

� Documentation: sections on barcharts, function splicing, and datafile
globbing added.

2006 May 27: PyXPlot 0.5.0

� Name changed to PyXPlot.

� Change to distribution format: PyX Version 0.9 now ships with pack-
age.

� Safety installer added; checks for required packages.

72 CHAPTER 6. CHANGELOG

� ‘errorrange’ plot styles added; allow errorbars to be given as min/max
values, rather than as a standard deviation.

� ‘boxes’, ‘wboxes’, ‘steps’, ‘fsteps’, ‘histeps’ and ‘impulses’ plot styles
implemented – allow the production of histograms and bar charts.

� plot with fillcolour implemented, to allow coloured bar charts.

� Handling of broken datafiles sanitised: now warns for each broken line.

� gridlines on multiple axes, e.g. ‘set grid x1x2x3’ now allowed.

� Major bugfix to the way autoscaling works: linked axes share infor-
mation and scale intelligently between plots.

� –help and –version commandline options implemented.

� ‘using’ specifiers for datafiles can now include expressions, such as
�
(2+x).

� eps terminal fixed to produce encapsulated postscript.

� datafile names now glob, so that plot ‘*’ will plot many datafiles.

� Documentation: examples 6,7 and 8 added.

2006 May 18: GnuPlot+ 0.4.3

� text and arrow commands now accept expressions rather than just
floats for positional coordinates.

� clear command major bug-fixed.

� ‘plot with’ clause bugfixed; state variable was not resetting.

� Automatical key titles for datafile datasets made more informative.

� Autoscaling of multiple axes bugfixed.

� Autoscaling of inverted axes fixed.

� set grid command fixed to only produce x/y gridlines when requested.

� X11 singlewindow changed to use gv --watch.

� landscape terminal postscript header detection bugfixed.

� noenhanced terminal changed to produce proper postscript.

� Plotting of single column datafiles without using specifier fixed.

2006 May 4: GnuPlot+ 0.4.2

73

� Autoscaling redesigned, no longer uses PyX for this.

� Numerical expression handling fixed in set title, set origin and set
label.

� Handling of children fixed, to prevent zombies from lingering around.

� arrow command implemented.

� set textcolour, set axescolour, set gridmajcolour, set gridmincolour and
set fontsize implemented.

� Colour pallette can now be set in configuration file.

� Ranges for axes other then x1/y1 can now be set in the plot command.

� Postscript noenhanced can now produce plots almost as big as an A4
sheet.

� Plotting of one column datafiles, against datapoint number, imple-
mented.

� Negative errorbars error trapped.

� Comment lines now allowed in command files.

2006 May 1: GnuPlot+ 0.4.1

� Documentation converted from ASCII to LaTeX.

� ChangeLog added.

� Configuration files now supported.

� Prevention of temporary files in /tmp overwriting pre-existing files.

� set term enhanced / noenhanced / landscape / portrait / png / gif /
jpeg / transparent / solid / invert / noinvert implemented.

� set dpi implemented, to allow user to choose quality of gif/jpg/png
output.

� ’set grid’ command now allows user to specify which axes grid attaches
to (extended API).

� Support introduced for plotting gzipped datafiles. Filenames ending
in ‘.gz’ are assumed to be gzipped.

� load command implemented.

� move command implemented.

74 CHAPTER 6. CHANGELOG

� Long lines can now be split using ‘́linesplit character at the end of a
line. Any whitespace at the beginning of the next is omitted.

� text / delete text / undelete text / move text commands implemented.

� refresh command implemented. (extended API)

� point types, line styles, and colours now start at 1, for gnuplot com-
patibility.

� default terminal changed to postscript for non-interactive sessions.

2006 Apr 27: GnuPlot+ 0.4.0

� Bug fix: now looks for input scripts in the user’s cwd, not in /tmp.

� ‘set logscale’ is now valid syntax (as in gnuplot), as well as ‘set log’.

� multiplot implemented, including linked axes, though with some bro-
keness if linked axes are allowed to autoscale.

� ‘dots’ plotting style implemented.

� Bug fix: can now include a plot ‘with’ clause after an ‘axes’ clause;
could not previously without an error message arising.

� Pointstyles now increment between plotted datasets, even in a colour
terminal where the colours also increment.

� garbage collection of .eps files from the X11 terminal added. Previously
they were left to fester in /tmp.

� pointlinewidth added as a plot style, specifying the linewidth to be
used in plotting points. ‘set plw’ and ‘set lw’ both added (extended
API).

� delete, clear and undelete commands added to the multiplot environ-
ment.

� unset command implemented.

� set notitle implemented.

2006 Apr 14: GnuPlot+ 0.3.2

� The autoscaling of logarithmic axes made more trust-worthy: error
checks to ensure that they do not try to cover negative ordinates.

� Error checks put in place to prevent empty keys being plotted, which
made PyX crash previously. Now can plot empty graphs happily.

75

� Datasets with blank titles removed from the key, to allow users to
plot some datasets to be omitted from the key. This is not possible in
gnuplot.

� Bug fix to prevent PyX’s texrunner from crashing irrepairably upon
receiving bad LaTeX. Now uses a spanner to attempt to return it to
working order for the next plot.

� Bug fix to the autoscaling of axes with no range of data – previous did
not work for negative ordinates. Now displays an axes with a range of
+/- 1.0 around the data.

2006 Apr 12: GnuPlot+ 0.3.1

� Plotting of functions fixed: plot command will now plot any algebraic
expression, not just functions of the form f(x).

� Space added after command prompt.

2006 Apr 12: GnuPlot+ 0.3.0

� X11 singlewindow and X11 multiwindow terminals implemented, as
distinct from just standard X11.

� Key positioning allowed to be xcentre, ycentre, below and outside,
as well as in the corners of the plot. Key allowed to be offseted in
position.

� Datasets colours can be set via ‘plot with colour <n>’

� Datasets are split when there is a blank line in the datafile; lines are
not joined up between the two segments.

� set size implemented; can now change aspect ratio of plots.

� working directory of GnuPlot+ changed to /tmp, so that LaTeX’s
temporary files are stored there rather than in the user’s cwd.

2006 Mar 30: GnuPlot+ 0.2.0

� Standard GnuPlot dual axes improved upon, allowing users to add x3,
x4 axes, etc, up to any number of axes that may be desired.

� Autocomplete mechanism for commandline substantially cleaned up
and debugged.

� Bug fixes to the plotting of arrows/labels. Now appear above gridlines,
not below.

2006 Feb 26: GnuPlot+ 0.1.0

Index

acsplines plot style, 32

arrow command, 29

arrows, 24

arrows plot style, 20, 61

axes

colour, 26

multiple, 18, 45

removal, 18

reserved labels, 19, 27

backup files, 24

bar charts, 29, 51, 53

best fit lines, 12, 32

boxes plot style, 29, 51, 53

ChangeLog, 69

clear command, 27

colour output, 17

colours

axes, 26

configuration file, 41

fillcolour, 53

grid, 26

inverting, 17

setting for datasets, 19, 49

setting the palette, 19

shades of grey, 42

text, 26

columns keyword, 21

command line syntax, 5

command scripts

comment lines, 6

comment lines, 6

configuration file

colours, 41

configuration files, 36

csplines plot style, 32

datafile format, 8
datafiles

globbing, 23

horizontal, 21
Debian Linux, 3
delete command, 27

delete arrow command, 29
delete text command, 28
diff dx() function, 33

differentiation, 33
DISPLAY environment variable, 18

dots style, 20

encapsulated postscript, 17
errorbars, 22

escape characters, 2
every modifier, 8
exit command, 5

fillcolour modifier, 30, 53
fit command, 11, 55

fontsize, 26
fsteps plot style, 29, 51
function fitting, 55

function splicing, 31

General Public License, 4
gif output, 17

transparency, 17
globbing, 23

grid, 25
colour, 26

hidden axes, 18

histeps plot style, 29, 51

76

INDEX 77

horizontal datafiles, 21

image resolution, 18
impulses plot style, 29, 51
index modifier, 8
installation, 3

under Debian, 3
int dx() function, 33
integration, 33
invisible keyword, 19

jpeg output, 17

landscape orientation, 17, 49
linewidths

setting for datasets, 20
load command, 6
lower-limit datapoints, 20

magic axis labels, 19, 27
Microsoft Powerpoint

importing figures into, 47
monochrome output, 17
multiple axes, 18, 45
multiple windows, 16
multiplot, 26, 44

inset plots, 49
linked axes, 49

nolabels keyword, 19
nolabelstics keyword, 19

overwriting files, 24

plot command, 6
png output, 17

transparency, 17
portrait orientation, 17
postscript

encapsulated, 17
postscript output, 17
presentations

importing figures into, 47
pyxplot watch, 34

quit command, 5

quote characters, 2

refresh command, 29, 47

removing axes, 18

replot command, 10, 29
replotting, 29

reset command, 7

resolution of bitmap output, 18

rows keyword, 21

save command, 6

set arrow command, 24, 25

set axescolour command, 40
set backup command, 24, 38

set boxfrom command, 29, 41, 51

set boxwidth command, 29, 41
set command, 35

set data style command, 40

set dpi command, 18, 39

set fontsize command, 39
set function style command, 40

set grid command, 41

set gridmajcolour command, 40

set gridmincolour command, 40
set key command, 16, 40, 41

set linewidth command, 40

set multiplot command, 38

set origin command, 27, 37, 38,
44

set output command, 9, 38

set palette command, 19

set pointlinewidth command, 39
set pointsize command, 39

set samples command, 11, 40

set size command, 39

set size ratio command, 39
set terminal command, 9, 16, 38–

40

set textcolour command, 40

set title command, 38

set width command, 16, 39
special characters, 2

splicing functions, 31

spline command, 32, 55

78 INDEX

steps plot style, 29, 51
system requirements, 3

text
colour, 26
size, 26

text command, 28, 47
transparent terminal, 17

undelete command, 27
undelete arrow command, 29
undelete text command, 28
unset command, 7
upper-limit datapoints, 20
using columns modifier, 21
using rows modifier, 21

watching scripts, 34
wboxes plot style, 30, 53
wildcards, 23
with modifier, 11

X11 terminal, 16

