PyXPlot Users’ (Guide

A Commandline Plotting Package,
with Interface similar to that of Gnuplot,
which produces

Publication-Quality Output.

Version 0.5.7

Dominic Ford
Trinity College
Cambridge
CB2 1TQ
UK
Email: dcf21@mrao.cam.ac.uk

August 2006

Contents

Introduction

1.1 Overview e
1.2 System Requirements
1.3 Imstallation
1.4 Credits. o
1.5 Legal Blurbo
First Steps With PyXPlot

2.1 Getting Started
22 First Plots.
2.3 Plotting Datafiles
2.4 Directing Where Output Goes
25 DataStyles
2.6 Setting Axis Ranges
2.7 Function Fittingo oo
2.8 Interactive Help
2.9 Differences Between PyXPlot and Gnuplot

Extensions of Gnuplot’s Interface

3.1 The Commandline Environment
3.2 Formatting and Terminals
3.3 Plotting
3.3.1 Configuring Axes
3.3.2 Keysand Legends
3.3.3 The linestyle keyword
3.3.4 Colour Plotting
3.3.5 General Extensions Beyond Gnuplot
3.4 Sundry Items (Arrows, Text Labels, and More)
341 Arrows ...
342 Text Labels o 0L
343 Gridlines L oo
3.5 Multi-plotting
3.5.1 SpeedlIssues

ii

CONTENTS

3.6 Barcharts and Histograms
3.6.1 Basic Operation
3.6.2 Stacked Bar Charts
3.6.3 Steps

3.7 Function Splicing oL

3.8 Datafile Interpolation: Spline Fitting

3.9 Numerical Integration and Differentiation

3.10 Script Watching: pyxplot_-watch

Configuring PyXPlot

4.1 OVerviewo
4.2 Configuration Fileso oo
4.3 An Example Configuration File
4.4 Configuration Options: settings section
4.5 Configuration Options: terminal section
4.6 Recognised Colour Names

Examples

5.1 Example 1: Plotting Functions — A Simple First Plot
5.2 Example 2: Stacking Many Plots Together — Multiplot
5.3 Example 3: Plotting A Datafile — Using Multiple Axes
5.4 Example 4: Something Completely Different
5.5 Example 5: Multiplot — Linked Axes
5.6 Example 6: Bar Charts and Steps
5.7 Example 7: Bar Charts - Box Widths
5.8 Example 8: Fitting Functions to Data
5.9 Example 9: Simple Examples of Function Splicing
5.10 Example 10: Removal of Unwanted Axes
5.11 Example 11: The Arrows Plot Style
5.12 Output Produced by Examples

The fit Command: Mathematical Details

6.1 Notation
6.2 The Probability Density Function
6.3 BEstimating the Errorinu®
6.4 The Covariance Matrix
6.5 The Correlation Matrix

6.6 Findingo;

ChangeLog

41
41
41
42
44
48
49

51
o1
52
54
56
58
60
62
64
65
67
70
72

79
79
80
80
82
83
84

87

Chapter 1

Introduction

1.1 Overview

PyXPlot is a commandline graphing package, which, for ease of use, has an
interface based heavily upon that of gnuplot — perhaps UNIX’s most widely-
used plotting package. Despite the shared interface, however, PyXPlot is
intended to significantly improve upon the quality of gnuplot’s output, pro-
ducing publication-quality figures. The commandline interface has also been
extended, providing a wealth of new features, and short-cuts for some oper-
ations which were felt to be excessively cumbersome in the original.

The motivation behind PyXPlot’s creation was the apparent lack of a
free plotting package which combined both high-quality output and a simple
interface. Some — pgplot for one — provided very attractive output, but
required a program to be written each time a plot was to be produced — a
potentially time consuming task. Others, gnuplot being the prime example,
were quick and simple to use, but produced less attractive results.

PyXPlot attempts to fill that gap, offering the best of both worlds.
Though the interface is based upon that of gnuplot, text is now rendered
with all of the beauty and flexibility of the IATEX typesetting environment;
the “multiplot” environment is made massively more flexible, making it easy
to produce galleries of plots; and the range of possible output formats is ex-
tended — to name but a few of the enhancements. A number of examples of
the results of which PyXPlot is capable can be seen in section 5.12.

As well as the ease of use and flexibility of gnuplot’s commandline in-
terface — it can be used either interactively, read a list of commands from
a file, or receive instructions through a UNIX pipe from another process —
I believe it to bring another distinct advantage. It insists upon data being
written to a datafile on disk before being plotted. Packages which allow, or
more often require, plotting to be done from within a programming language
can encourage the calculation of data and its plotting to occur in the same
program. I believe this to be a dangerous temptation, as the storage of raw

2 CHAPTER 1. INTRODUCTION

datapoints to disk can then often be seen as a secondary priority. Months
later, when the need arises to replot the same data in a different form, or
to compare it with newer data, remembering how to use a hurriedly written
program can prove tricky, but remembering how to plot a simple datafile
less so.

The similarity of the interface to that of gnuplot is such that simple
scripts written for gnuplot should work with PyXPlot with minimal modi-
fication; gnuplot users should be able to get started very quickly. However,
as PyXPlot remains work in progress, it supports only a subset of the func-
tionality and configurability of gnuplot, and some features may be found to
be missing. These will be discussed further in section 2.9. A description
of those features which have been added to the interface can be found in
chapter 3.

A brief overview of gnuplot’s interface is provided for novice users in
chapter 2. However, the attention of past gnuplot users is drawn to one of the
key changes to the interface — namely that all textual labels on plots are now
printed using the IMTEX typesetting environment. This does unfortunately
introduce some incompatibility with the original, since some strings which
were valid before are no longer valid. For example:

set xlabel ’x"2°

would have been valid in gnuplot, but now needs to be written in IXTEX

mathmode as:!

set xlabel ’$x"2%°

It is the view of the author, however, that the nuisance of this incompatibility
is far outweighed by the power that IXTEX brings. Users with no prior
knowledge of IEX are advised that they don’t know what they’re missing,
and that they should straight away download and read a copy of Tobias
Oetiker’s excellent introduction, The Not So Short Guide to BTEpX2€>.

!As in gnuplot, all textual labels in PyXPlot should be enclosed in either single or
double quotes. If one were to want to render a string containing apostrophes, it would
be necessary to enclose the string in double quotes, to prevent confusion between the
apostrophe in the IMTEX, and the closing quote at the end of the line. However, to
allow for those wanting to render EXTEX strings containing both single and double quote
characters — for example, “J\"org’s Data” — PyXPlot recognises the backslash character
to be an escape character when followed by either ’ or ” in a ITEX string. This is the only
case in which PyXPlot considers \ an escape character. Consequently, in the example
above, the “\"” would need to be double escaped: “J\\"org’s Data”.

2Download from:
http://www.ctan.org/tex-archive/info/lshort/english/lshort.pdf

1.2. SYSTEM REQUIREMENTS 3

1.2 System Requirements

PyXPlot is presently only supported for Linux. It requires that the following
software packages (not included) be installed:
bash (The bash shell)
python (Version 2.4 or later)
scipy (Python Scientific Library)
latex (Used for all textual labels)
dvips (Needed to render textual labels)
gs (Ghostscript; needed for the landscape terminal)
convert (ImageMagick; needed for the gif, png and jpg terminals)

The following package is not required for installation, but it is not pos-
sible to use the X11 terminal, i.e. to display plots on screen, without it:

gv (Ghostview; used for the X11 terminal)

Debian users can find this software in the packages tetex-extra, gv,
imagemagick, python2.4, python2.4-scipy.

1.3 Installation

The following steps describe the installation of PyXPlot from a .tar.gz
archive. It is assumed that the packages listed above have already been
installed.

e Unpack the distributed .tar.gz:

tar xvfz pyxplot_0.5.7.tar.gz
cd pyxplot

e Run the installation script:

./configure
make
make install

where the final step needs to be executed as root. By default, the
PyXPlot executable installs to /usr/local/bin/pyxplot. If desired,
this installation path may be modified in the file Makefile.skel, by
changing the variable USRDIR in the first line to an alternative desired
installation location. This will be necessary for users who do not have
root access to their machines, for example.

4 CHAPTER 1. INTRODUCTION
e Finally, start PyXPlot:
pyxplot

1.4 Credits

Before proceeding any further, the author would like to express his gratitude
to those people who have contributed to PyXPlot — first and foremost, to
Jorg Lehmann and André Wobst, for writing the PyX graphics library for
python, upon which this software is heavily built. Thanks must also go
to Ross Church for his many useful comments and suggestions during its
development.

1.5 Legal Blurb

This manual, and the software which it describes, are both copyright (C)
Dominic Ford 2006. They are both distributed under the GNU General
Public License (GPL) Version 2, a copy of which is provided in the COPYING
file in this distribution. Alternatively, it may be downloaded from:
http://www.gnu.org/copyleft/gpl.html.

Chapter 2

First Steps With PyXPlot

In this chapter, I shall provide a brief overview of the basic operation of
PyXPlot, essentially covering those areas of syntax which are borrowed di-
rectly from gnuplot. Users who are already familiar with gnuplot may wish
to skim or skip this chapter, though section 2.9, detailing which parts of
gnuplot’s interface are and are not supported in PyXPlot, may be of inter-
est. In the following chapter, I shall go on to describe PyXPlot’s extensions
of gnuplot’s interface.

Describing gnuplot’s interface in its entirety is a substantial task, and
what follows is only an overview; novice users can find many excellent tuto-
rials on the web which will greatly supplement what is provided below.

2.1 Getting Started

The simplest way to start PyXPlot is simply to type “pyxplot” at a shell
prompt to start an interactive session. A PyXPlot commandline prompt
will appear, into which commands can be typed. PyXPlot can be exited
either by typing “exit”, “quit”, or by pressing CTRL-D.

Alternatively, a list of commands to be executed may be stored in a
command script, and executed by passing the filename of the command
script to PyXPlot on the shell commandline, for example:

pyxplot foo

In this case, PyXPlot would exit immediately after finishing executing the
commands from the file foo. Several filenames may be passed on the com-
mandline, to be executed in sequence:

pyxplot fool foo2 foo3

Wildcards can also be used; the following would execute all command scripts
in the presenting working directory whose filenames end with a .plot suffix:

5

6 CHAPTER 2. FIRST STEPS WITH PYXPLOT

pyxplot *.plot

It is possible to use PyXPlot both interactively, and from command
scripts, in the same session. One way to do this is to pass the magic filename
‘-’ on the commandline:

pyxplot fool - foo2

This magic filename represents an interactive session, which commences after
the execution of fool, and should be terminated in the usual way after use,
with the “exit” or “quit” commands. Afterwards, the command script
foo2 would execute.

From within an interactive session, it is possible to run a command script
using the load command:

pyxplot> load ’foo’

This example would have the same effect as typing the contents of the file
foo into the present session.

A related command is “save”, which stores a history of the commands
executed in the present interactive session to file.

All command files can include comment lines, which should begin with
a hash character, for example:

This is a comment

Long commands may be split over multiple lines in the script by termi-
nating each line of it with a backslash character, whereupon the following
line will be appended to the end of it.

2.2 First Plots

The basic workhorse command of PyXPlot is the plot command, which
is used to produce all plots. The following simple example would plot the
function sin(zx):

plot sin(x)

It is also possible to plot data from files. The following would plot data
from a file ‘datafile’, taking the z-coordinate of each point from the first
column of the datafile, and the y-coordinate from the second. The datafile is
assumed to be in plain text format, with columns separated by whitespace
and/or commas':

'Tf the filename of a datafile ends with a .gz suffix, it is assuming to be gzipped
plaintext, and is decoded accordingly.

2.2. FIRST PLOTS 7

plot ’datafile’

Several items can be plotted on the same graph by separating them by
commas:

plot ’datafile’, sin(x), cos(x)
It is possible to define one’s own variables and functions, and then plot them

a =2

b=1

c=1.5

f(x) = a*x(x*%2) + bxx + c
plot f(x)

To unset a variable or function once it has been set, the following syntax
should be used:

Labels can be applied to the two axes of the plot, and a title put at the
top:

set xlabel ’This is the X axis’
set ylabel ’This is the Y axis’
set title ’A Plot of sin(x)’
plot sin(x)

All such text labels are displayed using IATEX, and so any IATEXcommands
can be used, for example to put equations on axes:

set xlabel ’$\frac{x"2}{c"2}$’

As a caveat, however, this does mean that care needs to be taken to escape
any of WTEX’s reserved characters —ie: \ & % # {} $_ " or ~.
Having set labels and titles, they may be removed thus:

set xlabel ’’
set ylabel ’°’
set title ’°

These are two other ways of removing the title from a plot:

set notitle
unset title

The unset command may be followed by essentially any word that can
follow the set command, such as xlabel or title, to return that setting
to its default configuration. The reset command restores all configurable
parameters to their default states.

8 CHAPTER 2. FIRST STEPS WITH PYXPLOT

2.3 Plotting Datafiles

In the simple example of the previous section, we plotted the first column of
a datafile against the second. It is also possible to plot any arbitrary column
of a datafile against any other; the syntax for doing this is:

plot ’datafile’ using 3:5

This example would plot the fifth column of the file datafile against the
third. As mentioned above, columns in datafiles can be separated using
whitespace and/or commas, which means that PyXPlot is compatible both
with the format used by gnuplot, and also with comma-separated-value
(CSV) files which many spreadsheets produce. Algebraic expressions may
also be used in place of column numbers, for example:

plot ’datafile’ using (3+$1+$2):(2+$3)

In algebraic expressions, column numbers should be prefixed by dollar signs,
to distinguish them from numerical constants. The example above would
plot the sum of the values in the first two columns of the datafile, plus three,
on the horizontal axis, against two plus the value in the third column on the
vertical axis. A more advanced example might be:

plot ’datafile’ using 3.0:$($2)

This would place all of the datapoints on the line x = 3, drawing their
vertical positions from the value of some column 7 in the datafile, where the
value of n is itself read from the second column of the datafile.

Later, in section 3.3, I shall discuss how to plot rows of datafiles against
one another, in horizontally arranged datafiles.

It is also possible to plot data from only a range of lines within a datafile.
When PyXPlot reads a datafile, it looks for any blank lines in the file. It
divides the datafile up into “data blocks”, each being separated by single
blank lines. The first datablock is numbered 0, the next 1, and so on.

When two or more blank lines are found together, the datafile is divided
up into “index blocks”. Each index block may be made up of a series of data
blocks. To clarify this, a labelled example datafile is shown in figure 2.1.

By default, when a datafile is plotted, all data blocks in all index blocks
are plotted. To plot only the data from one index block, the following syntax
may be used:

plot ’datafile’ index 1

To achieve the default behaviour of plotting all index blocks, the index
modifier should be followed by a negative number.

2.3. PLOTTING DATAFILES 9

0.0 0.0 Start of index 0, data block 0.
1.0 1.0
2.0 2.0
3.0 3.0
A single blank line marks the start of a new data block.
0.0 5.0 Start of index 0, data block 1.
1.0 4.0
0 2.0
A double blank line marks the start of a new index.
0.0 1.0 Start of index 1, data block 0.
1.0 1.0
A single blank line marks the start of a new data block.
0.0 5.0 Start of index 1, data block 1.

<etc>

Figure 2.1: An Example PyXPlot Datafile — the datafile is shown in the two
left-hand columns, and commands are shown to the right.

It is also possible to specify which lines and/or data blocks to plot from
within each index. For this purpose the every modifier is used, which takes
six values, separated by colons:

plot ’datafile’ every a:b:c:d:e:f

The values have the following meanings:

a Plot data only from every ath line in datafile.

b Plot only data from every bth block within each index block.
c Plot only from line ¢ onwards within each block.

d Plot only data from block d onwards within each index block.
e Plot only up to the eth line within each block.

f Plot only up to the fth block within each index block.

Any or all of these values can be omitted, and so the following would both
be valid statements:

plot ’datafile’ index 1 every 2:3
plot ’datafile’ index 1 every :::3

The first would plot only every other data point from every third data block;
the second from the third line onwards within each data block.

A final modifier for selecting which parts of a datafile are plotted is
select, which plots only those data points which satisfy some given crite-
rion. This is an extension of gnuplot’s original syntax, and is described in
section 3.3.

10 CHAPTER 2. FIRST STEPS WITH PYXPLOT

2.4 Directing Where Output Goes

By default, when PyXPlot is used interactively, all plots are displayed on
the screen. It is also possible to produce postscript output, to be read into
other programs or embedded into ITEX documents, as well as a variety of
other graphic formats. The set terminal command is used to specify the
output format that is required, and the set output command the file to
which output should be directed. For example,

set terminal postscript
set output ’myplot.eps’
plot sin(x)

would produce a postscript plot of sin(x) to the file myplot.eps.

The set terminal command can also be used to configure further as-
pects of the output file format. For example, the following would produce
black-and-white and colour output respectively:

set terminal monochrome
set terminal colour

The former is useful for preparing plots for black-and-white publications,
the latter for preparing plots for colourful presentations.

Both encapsulated and non-encapsulated postscript can be produced.
Following gnuplot’s slightly bizarre syntax, the word enhanced is used to
produce encapsulated postscript, and noenhanced to produce normal postscript.
The former is recommended for producing figures to embed into documents,
the latter for plots which are to be printed without further processing:

set terminal noenhanced
set terminal enhanced

It is also possible to produce plots in the gif, png and jpeg graphic
formats, as follows:

set terminal gif
set terminal png
set terminal jpg

More than one of the above keywords can be combined on a single line,
for example:

set terminal postscript noenhanced colour
set terminal gif monochrome

2.5. DATA STYLES 11

To return to the default state of displaying plots on screen, the x11
terminal should be selected:

set terminal x11

For more details of the set terminal command, including how to pro-
duce transparent gifs and pngs, see section 3.2.

We finally note that, after changing terminals, the replot command is

especially useful; it repeats the last plot command.. If any plot items are
placed after it, they are added to the last plot.

2.5 Data Styles

By default, data from files is plotted with points, and functions are plotted
with lines. However, either kinds of data can be plotted in a variety of ways.
To plot a function with points, for example, the following syntax is used?:

plot sin(x) with points

The number of points displayed (i.e. the number of samples of the function)
can be set as follows:

set samples 100

Likewise, datafiles can be plotted with lines:
plot ’datafile’ with lines

A variety of other styles are available. 1inespoints combines both the
points and lines styles, drawing lines through points. Errorbars can also
be drawn, as follows:
plot ’datafile’ with yerrorbars
In this case, three columns of data need to be specified: the z- and y-
coordinates of each datapoint, plus the size of the vertical errorbar on that
datapoint. By default, the first three columns of the datafile are used, but

once again (see section 2.3), the using modifier can be used:

plot ’datafile’ using 2:3:7 with yerrorbars

ZNote that when a plot command contains both using/every modifiers, and the with
modifier, the latter must come last.

12 CHAPTER 2. FIRST STEPS WITH PYXPLOT

More details of the errorbars plot style can be found in section 3.3. Other
plots styles supported by PyXPlot are listed in section 2.9, and their details
can be found in many gnuplot tutorials. Bar charts will be discussed further
in section 3.6.

The modifiers “pointtype” and “linetype”, which can be abbreviated
to “pt” and “1t” respectively, can also be placed after the with modifier.
Each should be followed by an integer. The former specifies what shape of
points should be used to plot the dataset, and the latter, whether a line
should be continuous, dotted, dash-dotted, etc. Different integers corre-
spond to different styles.

2.6 Setting Axis Ranges

In section 2.2, the set xlabel configuration command was previously in-
troduced for placing text labels on axes. In this section, the configuration
of axes is extended to setting their ranges.

By default, PyXPlot automatically scales axes to some sensible range
which contains all of the plotted data. However, it is also possible for the
user to override this and set his own range. This can be done directly from
the plot command, for example:

plot [-1:1]1[-2:2] sin(x)

The ranges are specified immediately after the plot statement, with the
syntax [minimum:maximum].? The first specified range applies to the z-axis,
and the second to the y-axis.? Any of the values supplied can be omitted,
for example:

plot [:1[-2:2] sin(x)

would only set a range on the y-axis.
Alternatively, ranges can be set before the plot statement, using the
set xrange statement, for example:

set xrange [-2:2]
set y2range [a:Db]

Having done so, a range may subsequently be turned off, and an axis re-
turned to its default autoscaling behaviour, using the set autoscale com-
mand, which takes a list of axes to which it is to apply. If no list is supplied,
then the command is applied to all axes.

3An alternative valid syntax is to replace the colon with the word ‘o’: [minimum to
maximum].

4As will be discussed in section 3.3.1, if further ranges are specified, they apply to the
x2-axis, then the y2-axis, and so forth.

2.7. FUNCTION FITTING 13

set autoscale x y
set autoscale

Axes can be set to have logarithmic scales using the set logscale com-
mand, which also takes a list of axes to which it should apply. Its converse
is set nologscale:

set logscale
set nologscale y x x2

Further discussion of the configuration of axes can be found in sec-
tion 3.3.1.

2.7 Function Fitting

It is possible to fit functional forms to data points in datafiles using the fit
command. A simple example might be:

f(x) = a*xx+b
fit £(x) ’datafile’ index 1 using 2:3 via a,b

The coefficients to be varied are listed after the keyword “via”; the
keywords index, every and using have the same meanings as in the plot
command.’

This is useful for producing best-fit lines®, and also has applications for
estimating the gradients of datasets. The syntax is essentially identical to
that used by gnuplot, though a few points are worth noting;:

e When fitting a function of n variables, at least n+1 columns (or rows —
see section 3.3) must be specified after the using modifier. By default,
the first n + 1 columns are used. These correspond to the values of
each of the n inputs to the function, plus finally the value which the
output from the function is aiming to match.

e If an additional column is specified, then this is taken to contain the
standard error in the value that the output from the function is aiming
to match, and can be used to weight the datapoints which are input
into the fit command.

e By default, the starting values for each of the fitting parameters is
1.0. However, if the variables to be used in the fitting process are
already set before the fit command is called, these initial values are
used instead. For example, the following would use the initial values

{a = 100,b = 50}:

®The select keyword, to be introduced in section 3.3 can also be used.
6 Another way of producing best-fit lines is a to use a cubic spline; more details in given
in section 3.8

14

CHAPTER 2. FIRST STEPS WITH PYXPLOT

f(x) = axx+b

a = 100

b = 50

fit £(x) ’datafile’ index 1 using 2:3 via a,b

As with all numerical fitting procedures, the fit command comes with
caveats. It uses a generic fitting algorithm, and may not work well with
poorly behaved or ill-constrained problems. It works best when all of
the values it is attempting to fit are of order unity. For example, in a
problem where a was of order 10'°, the following might fail:

f(x) = axx
fit f(x) ’datafile’ via a

However, better results might be achieved if a were artificially made
of order unity, as in the following script:

f(x) = lelO*ax*xx
fit f(x) ’datafile’ via a

A series of ranges may be specified after the fit command, using the
same syntax as in the plot command, as described in section 2.6. If
ranges are specified then only datapoints falling within these ranges are
used in the fitting process; the ranges refer to each of the n variables
of the fitted function in order.

For those interested in the mathematical details, the workings of the
fit command is discussed in more detail in chapter 6.

At the end of the fitting process, the best-fitting values of each parameter

are output to the terminal, along with an estimate of the uncertainty in
each. Additionally, the Hessian, covariance and correlation matrices are
output in both human-readable and machine-readable formats, allowing a
more complete assessment of the probability distribution of the parameters.

2.8 Interactive Help

In addition to this Users’ Guide, PyXPlot also has a help command, which
provides a hierarchical source of information. Typing ‘help’ alone gives a
brief introduction to the help system, as well as a list of topics on which
help is available. To display help on any given topic, type ‘help’ followed by
the name of the topic. For example:

help commands

2.9. DIFFERENCES BETWEEN PYXPLOT AND GNUPLOT 15

provides information on PyXPlot’s commands. Some topics have subtopics,
which are listed at the end of each page. To view them, add further words
to the end of your help request — an example might be:

help commands help

which would display help on the help command itself.

2.9 Differences Between PyXPlot and Gnuplot

The commands supported by PyXPlot are only a subset of those available
in gnuplot, although most of its functionality is present. Features which are
supported by this version include:

e Allocation of user-defined variables and functions.
e The print, help, exit and quit commands.
e The reset and clear commands.

e The ! command, to execute the remainder of the line as a shell com-
mand, e.g. !1s.

e The cd and pwd commands, to change and display the current working
directory.

e The use of * back-quotes to substitute the output of a shell command.”
e Set plot titles, axis labels, axis ranges, pointsize, linestyles, etc.
e Fitting of functions to data via the fit command.

e Basic 2d plotting and replotting of functions and datafiles, with the
following styles: lines, points, linespoints, dots, boxes, steps,
fsteps, histeps, impulses, csplines, acsplines and errorbars of
all flavours (see section 3.3 for details of changes to errorbars).

e Automatic and manual selection of linestyles, linetypes, linewidths,
pointtypes and pointsizes.

e Use of dual axes. Note: Operation here differs slightly from original
gnuplot; dual axes are displayed whenever they are defined, there is no
need to set xtics nomirror. See the details in the following section.

e Placing arrows and textual labels on plots.

It should be noted that back-quotes can only be used outside quotes. For example,
set xlabel ’‘ls‘’ will not work. The best way to do this would be: set xlabel ‘echo
non ; ls ; echo norne .

16 CHAPTER 2. FIRST STEPS WITH PYXPLOT

e Putting grids on plots (colour can be set, but not linestyle).
e Setting plot aspect ratios with set size ratio or set size square.

e Multiplot (which is very significantly improved over gnuplot; see sec-
tion 3.5)

Gnuplot features which PyXPlot does not presently support include:
e Parametric function plotting.

e Three-dimensional plotting (i.e. the splot command).

e Setting major/minor tics (but PyXPlot always gets this right without
being told anyway ©).8

8 An effect similar to that of gnuplot’s set notics command can be obtained with the
magic nolabelstics axis label, described in section 3.3.1. The implementation of the set
tics command is a high priority in version 0.6.x.

Chapter 3

Extensions of Gnuplot’s
Interface

A large number of new functions are available in PyXPlot which were not
originally present in gnuplot. This chapter describes these extensions. From
here onwards I shall presume that the user is familiar with the basic opera-
tion of gnuplot, and shall concentrate on the differences between PyXPlot’s
interface and that of gnuplot. In addition to having read the previous chap-
ter, novice users may also find it of use to consult one of the many gnuplot
tutorials which are to be found on the web before proceeding.

3.1 The Commandline Environment

PyXPlot uses the Gnu Readline commandline environment, which means
that the up and down arrow keys can be used to repeat previously executed
commands. Each user’s command history is stored in his homespace in a
history file called ‘. pyxplot_history’, allowing PyXPlot to remember com-
mand histories between sessions. Additionally, a save command is provided,
allowing the user to save his command history from the present session to a
text file; this has the following syntax:

save ’output_filename’

From the shell commandline, the PyXPlot accepts the following switches
which modify its behaviour:

-h --help Display a short help message listing the available
commandline switches.

-v --version Display the current version number of PyXPlot.

-q -—quiet Turn off the display of the welcome message on
startup.

17

18 CHAPTER 3. EXTENSIONS OF GNUPLOT’S INTERFACE

-V --verbose Display the welcome message on startup, as hap-
pens by default.
-c —--colour Use colour highlighting! to display output in green,

warning messages in amber, and error messages
in red.? These colours can be changed in the
terminal section of the configuration file; see sec-
tion 4.1 for more details.

-m --monochrome Do not use colour highlighting, as happens by de-
fault.

3.2 Formatting and Terminals

In this section I shall outline the new and modified commands for controlling
the graphic output format of PyXPlot.

The widths of plots may be set be means of two commands — set size
and set width. Both are equivalent, and should be followed by the desired
width measured in centimetres, for example:

set width 20

The set size command can also be used to set the aspect ratio of plots
by following it with the keyword ratio. The number which follows should
be the desired ratio of height to width. The following, for example would
produce plots three times as high as they are wide:

set size ratio 3.0

The command set size noratio returns to PyXPlot’s default aspect
ratio of the golden ratio, i.e. ((1++/5)/2) _1, which matches that of a sheet
of A4 paper3. The special command set size square sets the aspect ratio
to unity.

In section 2.4 1 described how the set terminal command can be used
to produce plots in various graphic formats. In addition, I here describe
how the way in which plots are displayed on the screen can be changed.
The default terminal, X11, is used to send output to screen.

By default, each time a new plot is generated, if the previous plot is still
open on the display, the X11 terminal will replace it with the new one, thus
keeping only one plot window open at a time. This has the advantage that
the desktop does not become flooded with plot windows.

!This will only function on terminals which support colour output.

2The author apologies to those members of the population who are red/green colour-
blind, but draws their attention to the following sentence.

30f less practical significance, it has been in use since the time of the Pythagoreans,
and is seen repeatedly in the architecture of the Parthenon.

3.2. FORMATTING AND TERMINALS 19

If this behaviour is not desired, old plots can be kept visible when plotting
further graphs by using the the X11 multiwindow terminal:

set terminal X11_singlewindow

plot sin(x)

plot cos(x) <-- first plot window disappears

c.f.:

set terminal X11_multiwindow

plot sin(x)

plot cos(x) <-- first plot window remains

As there are many changes to the options accepted by the set terminal
command in comparison to those understood by gnuplot, the settings al-
lowed in PyXPlot are listed below:

x11_singlewindow Displays plots on the screen (in X11 windows, using

x11 multiwindow

postscript

eps
colour

color
monochrome

enhanced

noenhanced

ghostview). Each time a new plot is generated, it re-
places the old one, preventing the desktop from be-
coming flooded with old plots.* [default when run-
ning interactively; see below]|

As above, but each new plot appears in a new window,
and the old plots remain visible. As many plots as may
be desired can be left on the desktop simultaneously.
Sends output to a postscript file. The filename for this
file should be set using set output. [default when
running non-interactively; see below]
Equivalent to ‘postscript enhanced’.

Allows datasets to be plotted in colour. Automatically
they will be displayed in a series of different colours, or
alternatively colours may be specified using the with
colour plot modifier (see below). [default]
Equivalent to the above; provided for users of nation-
alities which can’t spell. ®

Opposite to the above; all datasets will be plotted in
black.

Modifier for the postscript terminal; sets it to produce
encapsulated postscript (eps) files. These can be em-
bedded in documents, but do not print reliably.
Modifier for the postscript terminal; opposite to the
above; sets it to produce printable postscript files.

4The author is aware of a bug, that this terminal can occasionally go blank when a
new plot is generated. This is a known bug in ghostview, and can be worked around by
selecting File — Reload within the ghostview window.

20 CHAPTER 3. EXTENSIONS OF GNUPLOT’S INTERFACE

portrait Sets plots to be displayed in upright (normal) orien-
tation. [default]
landscape Opposite of the above; produces side-ways plots. Not

very useful when displayed on the screen, but you fit
more on a sheet of paper that way around.

gif Sends output to a gif image file; as above, the filename
should be set using set output.

png As above, but produces a png image.

jpg As above, but produces a jpeg image.

invert Modifier for the gif, png and jpg terminals; produces
output with inverted colours.’

noinvert Modifier for the gif, png and jpg terminals; opposite
to the above. [default]

transparent Modifier for the gif and png terminals; produces out-
put with a transparent background.

solid Modeifier for the gif and png terminals; opposite to the

above. [default]

The default terminal is normally x11_singlewindow, matching approx-
imately the behaviour of gnuplot. However, there is an exception to this.
When PyXPlot is used non-interactively —i.e. one or more command scripts
is specified on the commandline, and PyXPlot exits as soon as it finishes
executing them — the x11_singlewindow is not a very sensible terminal to
use. Any plot window would close as soon as PyXPlot exited. The default
terminal in this case changes to postscript.

One exception to this is when the special ‘-~ filename is specified in a list
of command scripts on the commandline, to produce an interactive terminal
between running a series of scripts. In this case, PyXPlot detects that
the session will be interactive, and defaults to the usual x11_singlewindow
terminal.

An additional exception is on machines where the DISPLAY environment
variable is not set. In this case, PyXPlot detects that it has access to no X-
terminal on which to display plots, and defaults to the postscript terminal.

The gif, png and jpg terminals result in some loss of quality, since
the plot has to be sampled into a bitmapped graphic format. By default,
this sampling is performed at 300 dpi, though it may be changed using the
command set dpi <value>. Alternatively, it may be changed using the
DPI option in the settings section of a configuration file (see section 4.1).

5This terminal setting is useful for producing plots to embed in talk slideshows, which
often contain bright text on a dark background. It only works when producing bitmapped
output, though a similar effect can be achieved in postscript using the set textcolour
and set axescolour commands (see section 3.4.3).

3.3. PLOTTING 21

3.3 Plotting

In this section I outline some of the extensions of the plot command, to
give greater flexibility in the appearance of graphs.

3.3.1 Configuring Axes

By default, plots have only one x-axis and one y-axis. Further parallel axes
can be added and configured via statements such as:

set x3label ’foo’
plot sin(x) axes x3yl
set axis x3

In the top statement, a further x axis, called x3 is implicitly created by
giving it a label. In the next, the axes modifier is used to tell the plot
command to plot data against the z3-axis, which also implicitly created
such an axis if it doesn’t already exist. In the third, an x3-axis is explicitly
created.

Unlike gnuplot, which allowed only a maximum of two parallel axes to
be added to plots, PyXPlot allows an unlimited number of axes to be used.
Odd-numbered z-axes appear below the plot, and even numbered z-axes
above it; a similar rule applies for y-axes, to the left and to the right.

As discussed in the previous chapter, the ranges of axes can be set ei-
ther using the set xrange command, or within the plot command. The
following two statements would set an equivalent range for the x3-axis:

set x3range [-2:2]
plot [:J[:1[:1[:]1[-2:2] sin(x) axes x3yl

As usual, the first two ranges specified in the plot command apply to the
z- and y-axes. The next pair apply to the x2- and y2-axes, and so forth.

Having made axes with the above commands, they may subsequently be
removed using the unset axis command as follows:

unset axis x3
unset axis x3x5y3 y7

The top statement, for example, would remove axis x3. The command
unset axis on its own, with no axes specified, returns all axes to their
default configuration. The special case of unset axis x1 does not remove
the first z-axis — it cannot be removed — but instead returns it to its default
configuration.

It should be noted, that if the following two commands are typed in
succession, the second may not entirely negate the first:

22 CHAPTER 3. EXTENSIONS OF GNUPLOT’S INTERFACE

set x3label ’foo’
unset x3label ’foo’

The first may have implicitly created an x3-axis, which would need to be
removed with the unset axis x3 command.

A subtly different task is that of removing labels from axes, or setting
axes not to display. To achieve this, a number of special axis labels are
used. Labelling an axis “nolabels” has the effect that no title or numerical
labels are placed upon it. Labelling it “nolabelstics” is stronger still;
this removes all tick marks from it as well (similar in effect to set noxtics
in gnuplot). Finally, labelling it “invisible” makes an axis completely
invisible.

Labels may be placed on such axes, by following the magic keywords
above with a colon and the desired title, for example:

set xlabel ’nolabels:Time’

would produce an x-axis with no numeric labels, but a label of ‘Time’.

Several examples of effects which can be achieved with these commands
can be found in Example 10 (see section 5.10). In the unlikely event of
wanting to label a normal axis with one of these magic words, this may be
achieved by prefixing the magic word with a space. There is one further
magic axis label, linkaxis, which will be described in section 3.5.

The ticks of axes can be configured to point either inward, towards the
plot, as is the default, or outward towards the axis labels, or in both direc-
tions. This is achieved using the set xticdir command, for example:

set xticdir inward
set y2ticdir outward
set x2ticdir both

3.3.2 Keys and Legends

By default, plots are displayed with a legend in their top-right corners. The
textual description of each dataset is drawn by default from the command
used to plot it. Alternatively, the user may specify his own description for
each dataset by following the plot command with the title modifier, as
follows:

plot sin(x) title ’A sine wave’
plot cos(x) title ’?

In the lower case, a blank title is specified, in which case, PyXPlot
makes no entry for this dataset in the legend. This is useful if it is desired
to place some but not all datasets into the legend of a plot. Alternatively,

3.3. PLOTTING 23

the production of the legend can be completely turned off for all datasets,
by the command set nokey. The opposite effect can be achieved by the
set key command.

This latter command can also be used to dictate where on the plot the
legend should be placed, using a syntax along the lines of:

set key top right

The following recognised positioning keywords are self-explanatory: top,
bottom, left, right, xcentre and ycentre. The word outside places the
key outside the plot, on its right side. The word below places the legend
below the plot.

In addition, two positional offset coordinates may be specified after such
keywords — the first value is assumed to be an z-offset, and the second a
y-offset, in units approximately equal to the size of the plot. For example:

set key bottom left 0.0 -0.5

would display a key below the bottom left corner of the graph.

By default, entries in the key are placed in a single vertical list. They
can instead be arranged into a number of columns by means of the set
keycolumns command.. This should be followed by the integer number of
desired columns, for example:

set keycolumns 2

3.3.3 The linestyle keyword

At times, the string of style keywords following the with modifier in plot
commands can grow rather unwieldily long. For clarity, frequently used plot
styles can be stored as “linestyles”; this is true of styles involving points as
well as lines. The syntax for setting a linestyle is:

set linestyle 2 points pointtype 3

where the “2” is the identification number of the linestyle. In a subsequent
plot statement, this linestyle can be recalled as follows:

plot sin(x) with linestyle 2

3.3.4 Colour Plotting

In the with clause of the plot command, the modifier colour, (abbrev. ‘c’),
allows the colour of each dataset to be manually selected. It should be
followed either by an integer, to set a colour from the present palette, or
by a colour name. A list of valid colour names is given in section 4.6. For
example:

24 CHAPTER 3. EXTENSIONS OF GNUPLOT’S INTERFACE

plot sin(x) with ¢ 5
plot sin(x) with colour blue

The colour modifier can also be used when defining linestyles.

PyXPlot has a palette of colours which it assigns sequentially to datasets
when colours are not manually assigned. This is also the palette to which
integers passed to set colour refer — the ‘5’ above, for example. It may be
set using the set palette command, which differs in syntax from gnuplot.
It should be followed by a comma-separated list of colours, for example:

set palette red,green,blue

Another way of setting the palette, in a configuration file, is described
in section 4.2; a list of valid colour names is given in section 4.6.

3.3.5 General Extensions Beyond Gnuplot

plot linewidths — For an unknown reason, gnuplot doesn’t allow set
linewidth 2 as valid syntax. This setting is al-
lowed to be made in PyXPlot. Furthermore, set
pointlinewidth 2 will set the linewidth to be used
when drawing data points. A similar effect can be

achieved via:
plot sin(x) with points pointlinewidth 2

In both cases, the abbreviation plw is valid.
dots plot style — When using the dots style, for example:

plot sin(x) with dots

the size of the plotted dots can be varied with the
pointsize modifier, unlike in gnuplot, where the dots
were of a fixed size. For example, to display big dots,

use:

plot sin(x) with dots pointsize 10

3.3. PLOTTING

select keyword

arrows plot style

lower and upper
limit datapoints

25

As well as the index, using and every keywords
which gnuplot used to allow users to plot subsets of
data from datafiles, PyXPlot also has a further modi-
fier, select. This can be used to plot only those data-
points in a datafile which specify some given criterion.
For example:

plot ’datafile’ select ($8>5)
plot sin(x) select (($1>0)and($2>0))
plot sin(x) select ($1>0) select ($2>0)

In the third example, two select criteria are given;
it is entirely equivalent to the statement above it.
Note that whitespace is not permitted in select cri-
teria. The select modifier has many applications,
including plotting two-dimensional slices from three-
dimensional datasets, and selecting certain subsets of
datapoints from a datafile for plotting.

A new plotting style, arrows, is available, which takes
four columns of data, =1, y1, T2, y2, and for each
data point draws an arrow from the point (z1,y;) to
(z2,y2). Three different kinds of arrows can be drawn:
ones with normal arrow heads, ones with no arrow
heads, which just appear as lines, and ones with ar-
row heads on both ends. The syntax is:

plot ’datafile’ with arrows_head
plot ’datafile’ with arrows_nohead
plot ’datafile’ with arrows_twohead

The syntax ‘with arrows’ is a shorthand for ‘with
arrows_head’.

PyXPlot can plot datapoints using the standard
upper- and lower-limit symbols. No special syntax
is required for this; these symbols are pointtypes® 12
and 13 respectively, obtained as follows:

plot ’upperlimits’ with points pointtype 12
plot ’lowerlimits’ with points pointtype 13

®The pointtype modifier was introduced in section 2.5.

26 CHAPTER 3. EXTENSIONS OF GNUPLOT’S INTERFACE

plotting functions
with errorbars
and other plot
styles

horizontally
arranged datafiles

In gnuplot, when a function (as opposed to a datafile)
is plotted, only those plot styles which accept two
columns of data can be used — for example, lines
or points. It is not possible to plot a function with
errorbars, for example. In PyXPlot, by contrast, this
is possible using the following syntax:

plot f(x):g(x) with yerrorbars

Two functions are supplied, separated by a colon; plot-
ting proceeds as if a datafile had been supplied, con-
taining values of = in column 1, values of f(z) in col-
umn 2, and values of g(x) in column 3. This may be
useful, for example, if g(x) measures the intrinsic un-
certainty in f(z). The using modifier may also be
used:

plot f(x):g(x) using 2:3

Here, g(z) would be plotted on the y-axis, against f(x)
on the x-axis. It should be noted, however, that the
range of values of z used would still correspond to the
range of the plot’s horizontal axis. If the above were to
be attempted with an autoscaling horizontal axis, the
result might be rather unexpected — PyXPlot would
find itself autoscaling the x-axis range to the spread
of values of f(z), but find that this itself changed de-
pending upon the range of the z-axis.

The command syntax for plotting columns of datafiles
against one another was previously described in sec-
tion 2.3. In an extension of gnuplot’s interface, it is
also possible to plot rows of data against one another
in horizontally-arranged datafiles. For this, the key-
word ‘rows’ is placed after the using modifier:

plot ’datafile’ index 1 using rows 1:2
The syntax ‘using columns’ is also accepted, to spec-
ify the default behaviour of plotting columns against

one another:

plot ’datafile’ index 1 using columns 1:2

3.3. PLOTTING

errorbars

27

When plotting horizontally-arranged datafiles, the
meanings of the index and every modifiers (see sec-
tion 2.3) are altered slightly. The former continues to
refer to vertical blocks of data separated by two blank
lines. Blocks, as referenced in the every modifier, con-
tinue to be vertical blocks of datapoints, separated by
single blank lines. The row numbers passed to the
using modifier are counted from the top of the cur-
rent block.

However, the line-numbers specified in the every mod-
ifier — i.e. variables a, ¢ and e in the system above —
now refer to horizontal columns, rather than lines. For
example:

plot ’datafile’ using rows 1:2 every 2::3::9

would plot the data in row 2 against that in row 1,
using only the values in every other column, between
columns 3 and 9.

In gnuplot, when one used errorbars, one could either
specify the size of the errorbar, or the min/max range
of the errorbar. Both of these usages shared a common
syntax, and gnuplot’s behaviour depended upon the
number of data columns provided:

plot ’datafile’ with yerrorbars

Given a datafile with three columns, this would take
the third column to indicate the size of the y-errorbar,
and given a four-column datafile, it would take the
third and fourth columns to indicate the min/max
range to be marked out by the errorbar.

To avoid confusion, a different syntax is adopted in
PyXPlot. The syntax:

plot ’datafile’ with yerrorbars
now always assumes the third column of the datafile to
indicate the size of the errorbar, regardless of whether

a fourth is present. The syntax:

plot ’datafile’ with yerrorrange

28 CHAPTER 3. EXTENSIONS OF GNUPLOT’S INTERFACE

always assumes the third and fourth columns to indi-
cate the min/max range of the errorbar.

For clarity, a complete list of errorbar styles is given

below:

yerrorbars Vertical errorbars; size drawn
from the third data-column.

xerrorbars Horizontal errorbars; size drawn
from the third data-column.

xyerrorbars Horizontal and vertical error-
bars; sizes drawn from the third
and fourth data-columns respec-
tively.

errorbars Shorthand for yerrorbars.

yerrorrange Vertical errorbars; minimum
drawn from the third data-
column, maximum from the
fourth.

xerrorrange Horizontal errorbars; minimum

drawn from the third data-
column, maximum from the
fourth.

xyerrorrange Horizontal and vertical error-
bars; horizontal minimum drawn
from the third data-column, and
maximum from the fourth; ver-
tical minimum drawn from the
fifth, and maximum from the

sixth.
errorrange Shorthand for yerrorrange.
datafile wildcards — PyXPlot allows the wildcards ‘*’ and ‘?” to be used

both in the filenames of datafiles following the plot
command, and also when specifying command files on
the commandline and with the load command. For
example, the following would plot all datafiles in the
current directory with a ‘.dat’ suffix, using the same
plot options:

plot ’*.dat’ with linewidth 2

In the legend, full filenames are displayed, allowing the
datafiles to be distinguished.

3.4. SUNDRY ITEMS (ARROWS, TEXT LABELS, AND MORE) 29

As in gnuplot, a blank filename passed to the plot com-
mand causes the last used datafile to be used again.
backing up over- — By default, when plotting to a file, if the output file-
written files name matches that of an existing file, that file is over-
written. This behaviour may be changed with the set
backup command, which has syntax:

set backup
set nobackup

When this switch is turned on, pre-existing files will
be renamed with a tilda at the end of their filenames,
rather than being overwritten.

3.4 Sundry Items (Arrows, Text Labels, and More)

This section describes how to put arrows and text labels on plots; the syntax
is similar to that used by gnuplot, but slightly changed. It is now possible,
for example, to set the linestyles and colours with which arrows should be
drawn. Also covered is how to put grids onto plots, and how to change the
size and colour of textual labels on plots.

3.4.1 Arrows

Arrows may be placed on plots using the set arrow command, which has
similar syntax to that used by gnuplot. A simple example would be:

set arrow 1 from 0,0 to 1,1

The number ‘1’ immediately following ‘set arrow’ specifies an identification
number for the arrow, allowing it to be subsequently removed via:

unset arrow 1
or equivalently, via:
set noarrow 1

In PyXPlot, this syntax is extended; the set arrow command can be
followed by the keyword ‘with’, to specify the style of the arrow. For exam-
ple, the specifiers ‘nohead’, ‘head’ and ‘twohead’, after the keyword ‘with’,
can be used to make arrows with no arrow heads, normal arrow heads, or
two arrow heads. ‘twoway’ is an alias for ‘twohead’. For example:

set arrow 1 from 0,0 to 1,1 with nohead

30 CHAPTER 3. EXTENSIONS OF GNUPLOT’S INTERFACE

In addition, linestyles and colours can be specified after the keyword
‘with’:

set arrow 1 from 0,0 to 1,1 with nohead \
linetype 1 c blue

As in gnuplot, the coordinates for the start and end points of the arrow
can be specified in a range of coordinate systems. ‘first’, the default,
measures the graph using the z- and y-axes. ‘second’ uses the z2- and
y2-axes. ‘screen’ and ‘graph’ both measure in centimetres from the origin
of the graph. In the following example, we use these specifiers, and specify
coordinates using variables rather than doing so explicitly:

x0 = 0.0
y0O = 0.0
x1 =1.0
yl1 =1.0

set arrow 1 from first =x0, first =x1 \
to screen x1, screen x1 \
with nohead

In addition to these four options, which are those available in gnuplot,
the syntax ‘axisn’ may also be used, to use the nth z- or y-axis — for
example, ‘axis3’. This allows arrows to reference any arbitrary axis on
plots which make use of large numbers of parallel axes (see section 3.3.1).

3.4.2 Text Labels

Text labels may be placed on plots using the set label command. As with
all textual labels in PyXPlot, these are rendered in KTEX:

set label 1 ’Hello World’ at 0,0

As in the previous section, the number ‘1’ is a reference number, which
allows the label to be removed by either of the following two commands:

set nolabel 1
unset label 1

The positional coordinates for the text label, placed after the keyword ‘at’,
can be specified in any of the coordinate systems described for arrows above.

The fontsize of these text labels can globally be set using the set fontsize
x command. This applies not only to the set label command, but also to
plot titles, axis labels, keys, etc. The value given should be an integer in
the range —4 < x < 5. The default is zero, which corresponds to ITEX’s
normalsize; -4 corresponds to tiny and 5 to Huge.

3.4. SUNDRY ITEMS (ARROWS, TEXT LABELS, AND MORE) 31

The set textcolour command can be used to globally set the colour
of all text output, and applies to all of the text that the set fontsize
command does. It is especially useful when producing plots to be embedded
in presentation slideshows, where bright text on a dark background may be
desired. It should be followed either by an integer, to set a colour from the
present palette, or by a colour name. A list of the recognised colour names
can be found in section 4.6. For example:

set textcolour 2
set textcolour blue

By default, each label’s specified position corresponds to its bottom left
corner. This alignment may be changed with the set texthalign and set
textvalign commands. The former takes the options left, centre or
right, and the latter takes the options bottom, centre or top, for example:

set texthalign right
set textvalign top

3.4.3 Gridlines

Gridlines may be placed on a plot and subsequently removed via the state-
ments:

set grid
set nogrid

respectively. The following commands are also valid:

unset grid
unset nogrid

By default, gridlines are drawn from the major and minor ticks of the x-
and y-axes. However, the axes which should be used may be specified after
the set grid command:

set grid x2y2
set grid x x2y2

The top example would connect the gridlines to the ticks of the x2- and
y2- axes, whilst the lower would draw gridlines from both the z- and the
r2-axes.

If one of the specified axes does not exist, then no gridlines will be drawn
in that direction. Gridlines can subsequently be removed selectively from
some axes via:

32 CHAPTER 3. EXTENSIONS OF GNUPLOT’S INTERFACE

unset grid x2x3

The colours of gridlines can be controlled via the set gridmajcolour
and set gridmincolour commands, which control the gridlines emanating
from major and minor axis ticks respectively. An example would be:

set gridmincolour blue

Any of the colour names listed in section 4.6 can be used.
A related command is set axescolour, which has a syntax similar to
that above, and sets the colour of the graph’s axes.

3.5 Multi-plotting

Gnuplot has a plotting mode called “multiplot” which allows many graphs
to be plotted together, and display side-by-side. The basic syntax of this
mode is reproduced in PyXPlot, but is hugely extended.

The mode is entered by the command “set multiplot”. This can be
compared to taking a blank sheet of paper on which to place plots. Plots
are then placed on that sheet of paper, as usual, with the plot command.
The position of each plot is set using the set origin command, which
takes a comma-separated x, y coordinate pair, measured in centimetres. The
following, for example, would plot a graph of sin(x) to the left of a plot of
cos(z):

set multiplot
plot sin(x)

set origin 10,0
plot cos(x)

The multiplot page may subsequently be cleared with the clear com-
mand, and multiplot mode may be left using the “set nomultiplot” com-
mand.

At this point we move beyond the syntax available in gnuplot. Each time
a plot is placed on the multiplot page in PyXPlot, it is allocated a reference
number, which is output to the terminal. Reference numbers count up from
zero each time the multiplot page is cleared. A number of commands exist
for modifying plots after they have been placed on the page, selecting them
by making reference to their reference numbers.

Plots may be removed from the page with the delete command, and
restored with the undelete command:

delete <number>
undelete <number>

3.5. MULTI-PLOTTING 33

The reference numbers of deleted plots are not reused until the page is
cleared, as they may always be restored with the undelete command; plots
which have been deleted simply do not appear.

Plots may also be moved with the move command. For example, the
following would move plot 23 to position (8,8) measured in centimetres:

move 23 8,8

The axes of plots can be linked together, in such a way that they always
share a common scale. This can be useful when placing plots next to one
another, firstly, of course, if it is of intrinsic interest to ensure that they
are on a common scale, but also because the two plots then do not both
need their own axis labels, and space can be saved by one sharing the labels
from the other. In PyXPlot, an axis which borrows its scale and labels from
another is called a “linked axis”.

Such axes are declared by setting the label of the linked axis to a magic
string such as “linkaxis 0”. This magic label would set the axis to borrow
its scale from an axis from plot zero. The general syntax is “linkaxis n
m”, where n and m are two integers, separated by a comma or whitespace.
The first, n, indicates the plot from which to borrow an axis; the second,
m, indicates whether to borrow the scale of axis 1, 22, 23, etc. By default,
m = 1. The linking will fail, and a warning result, if an attempt is made to
link to an axis which doesn’t exist.

The specimen plots in section 5.12 show numerous examples of the use
of linked axes.

In multiplot mode, the replot command can be used to modify the last
plot added to the page. For example, the following would change the title
of the latest plot to “foo”, and add a plot of cos(z) to it:

set title ’foo’
replot cos(x)

Additionally, it is possible to modify any plot on the page, by first se-
lecting it with the edit command. Subsequently, the replot will act upon
the selected plot. The following example would produce two plots, and then
change the colour of the text on the first:

set multiplot

plot sin(x)

set origin 10,0

plot cos(x)

edit O # Select the first plot ...
set textcolour red

replot # ... and replot it.

34 CHAPTER 3. EXTENSIONS OF GNUPLOT’S INTERFACE

The edit command can also be used to view the settings which are
applied to any plot on the multiplot page — after executing “edit 0”, the
show command will show the settings applied to plot zero.

When a new plot is added to the page, replot always switches to act
upon this most recent plot.

In addition to placing plots on the multiplot page, text labels may also
be inserted independently of any plots, using the text command. This has
the following syntax:

text ’This is some text’ x,y

In this case, the string “This is some text” would be rendered at position
(z,y) on the multiplot. The commands set textcolour, set texthalign
and set textvalign, which have already been described in the context in
the set label command, can also be used to set the colour and alignment
of text produced with the text command.. A useful application of this is
to produce centred headings at the top of multiplots.

As with plots, each text item has a unique identification number, and
can be moved around, deleted or undeleted:

delete_text <number>
undelete_text <number>
move_text <number> x,y

It should be noted that the text command can also be used outside of
the multiplot environment, to render a single piece of short text instead of
a graph. This has limited applications, but one is illustrated in section 5.4.

Arrows may also be placed on multiplot pages, independently of any
plots, using the arrow command, which has syntax:

arrow from x,y to x,y

As above, arrows receive unique identification numbers, and can be
deleted and undeleted, though they cannot be moved:

delete_arrow <number>
undelete_arrow <number>

The arrow command may be followed by the ‘with’ keyword to specify
to style of the arrow. The style keywords which are accepted are identical to
those accepted by the set arrow command (see section 3.4.1). For example:

arrow from x1,yl to x2,y2 \
with twohead colour red

3.6. BARCHARTS AND HISTOGRAMS 35

The refresh command is rather similar to the replot command, but
produces an exact copy of the latest display. This can be useful, for example,
after changing the terminal type, to produce a second copy of a multiplot
page in a different format. But the crucial difference between this command
and replot is that it doesn’t replot anything. Indeed, there could be only
textual items and arrows on the present multiplot page, and no graphs to
replot.

3.5.1 Speed Issues

By default, whenever an item is added to a multiplot, or an existing item
moved or replotted, the whole multiplot is replotted to show the change.
This can be a time consuming process on large and complex multiplots. For
this reason, the set nodisplay command is provided, which stops PyXPlot
from producing any output. The set display command can subsequently
be issued to return to normal behaviour.

This can be especially useful in scripts which produce large multiplots.
There is no point in producing output at each step in the construction of a
large multiplot, and so a great speed increase can be achieved by wrapping
the script with:

set nodisplay

[...prepare large multiplot...]
set display

refresh

The reader will observe that frequent use of this is made in the examples
of chapter 5.

3.6 Barcharts and Histograms

3.6.1 Basic Operation

As in gnuplot, bar charts and histograms can be produced using the boxes
plot style:

plot ’datafile’ with boxes

Horizontally, the interfaces between the bars are, by default, at the mid-
points along the z-axis between the specified datapoints (see, for example,
panel (a) of figure 5.7, and the script which produced it, in section 5.7).
Alternatively, the widths of the bars may be set using the set boxwidth
command. In this case, all of the bars will be centred upon their speci-
fied z-coordinates, and have total widths equalling that specified in the set

36 CHAPTER 3. EXTENSIONS OF GNUPLOT’S INTERFACE

boxwidth command. Consequently, there may be gaps between them, or
they may overlap, as seen in panel (c) of figure 5.7.

Having set a fixed box width, the default automatic width mode may
be restored either with the unset boxwidth command, or by setting the
boxwidth to a negative width.

As a third alternative, it is also possible to specify different widths for
each bar manually, in a column of the input datafile. For this, the wboxes
plot style should be used:

plot ’datafile’ using 1:2:3 with wboxes

This plot style expects three columns of data to be specified: the z- and
y-coordinates of each bar, and the width in the third column. Panel (b) of
figure 5.7 shows an example of this plot style in use.

By default, the bars all originate from the line ¥y = 0, as is normally
wanted for a histogram. However, should it be desired for the bars to start
from a different vertical point, that may be achieved with the set boxfrom
command, for example:

set boxfrom 5

All of the bars would then originate from the line y = 5. Panel (f) of
figure 5.6 shows the kind of effect that is achieved; for comparison, panel
(b) of the same figure shows the same bar chart with the boxes starting from
their default position at y = 0.

The bars may be filled using the with fillcolour modifier, followed by
the name of a colour:

plot ’datafile’ with boxes fillcolour blue
plot ’datafile’ with boxes fc 4

Additionally, the word ‘auto’ may be used in place of a colour name, to fill
the bar with the line colour being used to draw it. Panels (c) and (d) of
figure 5.7 demonstrate the use of filled bars.

Finally, the impulses plot style, as in gnuplot, produces bars of zero
width; see panel (e) of figure 5.6 for an example.

3.6.2 Stacked Bar Charts

If several datapoints are supplied at a common z-coordinate to the boxes
or wboxes plot styles, then the bars are stacked one above another into a
stacked barchart. Consider the following datafile:

3.7. FUNCTION SPLICING 37

The second bar at x = 2 would be placed on top of the first, spanning
the range 2 < y < 5, and having the same width as the first. If plot colours
are being automatically selected from the palette, then a different palette
colour is used to plot the upper bar.

3.6.3 Steps

As an alternative to solid boxes, a graph may also be plotted with “steps”;
see panels (a), (c¢) and (d) of figure 5.6 for examples. As is illustrated by
these panels, three flavours of steps are available (exactly as in gnuplot):

plot ’datafile’ with steps
plot ’datafile’ with fsteps
plot ’datafile’ with histeps

When using the steps plot style, the datapoints specify the right-most
edges of each step. By contrast, they specify the left-most edges of the steps
when using the fsteps plot style. The histeps plot style works rather like
the boxes plot style; the interfaces between the steps occur at the horizontal
midpoints between the datapoints.

3.7 Function Splicing

In PyXPlot, as in gnuplot, user-defined functions may be declared on the
commandline:

f(x) = x*sin(x)

As an extension to what is possible in gnuplot, it is also possible to declare
functions which are only valid over a certain range of argument space. For
example, the following function would only be valid in the range —2 < x <
2:7

f(x)[-2:2] = x*sin(x)

The following function would only be valid when all of a,b,c were in the
range —1 — 1:

f(a,b,c)[-1:11[-1:1]1[-1:1] = a+b+c

If an attempt is made to evaluate a function outside of its specified
range, then an error results. This may be useful, for example, for plotting a
function, but not continuing it outside some specified range. The following
would print the function sin(x), but only in the range —2 < z < 7:

"The syntax [-2:2] can also be written [-2 to 21.

38 CHAPTER 3. EXTENSIONS OF GNUPLOT’S INTERFACE

f(x)[-2:7] = sin(x)
plot f(x)

The output of this particular example can be seen in panel (a) of figure 5.9.
A similar effect could also have been achieved with the select keyword; see
section 3.3.

It is possible to make multiple declarations of the same function, over
different regions of argument space; if there is an overlap in the valid argu-
ment space for multiple definitions, then later declarations take precedence.
This makes it possible to use different functional forms for a function in
different parts of parameter space, and is especially useful when fitting a
function to data, if different functional forms are to be spliced together to
fit different regimes in the data.

Another application of function splicing is to work with functions which
do not have analytic forms, or which are, by definition, discontinuous, such
as top-hat functions or Heaviside functions. The following example would
define f(x) to be a Heaviside function:

f(x) =0
f(x)[0:] =1

The declaration of a function similar to a top-hat function is demonstrated
in panel (b) of figure 5.9. The following example would define f(x) to follow
the Fibonacci sequence, though it is not at all computationally efficient, and
it is inadvisable to evaluate it for = > 8:

f(x) =1
f(x)[2:] = £(x-1) + £(x-2)
plot [0:8] f(x)

3.8 Datafile Interpolation: Spline Fitting

Gnuplot allows data to be interpolated using its csplines plot style, for
example:

plot ’datafile’ with smooth csplines
plot ’datafile’ with smooth acsplines

where the upper statement fits a spline through all of the datapoints, and
the lower applies some smoothing to the data first. This syntax is supported
in PyXPlot but deprecated. A similar effect can be achieved with the new,
more powerful, spline command. This has a syntax similar to that of the
fit command, for example:

spline f() ’datafile’ index 1 using 2:3

3.9. NUMERICAL INTEGRATION AND DIFFERENTIATION 39

The function f(x) now becomes a special function, representing a spline
fit to the given datafile. It can be plotted or otherwise used in exactly the
same way as any other function. This approach is more flexible than gnu-
plot’s syntax, as the spline f(x) can subsequently be spliced together with
other functions (see the previous section), or used in any mathematical op-
eration. The following code snippet, for example, would fit splines through
two datasets, and then plot the interpolated differences between them, re-
gardless, for example, of whether the two datasets were sampled at exactly
the same = coordinates:

spline f() ’datafilel’
spline g() ’datafile2’
plot f(x)-g(x)

Smoothed splines can also be produced:
spline f() ’datafilel’ smooth 1.0

where the value 1.0 determines the degree of smoothing to apply; the higher
the value, the more smoothing is applied. The default behaviour is not to
smooth at all (equivalent to smooth 0.0); a value of 1.0 corresponds to the
default amount of smoothing applied in the acsplines plot style.

3.9 Numerical Integration and Differentiation

Special functions are available for performing numerical integration and dif-
ferentiation of expressions: int_dx() and diff_dx(). In each case, the “x”
may be replaced with any valid variable name, to integrate or differentiate
with respect to any given variable.

The function int_dx () takes three parameters — firstly the expression to
be integrated, followed by the minimum and maximum integration limits.

For example, the following would plot the integral of the function sin(z):
plot int_dt(sin(t),0,x)

The function diff_dx() takes two parameters and an optional third
— firstly the expression to be differentiated, then the point at which the
differential should be evaluated, and then an optional parameter, e. The
following example would evaluate the differential of the function cos(z) with
respect to x at x = 1.0:

print diff_dx(cos(x), 1.0)

40 CHAPTER 3. EXTENSIONS OF GNUPLOT’S INTERFACE

Differentials are evaluated by a simple differencing algorithm, and the
parameter € controls the spacing with which to perform the differencing
operation:

df ~ f(@o+¢/2) = flao — ¢/2)

dz|,_,, €

By default, e = 1076.

Advanced users may be interested to know that integration is performed
using the quad function of the integrate package of the scipy numerical
toolkit for Python — a general purpose integration routine.

3.10 Script Watching: pyxplot_watch

PyXPlot includes a simple tool for watching command script files, and exe-
cuting them whenever they are modified. This may be useful when develop-
ing a command script, if one wants to make small modifications to it, and
see the results in a semi-live fashion. This tool is invoked by calling the
pyxplot_watch command from a shell prompt. The commandline syntax of
pyxplot_watch is similar to that of PyXPlot itself, for example:

pyxplot_watch script

would set pyxplot_watch to watch the command script file script. One
difference, however, is that if multiple script files are specified on the com-
mandline, they are watched and executing independently, not sequentially,
as PyXPlot itself would do. Wildcard characters can also be used to set
pyxplot_watch to watch multiple files.

This is especially useful when combined with GhostView’s watch facility.
For example, suppose that a script foo produces postscript output foo.ps.
The following two commands could be used to give a live view of the result
of executing this script:

gv --watch foo.ps &
pyxplot_watch foo

Chapter 4

Configuring PyXPlot

4.1 Overview

As is the case in gnuplot, PyXPlot can be configured using the set command
— for example:

set output ’foo.eps’

would set it to send its plotted output to the file foo.eps. Typing ‘set’ on
its own returns a list of all recognised ‘set’ configuration parameters. The
unset command may be used to return settings to their default values; it
recognises a similar set of parameter names, and once again, typing ‘unset’
on its own gives a list of them. The show command can be used to display
the values of settings.

4.2 Configuration Files

PyXPlot can also be configured by means of a configuration file, with file-
name .pyxplotrc, which is scanned once upon startup. This file may be
placed either in the user’s current working directory, or in his home directory.
In the event of both files existing, settings in the former override those in
the latter; in the event of neither file existing, PyXPlot uses its own default
settings.

The configuration file should take the form of a series of sections, each
headed by a section heading enclosed in square brackets, and followed by
variables declared using the format:

OUTPUT=foo0.eps

The following sections are used, although they do not all need to be
present in any given file:

41

42

CHAPTER 4. CONFIGURING PYXPLOT

settings — contains parameters similar to those which can be set with
the set command. A complete list is given in section 4.4 below.

terminal — contains parameters for altering the behaviour and ap-
pearance of PyXPlot’s interactive terminal. A complete list is given
in section 4.5.

variables — contains variable definitions. Any variables defined in
this section will be predefined in the PyXPlot mathematical environ-
ment upon startup.

functions — contains function definitions.

colours — contains a variable ‘palette’, which should be set to a
comma-separated list of the sequence of colours in the palette used to
plot datasets. The first will be called colour 1 in PyXPlot, the second
colour 2, etc. A list of recognised colour names is given in section 4.6.

latex — contains a variable ‘preamble’, which is prefixed to the begin-
ning of all WTEX text items, before the \begin{document} statement.
It can be used to define custom IXTEX macros, or to include packages

using the \includepackage{} command.

4.3 An Example Configuration File

As an example, the following is a configuration file which would represent

PyXPlot’s default configuration:

[settings]
ASPECT=1.0
AUTOASPECT=0N
AXESCOLOUR=Black
BACKUP=0FF
BAR=1.0
BOXFROM=0
BOXWIDTH=0
COLOUR=0N
DATASTYLE=points
DISPLAY=0N
DPI=300
ENHANCED=0N
FONTSIZE=0
FUNCSTYLE=1lines
GRID=0FF
GRIDAXISX=1

4.3. AN EXAMPLE CONFIGURATION FILE 43

GRIDAXISY=1
GRIDMAJCOLOUR=Grey60
GRIDMINCOLOUR=Grey90
KEY=0N

KEYCOLUMNS=1
KEYPOS=TOP RIGHT
KEY_XO0FF=0.0
KEY_YOFF=0.0
LANDSCAPE=0FF
LINEWIDTH=1.0
MULTIPLOT=0FF
ORIGINX=0.0
ORIGINY=0.0

OUTPUT=
POINTLINEWIDTH=1.0
POINTSIZE=1.0
SAMPLES=250
TERMINVERT=0FF
TERMTRANSPARENT=0FF
TERMTYPE=X11_singlewindow
TEXTCOLOUR=Black
TEXTHALIGN=Left
TEXTVALIGN=Bottom
TITLE=

TIT_XOFF=0.0
TIT_YOFF=0.0
WIDTH=8.0

[terminal]
COLOUR=0FF
COLOUR_ERR=Red
COLOUR_REP=Green
COLOUR_WRN=Brown
SPLASH=0N

[variables]
pi = 3.14159265358979

[colours]

palette = Black, Red, Blue, Magenta, Cyan, Brown, Salmon, Gray,
Green, NavyBlue, Periwinkle, PineGreen, SeaGreen, GreenYellow,
Orange, CarnationPink, Plum

[latex]

44

PREAMBLE=

CHAPTER 4. CONFIGURING PYXPLOT

4.4 Configuration Options: settings section

The following table provides a brief description of the function of each of
the parameters in the settings section of the above configuration file, with
a list of possible values for each:

ASPECT

AUTOASPECT

AXESCOLQOUR

BACKUP

BAR

BOXFROM

BOXWIDTH

Possible values: Any floating-point number.
Analogous set command: set size ratio

Sets the aspect ratio of plots.

Possible values: ON / OFF

Analogous set command: set size ratio

Sets whether plots have the automatic aspect ratio,
which is the golden ratio. If ON, then the above setting
is ignored.

Possible values: Any recognised colour.
Analogous set command: set axescolour

Sets the colour of axis lines and ticks.

Possible values: ON / OFF

Analogous set command: set backup

When this switch is set to ‘ON’, and plot output is
being directed to file, attempts to write output over
existing files cause a copy of the existing file to be
preserved, with a tilda after its old filename (see sec-
tion 3.3).

Possible values: Any floating-point number.
Analogous set command: set bar

Sets the horizontal length of the lines drawn at the
end of errorbars, in units of their default length.
Possible values: Any floating-point number.
Analogous set command: set boxfrom

Sets the horizontal point from which bars on bar charts
appear to emanate.

Possible values: Any floating-point number.
Analogous set command: set boxwidth

Sets the default width of boxes on barcharts. If
negative, then the boxes have automatically selected
widths, so that the interfaces between bars occur at
the horizontal midpoints between the specified data-
points.

4.4. CONFIGURATION OPTIONS: SETTINGS SECTION 45

COLOUR

DATASTYLE

DISPLAY

DPI

ENHANCED

FONTSIZE

FUNCSTYLE

GRID

GRIDAXISX

Possible values: ON / OFF

Analogous set command: set terminal

Sets whether output should be colour (ON) or
monochrome (OFF).

Possible values: Any plot style.

Analogous set command: set data style

Sets the plot style used by default when plotting
datafiles.

Possible values: ON / OFF

Analogous set command: set display

When set to ‘ON’, no output is produced until the
set display command is issued. This is useful for
speeding up scripts which produce large multiplots;
see section 3.5.1 for more details.

Possible values: Any floating-point number.
Analogous set command: set dpi

Sets the sampling quality used, in dots per inch,
when output is sent to a bitmapped terminal (the
jpeg/gif/png terminals).

Possible values: ON / OFF

Analogous set command: set terminal

Sets whether the postscript terminal produces en-
capsulated postscript (ON), or printable postscript
(OFF).

Possible values: Integers in the range —4 — 5.
Analogous set command: set fontsize

Sets the fontsize of text, varying between IXTEX’s tiny
(-4) and Huge (5).

Possible values: Any plot style.

Analogous set command: set function style
Sets the plot style used by default when plotting func-
tions.

Possible values: ON / OFF

Analogous set command: set grid

Sets whether a grid should be displayed on plots.
Possible values: Any integer.

Analogous set command: None

Sets the default xz-axis to which gridlines should at-
tach, if the set grid command is called without spec-
ifying which axes to use.

46

GRIDAXISY

GRIDMAJCOLOUR

GRIDMINCOLOUR

KEY

KEYCOLUMNS

KEYPOS

KEY_XOFF

KEY_YOFF

LANDSCAPE

LINEWIDTH

CHAPTER 4. CONFIGURING PYXPLOT

Possible values: Any integer.

Analogous set command: None

Sets the default y-axis to which gridlines should at-
tach, if the set grid command is called without spec-
ifying which axes to use.

Possible values: Any recognised colour.
Analogous set command: set gridmajcolour
Sets the colour of major grid lines.

Possible values: Any recognised colour.
Analogous set command: set gridmincolour
Sets the colour of minor grid lines.

Possible values: ON / OFF

Analogous set command: set key

Sets whether a legend is displayed on plots.

Possible values: Any integer > 0.

Analogous set command: set keycolumns

Sets the number of columns into which the legends of
plots should be divided.

Possible values: “TOP RIGHT”, “TOP MIDDLE”,
“TOP LEFT”, “MIDDLE RIGHT”, “MIDDLE MID-
DLE”, “MIDDLE LEFT”, “BOTTOM RIGHT”,
“BOTTOM MIDDLE”, “BOTTOM LEFT”, “BE-
LOW”, “OUTSIDE”.

Analogous set command: set key

Sets where the legend should appear on plots.
Possible values: Any floating-point number.
Analogous set command: set key

Sets the horizontal offset, in approximate graph-
widths, that should be applied to the legend, relative
to its default position, as set by KEYPOS.

Possible values: Any floating-point number.
Analogous set command: set key

Sets the vertical offset, in approximate graph-heights,
that should be applied to the legend, relative to its
default position, as set by KEYPOS.

Possible values: ON / OFF

Analogous set command: set terminal

Sets whether output is in portrait orientation (OFF),
or landscape orientation (ON).

Possible values: Any floating-point number.
Analogous set command: set linewidth

Sets the width of lines on plots, as a multiple of the
default.

4.4. CONFIGURATION OPTIONS: SETTINGS SECTION 47

MULTIPLOT

ORIGINX

ORIGINY

OUTPUT

POINTLINEWIDTH

POINTSIZE

SAMPLES

TERMINVERT

TERMTRANSPARENT

Possible values: ON / OFF

Analogous set command: set multiplot

Sets whether multiplot mode is on or off.

Possible values: Any floating point number.
Analogous set command: set origin

Sets the horizontal position, in centimetres, of the de-
fault origin of plots on the page. Most useful when
multiplotting many plots.

Possible values: Any floating point number.
Analogous set command: set origin

Sets the vertical position, in centimetres, of the de-
fault origin of plots on the page. Most useful when
multiplotting many plots.

Possible values: Any string.

Analogous set command: set output

Sets the output filename for plots. If blank, the de-
fault filename of pyxplot.foo is used, where ‘foo’ is an
extension appropriate for the file format.

Possible values: Any floating-point number.
Analogous set command: set pointlinewidth /
plot with pointlinewidth

Sets the linewidth used to stroke points onto plots, as
a multiple of the default.

Possible values: Any floating-point number.
Analogous set command: set pointsize / plot
with pointsize

Sets the sizes of points on plots, as a multiple of their
normal sizes.

Possible values: Any integer.

Analogous set command: set samples

Sets the number of samples (datapoints) to be evalu-
ated along the z-axis when plotting a function.
Possible values: ON / OFF

Analogous set command: set terminal

Sets whether jpeg/gif/png output has normal colours
(OFF), or inverted colours (ON).

Possible values: ON / OFF

Analogous set command: set terminal

Sets whether jpeg/gif/png output has transparent
background (ON), or solid background (OFF).

48

TERMTYPE

TEXTCOLOUR

TEXTHALIGN

TEXTVALIGN

TITLE

TIT_XOFF

TIT_YOFF

WIDTH

CHAPTER 4. CONFIGURING PYXPLOT

Possible values: X11 _singlewindow,

X11 multiwindow, PS, PNG, JPG, GIF

Analogous set command: set terminal

Sets whether output is sent to the screen or to disk,
and, in the latter case, the format of the output. The
ps option should be used for both encapsulated and
normal postscript output; these are distinguished us-
ing the ENHANCED option, above.

Possible values: Any recognised colour.
Analogous set command: set textcolour

Sets the colour of all text output.

Possible values: Left, Centre, Right

Analogous set command: set texthalign

Sets the horizontal alignment of text labels to their
given reference positions.

Possible values: Top, Centre, Bottom

Analogous set command: set textvalign

Sets the vertical alignment of text labels to their given
reference positions.

Possible values: Any string.

Analogous set command: set title

Sets the title to appear at the top of the plot.
Possible values: Any floating point number.
Analogous set command: set title

Sets the horizontal offset of the title of the plot from
its default central location.

Possible values: Any floating point number.
Analogous set command: set title

Sets the vertical offset of the title of the plot from its
default location at the top of the plot.

Possible values: Any floating-point number.
Analogous set command: set width / set size
Sets the width of plots in centimetres.

4.5 Configuration Options: terminal section

The following table provides a brief description of the function of each of
the parameters in the terminal section of the above configuration file, with
a list of possible values for each:

4.6. RECOGNISED COLOUR NAMES 49

COLOUR Possible values: ON / OFF
Analogous commandline switches: -c, -—colour,
-m, ——monochrome
Sets whether colour highlighting should be used in
the interactive terminal. If turned on, output is dis-
played in green, warning messages in amber, and er-
ror messages in red; these colours are configurable, as
described below. Note that not all UNIX terminals
support the use of colour.

COLOUR_ERR Possible values: Any recognised terminal colour.
Analogous commandline switches: None.
Sets the colour in which error messages are displayed
when colour highlighting is used. Note that the list
of recognised colour names differs from that used in
PyXPlot; a list is given at the end of this section.

COLOUR_REP Possible values: Any recognised terminal colour.
Analogous commandline switches: None.
As above, but sets the colour in which PyXPlot dis-
plays its non-error-related output.

COLOUR_WRN Possible values: Any recognised terminal colour.
Analogous commandline switches: None.
As above, but sets the colour in which PyXPlot dis-
plays its warning messages.

SPLASH Possible values: ON / OFF
Analogous commandline switches: -q, --quiet,
-V, -—-verbose
Sets whether the standard welcome message is dis-
played upon startup.

The colours recognised by the COLOUR XXX configuration options above
are: Red, Green, Brown, Blue, Purple, Magenta, Cyan, White, Normal. The
final option produces the default foreground colour of your terminal.

4.6 Recognised Colour Names

The following is a complete list of the colour names which PyXPlot recog-
nises in the set textcolour, set axescolour commands, and in the colours
section of its configuration file. It should be noted that they are case-
insensitive:

GreenYellow, Yellow, Goldenrod, Dandelion, Apricot, Peach, Melon,
YellowOrange, Orange, BurntOrange, Bittersweet, RedOrange, Mahogany,
Maroon, BrickRed, Red, OrangeRed, RubineRed, WildStrawberry, Salmon,
CarnationPink, Magenta, VioletRed, Rhodamine, Mulberry, RedViolet, Fuch-

20 CHAPTER 4. CONFIGURING PYXPLOT

sia, Lavender, Thistle, Orchid, DarkOrchid, Purple, Plum, Violet, Roy-
alPurple, BlueViolet, Periwinkle, CadetBlue, CornflowerBlue, Midnight-
Blue, NavyBlue, RoyalBlue, Blue, Cerulean, Cyan, ProcessBlue, SkyBlue,
Turquoise, TealBlue, Aquamarine, BlueGreen, Emerald, JungleGreen, Sea-
Green, Green, ForestGreen, PineGreen, LimeGreen, YellowGreen, Spring-
Green, OliveGreen, RawSienna, Sepia, Brown, Tan, Gray, Grey, Black,
White, white, black.

The following further colours provide a scale of shades of grey from dark
to light, also case-insensitive:

grey05, greyl0, greyld, grey20, grey25, grey30, grey35, grey40, grey45s,
greyb0, greybd, grey60, grey6d, grey70, grey7d, grey80, grey85, grey90,
grey95.

The US mis-spelling of grey (“gray”) is also accepted.

For a colour chart of these colours, the reader is referred to Appendix B
of the PyX Reference Manual.*

"http://pyx.sourceforge.net/manual/colorname. html

Chapter 5

Examples

This chapter contains a few example PyXPlot plot scripts to illustrate its
features. For each example, the plotting script is given, and an illustration
of the resulting output.

5.1 Example 1: Plotting Functions — A Simple
First Plot

As a simple first example, we plot two trigonometric functions. The syntax
here is exactly as would have been used in the original gnuplot. The output
is shown in figure 5.1.

PyXPlot Script:

A very simple first example... plots sin(x)
and cos(x)

reset

set xlabel ’x’

set ylabel ’y’

set term eps

set output ’examples/eps/examplel.eps’

plot sin(x), cos(x)

Produce a gif copy

set term gif

set dpi 207

set output ’examples/eps/examplel.gif’
refresh

51

52 CHAPTER 5. EXAMPLES

5.2 Example 2: Stacking Many Plots Together —
Multiplot

In this example, we use the multiplot environment to produce a gallery of
several plots. The set origin command is used to position each one. We
also make use of multiple y-axes in the top-left plot: the functions sin(z)
and sin?(x) are plotting together, but on different y scales. The output is
shown in figure 5.2.

PyXPlot Script:

Example 2
Uses multiplot to produce a gallery of
trigonometric functions.

reset

set term eps

set output ’examples/eps/example2.eps’
set multiplot

set nodisplay

set xlabel ’x’

set ylabel ’y’

Plot O (bottom left)
plot sin(x)

Plot 1 (bottom right)
set origin 11,0
plot cos(x)

Plot 2 (top left)
set origin 0,6.2
plot sin(x) ax x1yl, sin(x)**2 ax xly2

Plot 3 (top right)
set origin 11,6.2
plot sin(x)+cos(x)

Now that we are finished preparing multiplot,
turn display on

set display

refresh

5.2. EXAMPLE 2: STACKING MANY PLOTS TOGETHER - MULTIPLOT53

Produce a gif copy

set term gif

set dpi 98

set output ’examples/eps/example2.gif’
refresh

54 CHAPTER 5. EXAMPLES

5.3 Example 3: Plotting A Datafile — Using Mul-
tiple Axes

This is a more complicated example. First of all, we plot two datafiles, one
using a line, and another using points. We label our lines using arrows and
text labels, using the same syntax that gnuplot uses. We also have multiple
axes, this time having three x-axes on the same plot. The output is shown
in figure 5.3.

PyXPlot Script:

Example 3

A rather more complicated plot to show off multiple axes,
and LaTeXed labels on plots.

reset

A few physical constants

min = 5

max = 200

phy_h = 6.626068e-34

phy_c = 3e8

phy_ev = 1.6e-19

Set up plot basics...

set output ’examples/eps/example3.eps’

set terminal postscript eps monochrome

set grid

set key bottom right

set width 10

set log x

set log y

set title ’Simulated infrared dust spectrum for an \
{\mbox{\normalsize H\thinspace\footnotesize II}\kern3ptl} region’

X-axis is wavelength, lambda
set xlabel ’λ/μm’

Y-axis is emitted flux, integrated over grainsize a

set ylabel ’$\int F_{\nul}(a)\mathrm{d}a \cdot 4\pi r~2 / \
\mathrm{W} \, \mathrm{Hz} "{-1}\, \mathrm{m}~2 \, \
\mathrm{H}"{-1}$’

Make a second X-axis, in units of frequency, nu
set x2range [phy_c/(min*1le-6):phy_c/(max*1e-6)]

5.3. EXAMPLE 3: PLOTTING A DATAFILE — USING MULTIPLE AXES55

set log x2
set x2label ’ν/Hz’

And a third X-axis, in units of photon energy, in eV
set x3range [phy_h*phy_c/(min*1le-6)/phy_ev:phy_h*phy_c/ \
(max*1e-6)/phy_ev]

set log x3

set x3label ’Photon Energy / eV’

Put an arrow and label on our plot, labelling omne

of the lines

set arrow 1 from 60, 2e-5 to 38, 1le-5

set label 1 "$F_\nu=\nu"{\betal}B_\nu(30\mathrm{K})$" \
at 62, 1.8e-5

Make f(x) a 30K greybody

T=30.0

h=6.626e-34

k=1.38e-23

c=3e8

f(x)=((c/(x*1e-6))**(3+2))/(exp (h*c/(x*1e-6%k*T))-1.0)

Finally, plot all of our data

plot [min:max][le-7:1e-3] ’examples/example2a.dat’ using 1:2 \
t ’Nikoli\v{c}-Ford Dust Code’ with lines, \
’examples/example2b.dat’ t ’IRAS Photometry’ using \

($1) : (($2) /3e8x((($1)*1e-6)**2)*1.375191e+13/3.668333e+17), \
f(x)/£(60)*1.375191e+13/(3e8/(60e-6**2)) t ’$\beta=2$ Greybody’

Produce a gif copy

set term gif

set dpi 168

set output ’examples/eps/example3.gif’
refresh

o6 CHAPTER 5. EXAMPLES

5.4 Example 4: Something Completely Different

In this example, we demonstrate something rather different that PyXPlot
can do. There is a common problem of trying to incorporate IATEXed
equations into various multimedia/graphics packages: the postscript for-
mat which ITEX produces is not supported by programs such as Microsoft
Powerpoint. PyXPlot offers a very quick and simple solution to this prob-
lem.

First of all, we set our terminal to produce png output. To overlay our
output onto a Powerpoint slide, we will want it to have a transparent back-
ground, and so we also use the “transparent” terminal option (see section 3.2
for a discussion of PyXPlot terminal options). Finally, if we’re producing a
Powerpoint presentation with light-coloured text on a dark background, we
will want to invert the colours to have white text, and so use the “invert”
terminal option.

We can now produce plots which can readily be imported into Power-
point. To produce I¥TEXed equations, we use the multiplot environment’s
text command (see section 3.5).

Finally, as such a figure would not be very easy to incorporate into this
User Manual, we produce a normal eps version of our equation, illustrating
how to use the refresh command to produce multiple copies of the same
figure in different graphic formats.

The output is shown in figure 5.4.

PyXPlot Script:

Example 4
Demonstrates how an equation might be output as a gif
for inclusion in a slideshow in Microsoft Powerpoint.

reset

Set terminal to produce transparent gif output
set term gif trans invert

set dpi 450

set output ’examples/eps/exampled.gif’

set multiplot

Render the Planck blackbody formula in LaTeX

text ’$B_\nu = \frac{8\pi h}{c"3} \

\frac{\nu"3}{\exp \left(h\nu / kT \right) -1 }$’ 0,0
text ’This is an example equation:’ 0 , 0.75

5.4. EXAMPLE 4: SOMETHING COMPLETELY DIFFERENT o7

Produce a second copy of this plot as an eps file
set output ’examples/eps/example4.eps’

set term eps

refresh

o8 CHAPTER 5. EXAMPLES

5.5 Example 5: Multiplot — Linked Axes

In this example, we illustrate how to link the axes of plots on a multiplot, so
that they share a common scale, and also demonstrate how to set the colours
of datasets using the with colour plot modifier. In the top-right panel, we
also make use of the multiplot environment to add a plot inset. Finally, we
render this plot using the landscape terminal setting, showing how to fit
more plot onto our sheet of paper. The output is shown in figure 5.5.
Notice how the linked axes autoscale intelligently. The right two plots
both require larger vertical ranges than those plots to their lefts, to whose
vertical axes they are linked. But once they are linked, the plots autoscale
together, to ensure that they all have sufficient range for their data.

PyXPlot Script:

Example 5
A gallery of trigonometric functions demonstrating
the use of linked axes.

reset

set term landscape eps

set output ’examples/eps/exampleb.eps’
set multiplot

set nodisplay

set xlabel ’x’
set ylabel ’y’
set xrange [-10.9:10.9]

width = 8
height = 5.75

Plot O (bottom left)

set key bottom right

set origin O*width, Oxheight
plot sin(x) with colour 3

Plot 1 (bottom right)

set key top right

set origin 1*width, Oxheight

set ylabel ’linkaxis 0’

plot cos(x)-1 with colour seagreen

5.5. EXAMPLE 5: MULTIPLOT — LINKED AXES

Plot 2 (top left)

set key top right

set origin O*width, 1xheight
set xlabel ’linkaxis 0’

set ylabel ’y’

plot cos(x) with colour 7

Plot 3 (top right)

set key bottom right

set origin 1*width, 1xheight

set xlabel ’linkaxis 1’

set ylabel ’linkaxis 2’

plot sin(x)**2 + 1 with colour green

Plot 4 (inset plot)

set xlabel ’°’

set ylabel ’°

set key top ycentre

set fontsize -3

set origin 1.1*width, 1.15%height
set width width/3

p [-5:5] xx*2

Now that we are finished preparing multiplot,

turn display on
set display
refresh

Produce a gif copy

set term gif

set dpi 100

set output ’examples/eps/exampleb.gif’
refresh

99

60 CHAPTER 5. EXAMPLES

5.6 Example 6: Bar Charts and Steps

In this example, we illustrate the boxes, impulses and steps plot styles,
described in section 3.6, which operate similarly to how they operate in
gnuplot. Panels (a) and (b) illustrates the impulses plot style for a sine
wave, using the set boxfrom command to define the point from which the
lines originate. Panel (c) illustrates the fsteps plot style, (d) steps, (e)
histeps and (f) boxes. The output is shown in figure 5.6.

PyXPlot Script:

Example 6

A gallery showing different styles of barcharts/steps.
reset

set multiplot

set nodisplay

set samples 25

width=7

gold_ratio = 1/((1+sqrt(5))/2)

set terminal eps

set output ’examples/eps/example6.eps’
set width width

set xrange [-10.9:10.9]

set yrange [-1.2:1.2]

set nokey

Plot O (bottom left)

set xlabel ’x’

set ylabel ’y’

set label 1 ’(a)’ at -9,0.8

set label 2 ’histeps’ -3.7,0.8

plot ’ex*/ex*e6.dat’ with histeps, ’ex*/ex*e6.dat’ with points

Plot 1 (bottom right)

set origin 1*width, O*width*gold_ratio

set xlabel ’x’

set ylabel ’linkaxis 0’

set label 1 ’(b)’ at -9,0.8

set label 2 ’boxes’ -3.7,0.8

plot ’ex*/ex*e6.dat’ with boxes, ’ex*/ex*e6.dat’ with points

Plot 2 (middle left)

5.6. EXAMPLE 6: BAR CHARTS AND STEPS 61

set origin O*width, 1*width*gold_ratio

set xlabel ’linkaxis 0’

set ylabel ’y’

set label 1 ’(c)’ at -9,0.8

set label 2 ’fsteps’ -3.7,0.8

plot ’ex*/ex*e6.dat’ with fsteps, ’ex*/ex*e6.dat’ with points

Plot 3 (middle right)

set origin 1*width, 1*width*gold_ratio

set xlabel ’linkaxis 1’

set ylabel ’linkaxis 2’

set label 1 ’(d)’ at -9,0.8

set label 2 ’steps’ -3.7,0.8

plot ’ex*/ex*e6.dat’ with steps, ’exx/exxe6.dat’ with points

Plot 4 (top left)

set origin O*width, 2*width*gold_ratio

set xlabel ’linkaxis 0’

set ylabel ’y’

set label 1 ’(e)’ at -9,0.8

set label 2 ’impulses’ -3.7,0.8

plot ’ex*/ex*e6.dat’ with impulses, ’ex*/ex*e6.dat’ with points

Plot 5 (top right)

set origin 1*width, 2*width*gold_ratio

set boxfrom -0.5

set xlabel ’linkaxis 1°

set ylabel ’linkaxis 4’

set label 1 ’(f)’ at -9,0.8

set label 2 ’boxes’ -3.7,0.8

plot ’ex*/exxe6.dat’ with boxes, ’ex*/ex*e6.dat’ with points

Now that we are finished preparing multiplot,
turn display on

set display

refresh

Produce a gif copy

set term gif

set dpi 129

set output ’examples/eps/example6.gif’
refresh

62 CHAPTER 5. EXAMPLES

5.7 Example 7: Bar Charts — Box Widths

In this example, we demonstrate different ways of specifying the widths of
bars on a bar chart. In panel (a), the widths are automatically determined
from the data, changing bar midway between datapoints. In panel (b), the
wboxes plot style is used, which reads the widths of the bars from a third
column in the datafile. In panel (c), we demonstrate how the set boxfrom
command can be applied to bar charts, as well as to impulses. And in
panel (d) we illustrate how the fillcolour modifier can be used to produce
coloured bars. The output is shown in figure 5.7.

PyXPlot Script:

Example 7
Continued gallery of different barchart styles

reset

set multiplot

set nodisplay

width=7

gold_ratio = 1/((1+sqrt(5))/2)

set terminal eps

set output ’examples/eps/example7.eps’
set width width

set xrange [0.1:10.4]

set yrange [0:1.1]

set nokey

Plot O (bottom left)

set xlabel ’x’

set ylabel ’y’

set label 1 ’(a)’ 8.2,0.9

plot ’examples/example7.dat’ with boxes

Plot 1 (bottom right)

set origin 1*width, O*width*gold_ratio
set xlabel ’x’

set ylabel ’linkaxis 0’

set label 1 ’(b)’ 8.2,0.9

plot ’examples/example7.dat’ with wboxes

Plot 2 (top left)

5.7.

set
set
set
set
set

EXAMPLE 7: BAR CHARTS — BOX WIDTHS

origin O*width, 1*width*gold_ratio
xlabel ’linkaxis 0’

ylabel ’y’

boxwidth 0.4

label 1 ’(c)’ 8.2,0.9

plot ’examples/example7.dat’ with boxes fc 2

Plot 3 (top right)

set
set
set
set
set
set
set

origin 1xwidth, 1*width*gold_ratio
xlabel ’linkaxis 1°

ylabel ’linkaxis 2’
boxwidth 0.0

boxfrom 0.5

samples 40

label 1 ’(d)’ 8.2,0.9

plot sin(x)*sin(x) with boxes fc 3 ¢ 1, \

Now that we are finished preparing multiplot,

cos(x)*cos(x) with boxes fc 2 c 1

turn display on

set

display

refresh

Produce a gif copy

set
set
set

term gif
dpi 131
output ’examples/eps/example7.gif’

refresh

63

64 CHAPTER 5. EXAMPLES

5.8 Example 8: Fitting Functions to Data

The fit command works in PyXPlot in essentially the same way as in
gnuplot (see section 2.7). In this example, we take a series of data points, and
first fit parabolas through them. For the first fit, f(z), we do not take the
errorbars into account; in the second, g(z), we do. Then, we use the spline
command to fit a spline, h(x), through the same data (see section 3.8).
Strong oscillation is seen in this example because of the angular nature of
the data; it is not well-fit by a spline. The output is shown in figure 5.8.

PyXPlot Script:

Example 8

An example of fitting functions to a datafile.
reset

Functional forms to be fitted -- parabolas

f(x) = a *x x¥2 + b *x x + C
g(x) =d *x xx*2 + e x x + f

First of all, fit data neglecting errorbars

fit £(x) ’examples/example8.dat’ via a,b,c

Now fit data taking errorbars into account

fit g(x) ’examples/example8.dat’ using 1:2:3 via d,e,f
Now fit a spline through the data

spline h() ’examples/example8.dat’

Plot the resulting functions
set width 12
set key top xcentre
set xlabel ’x’
set ylabel ’y’
set term eps
set output ’examples/eps/example8.eps’
plot [0:81[0:5] \
’examples/example8.dat’ with yerrorbars, f(x), g(x), h(x)

Produce a gif copy

set term gif

set dpi 154

set output ’examples/eps/example8.gif’
refresh

5.9. EXAMPLE 9: SIMPLE EXAMPLES OF FUNCTION SPLICING 65

5.9 Example 9: Simple Examples of Function Splic-
ing

Here, we demonstrate simple use of function splicing (see section 3.7). In
panel (a), we plot the function sin(z), but specify that we only want it to
be drawn in the range —2 < z < 7. In panel (b), we show how to define
a discontinuous function similar to a top-hat function, also demonstrating
how to set movable boundaries between the spliced components of functions,
in this case using the variable a for this purpose.

Panels (c) and (d) demonstrate a more complex example, involving the
splicing of a two-dimensional function.

PyXPlot Script:

Example 9
Two Simple Examples of Function Splicing

reset

set multiplot

set nodisplay

width=9

gold_ratio = 1/((1+sqrt(5))/2)

set terminal eps

set output ’examples/eps/example9.eps’
set width width

Plot O (bottom left)
f(x)[-2:7] = sin(x)

set xlabel ’x’

set ylabel ’y’

set xrange [-10.9:10.9]
set label 1 ’(a)’ -9,0.8
plot £f(x)

Plot 1 (bottom right)

g(x,a) = a/10
g(x,a)[:-a] = -a/10
g(x,a)[a:] = -a/10

set ylabel ’linkaxis 0’
set label 1 ’(b)’ -9,0.8

66 CHAPTER 5. EXAMPLES

set origin width,O
set key bottom xcentre
plot g(x,2), g(x,5), gx,7)

Plot 2 (top left)
h(x,y) =1

h(x,y) [1:1[1:] = x*xy
h(x,y)[1:]1[:1] = x
h(x,y)[:1]1[1:] =y

set nokey

set xlabel ’linkaxis 0’

set ylabel 'y’

set yrange [0.1:25]

set label 1 ’(c)’ -9,22

set origin O,width*gold_ratio
plot h(x,cos(x)+1) w 1

Plot 3 (top right)

set xlabel ’linkaxis 1°

set ylabel ’linkaxis 2’

set label 1 ’(d)’ -9,22

set origin width,width*gold_ratio
plot h(x,min(tan(x),10)) w 1

Now that we are finished preparing multiplot,
turn display on

set display

refresh

Produce a gif copy

set term gif

set dpi 103

set output ’examples/eps/example9.gif’
refresh

5.10. EXAMPLE 10: REMOVAL OF UNWANTED AXES 67

5.10 Example 10: Removal of Unwanted Axes

In this example, we use the magic axis labels nolabels, nolabelsticks and
invisible, which were described in section 3.3.1. In the lower-left plot, we
show how to create a graph without mirrored z- and y-axes on the top and
right sides of the plot. In the lower-right panel, we produce a plot with
only z-axes visible, using them to produce a gallery showing the appearance
resulting from the use of each of these magic labels. The top-left plot shows
a simple sketch-graph with completely unlabelled axes. We also draw arrows
over the top of the axes in this example, to give them arrowheads. Finally,
in the top-right panel, we show one artistic application of plotting functions
with no axes visible at all, creating a simple logo. The output is shown in
figure 5.10.

PyXPlot Script:

Example 10
Example of the Removal of Unwanted Axes
reset

set multiplot

set nodisplay

set width 8

set terminal eps

set output ’examples/eps/examplelQ.eps’

Plot 0 (bottom left)
set x2label ’invisible’
set y2label ’invisible’
set xlabel ’x’

set ylabel ’y’

plot [0:5] (sin(x) *x* 2)

Plot 1 (bottom right)

set ylabel ’invisible’

set xlabel ’A normal axis’

set x3label ’An axis with outward-pointing ticks’

set x3ticdir outward

set xb5label ’nolabels: A \texttt{nolabels} axis’

set x7label ’nolabelstics: A \texttt{nolabelstics} axis’
set x9label ’invisible: An \texttt{invisible} axis’

set origin 9.5,5.5

plot

68 CHAPTER 5. EXAMPLES

Plot 2 (top left)

unset label

unset axis x3x5x7x9

xmin = -0.5 ; xmax = 1.5

ymin = -0.5 ; ymax 1.0

set arrow 1 from xmin,ymin to xmax,ymin

set arrow 2 from xmin,ymin to xmin,ymax

set arrow 3 from 0.6,0 to 0.5,0.20

set label 1 ’A sketch of a parabola’ at 0, -0.2
set xlabel ’nolabelstics’

set ylabel ’nolabelstics’

set nokey

set origin 0,6.5

plot [xmin:xmax] [ymin:ymax] x ** 2

Plot 3 (top right)

unset arrow

unset label

set xlabel ’invisible’

set ylabel ’invisible’

logo_x = 9.5

logo_y = 6.5

set textcolour Grey80

text ’\large $\frac{\hbar~2}{2m}\frac{\partial~2 \psil}{\partial \
x"2} + V\psi = E\psi$’ logo_x+2.1, logo_y+0.5

text ’\large $d \sin \theta = n\lambda$’ logo_x+0.5, logo_y+3.5

set textcolour Grey70

text ’\Large $\nabla \cdot D = \rho_{\mathrm{free}}$’ \
logo_x+2.9, logo_y+4.6

text ’\Large $\nabla \times E = - \frac{\partial \bf B} \
{\partial t}$’ logo_x+1.2, logo_y+4.0

text ’\Large $\nabla \cdot B = 0$’ logo_x+0.9, logo_y+1.2

text ’\Large $\nabla \times H = J_{\mathrm{free}} - \
\frac{\partial \bf D}{\partial t}$’ logo_x+3.8,logo_y+1.8

set textcolour Greybb5
text ’\Large $ds~2=\left(1-\frac{2GM}{rc 2} \right) \
dt"2$%$’ logo_x+0.4, logo_y+2
text ’\large $H(t)=\frac{\dot R}{R}$’ logo_x+6.1,logo_y+3.1
text ’$q(t) = - \frac{\ddot R R}{\dot R"2}$’ logo_x+5.3, logo_y+3.9
text ’\large $d_\mathrm{L} = \left(\frac{L}{4\pi F} \right) \
“\frac{1}{2}$’ logo_x+3.7, logo_y+1.2

5.10. EXAMPLE 10: REMOVAL OF UNWANTED AXES 69

text ’\Large $\ddot x"a + \Gamma"a_{bc} \
\dot x"b \dot x"c = 0%’ logo_x+4.5, logo_y+2.5

set textcolour Black
set label 1 ’\Huge \textbf{PyXPlot}’ at -8.5 , 0.05
set arrow 1 from 0.0 , -0.590 to 2.75 , -0.590 \
with nohead lines linetype 3 colour 1
set arrow 2 from 2.5 , -0.590 to 2.5 , -0.325 with twoway
set label 2 ’\Large ${\bf \Delta \phi}$’ at 2.7, -0.5
set origin logo_x, logo_y
p [-9.5:4.8]1[-0.75:0.60] - x*exp(-x**2) + \
(1/(exp((x-1)*3)+1) - 0.5)/4 - 0.2 with 1 1w 2 colour 1

Now that we are finished preparing multiplot,
turn display on

set display

refresh

Produce a gif copy

set term gif

set dpi 103

set output ’examples/eps/examplelQ.gif’
refresh

70 CHAPTER 5. EXAMPLES

5.11 Example 11: The Arrows Plot Style

Here, we show two possible applications of the arrows plot style (see sec-
tion 3.3). In the left panel, we plot a map of fluid flow around a vortex core,
the dotted circle showing the outline of the vortex core. The source for this
is a datafile mapping fluid velocity as a function of position. In the right
panel, we show a series of datapoints before and after some correction factor
is applied to them, showing how the data are moved in the process. The
output of this example is shown in figure 5.11.

PyXPlot Script:

Example 11
Examples of the ’arrows’ plotting style

reset

set multiplot

set nodisplay

width = 15

set terminal eps

set output ’examples/eps/examplell.eps’
set width width

set size square

set fontsize 2

set nokey

Plot 0 (left)

set xlabel ’x’

set ylabel ’y’

plot [-10.9:10.9]1[-10.9:10.9] \
’examples/examplell.dat’ i 0 u 1:2:($1+8$3):($2+34) w arrows, \
4*sin(x/10.9%pi) :4*cos(x/10.9%pi) u 2:3 w 1t 2 col black

Plot 1 (right)

set origin width, O

set ylabel ’linkaxis 0’

set key bottom right

plot [-10.9:10.9] \
’examples/examplell.dat’ i 1 t ’’ with arrows, \
’examples/examplell.dat’ i 1 t ’Before correction’ u 1:2 w p, \
’examples/examplell.dat’ i 1 t ’After correction’ u 3:4 w p

5.11. EXAMPLE 11: THE ARROWS PLOT STYLE

Now that we are finished preparing multiplot,
turn display on

set display

refresh

Produce a gif copy

set term gif

set dpi 63

set output ’examples/eps/examplell.gif’
refresh

71

72 CHAPTER 5. EXAMPLES

5.12 OQOwutput Produced by Examples

0.5

—0.5

—1

—10

Figure 5.1: The output produced by example script 1, Plotting Functions —
A Simple First Plot.

.
0

X X

Figure 5.2: The output produced by example script 2, Stacking Many Plots
Together — Multiplot.

5.12. OUTPUT PRODUCED BY EXAMPLES 73

Simulated infrared dust spectrum for an HII region

v/Hz
5-10% 2.10% 1-1013 5.10%2 2.10'
1078 ————— . —,———— .
7
s
B o107t -
lmN 5B, (30K)
i F, =v”B,(30K i
3 1075 - (Pl]
Nlt /!]
<
i 10-6 — Nikoli¢-Ford Dust Code
% x IRAS Photometry
i ---- 3 =2 Greybody
10—7 | ." |
5 10 20 50 100 200
A/pm
0.2 0.1 0.05 0.02 0.01

Photon Energy / eV

Figure 5.3: The output produced by example script 3, Plotting A Datafile —
Using Multiple Axes.

This is an example equation:
B, —8th_ v
v 3 exp(hv/kT)—1

Figure 5.4: The output produced by example script 4, Something Completely
Different.

74 CHAPTER 5. EXAMPLES

Yy Yy
| | |
[\) — (an) | [a) = [\
| T T T T
— 4 i
o
| L L i
ot
8 O E o E
O“_ — - —
wn - Q
K Z
H_ = — =
[a)
L L | L | |
| T T T T T T T
- - - [\~] -
5 =) S
m/
I L _ L o | | - 4
ot %
*
4
F N N
ov L1y
8 o - - -
U‘_ = — —
Z.
=4
3 %
o N
5 +
[= =
—_ i B i
(]
1 1 1 1 1 1 1 1 1 1

Figure 5.5: The output produced by example script 5, Multiplot — Linked
Axes.

5.12. OUTPUT PRODUCED BY EXAMPLES 75

. filﬂl}ﬁ HINHW I

N U

(c) teps " (d) steps

=g ;W W W“

—10 -5 0 5 10 —10
X

Figure 5.6: The output produced by example script 6, Bar Charts and Steps.

76 CHAPTER 5. EXAMPLES

| (a)
0.75 | B + B g
> 05 | + .
0.25 1 .
0 1 1 1 1 1 " 1 1 1 ”
2 4 6 8 10 2 4 6 8 10
X X

Figure 5.7: The output produced by example script 7, Bar Charts — Box
Widths.

5 T
+ ‘examples/example8.dat’

4 + — f(x) i

— g(x)

— h(x)
3 L i

>

2 L i
1 L i
O 1 1 1

Figure 5.8: The output produced by example script 8, Fitting Functions to
Data.

5.12. OUTPUT PRODUCED BY EXAMPLES 7

-]
' — g(x2) .
-0.5 — g(x,5)
— g(x7)
—1 1 1 1 1 1 1 1 1 1
—10 -5 0 5 10 —-10 -5 0 5 10
X X

Figure 5.9: The output produced by example script 9, Simple Examples of
Function Splicing.

\ =T — %)

dy, (//‘7 e,

PyXPlot/\

A sketch of a parabola

1 - -10 -5 0 5 10
A normal axis
— (sin(x)**2)
0.75 +
r - : - : - T . |
-10 -5 0 5 10
- 05 L An axis with outward-pointing ticks
L n 1 n 1 n 1 n 1
0.25 A nolabels axis
0 L L L s . .
A nolabelstics axis
0 1 2 3 4 5

An invisible axis

Figure 5.10: The output produced by example script 10, Removal of Un-
wanted Azes.

78 CHAPTER 5. EXAMPLES

Pt T S
o e e e e = =

-
AS
PP
~

LN

PRSP PPEPEREE SE SE

AN
\
N
A\
|
!
f
/
/
P
”

y

S
PRV T T L S T
Y K Nk kb ke e e = RN XX XX
PRV VA=l s A T
¥ ///////«Hf‘«'\\\‘\\\ X x
NN \\\\\\\;‘»H/'/'/////'/ 7
NN %N N WM N My T T A A A A
U A A A A A A A
N A A A A A

[= Before correction
. - >

~10 1 ~ + After correction
-10 -5 0 5

-

-10 -5 0 5 10

Figure 5.11: The output produced by example script 11, The Arrows Plot
Style.

Chapter 6

The fit Command:
Mathematical Details

In this section, the mathematical details of the workings of the £it command
are described. This may be of interest in diagnosing its limitations, and
also in understanding the various quantities that it outputs after a fit is
found. This discussion must necessarily be a rather brief treatment of a
large subject; for a fuller account, the reader is referred to D.S. Sivia’s Data
Analysis: A Bayesian Tutorial.

6.1 Notation

I shall assume that we have some function f(), which takes ny parameters,
x0..-Tn,—1, the set of which may collectively be written as the vector x. We
are supplied a datafile, containing a number nq of datapoints, each consisting
of a set of values for each of the ny parameters, and one for the value which
we are seeking to make f(x) match. I shall call of parameter values for the
1th datapoint x;, and the corresponding value which we are trying to match
fi- The datafile may contain error estimates for the values f;, which I shall
denote o;. If these are not supplied, then I shall consider these quantities
to be unknown, and equal to some constant ogaa.

Finally, I assume that there are n, coefficients within the function f()
that we are able to vary, corresponding to those variable names listed af-
ter the via statement in the fit command. I shall call these coefficients
ug...Un, —1, and refer to them collectively as u.

I model the values f; in the supplied datafile as being noisy Gaussian-
distributed observations of the true function f(), and within this framework,
seek to find that vector of values u which is most probable, given these
observations. The probability of any given u is written P (u|{x;, fi,0:}).

79

80 CHAPTER 6. THE FIT COMMAND: MATHEMATICAL DETAILS

6.2 The Probability Density Function

Bayes’ Theorem states that:

P (/) [0.0} P (4] {1, 0:])
B ((/]] (00)) (6.1)

Since we are only seeking to maximise the quantity on the left, and the
denominator, termed the Bayesian evidence, is independent of u, we can
neglect it and replace the equality sign with a proportionality sign. Further-
more, if we assume a uniform prior, that is, we assume that we have no prior
knowledge to bias us towards certain more favoured values of u, then P (u)
is also a constant which can be neglected. We conclude that maximising
P (u|{xi, fi,oi}) is equivalent to maximising P ({ f;} |u, {x;, 0:}).

P (u|{x;, fi,0i}) =

Since we are assuming f; to be Gaussian-distributed observations of the
true function f(), this latter probability can be written as a product of nq
Gaussian distributions:

ng—1 1 <_ [fz _ fu(xz)]2>
p ({fl} |ua {Xi’ O-Z}) = €X (62)
H) oV 2T P 201‘2

The product in this equation can be converted into a more computa-
tionally workable sum by taking the logarithm of both sides. Since loga-
rithms are monotonically increasing functions, maximising a probability is
equivalent to maximising its logarithm. We may write the logarithm L of

P (u] {x;, fi,0i}) as:

ng—1

202
i=0 i

where k is some constant which does not affect the maximisation process.
It is this quantity, the familiar sum-of-square-residuals, that we numerically
maximise to find our best-fitting set of parameters, which I shall refer to

from here on as u.

6.3 Estimating the Error in u’

To estimate the error in the best-fitting parameter values that we find, we
assume P (u| {x;, fi,0;}) to be approximated by an n,-dimensional Gaussian
distribution around u®. Taking a Taylor expansion of L(u) about u’, we
can write:

6.3. ESTIMATING THE ERROR IN U° 81

el oL
Lu) = L)+ > (u—uf) o
i=0 '

+ (6.4)

uo

Zero at u® by definition

et (=) (w —wf) o
2 auzﬁu]

+(9(u—u0)3

i=0 j=0 uod

Since the logarithm of a Gaussian distribution is a parabola, the quadratic
terms in the above expansion encode the Gaussian component of the prob-
ability distribution P (u| {x;, f;,0;}) about u’.! We may write the sum of
these terms, which we denote (), in matrix form:

Q= % (u—uO)TA(u—uO) (6.5)

where the superscript T represents the transpose of the vector displacement
from u’, and A is the Hessian matrix of L, given by:

0*L
8ulau] uo

Aij = VVL = (6.6)

This is the Hessian matrix which is output by the £it command. In gen-
eral, an ny-dimensional Gaussian distribution such as that given by equa-
tion (6.4) yields elliptical contours of equiprobability in parameter space,
whose principal axes need not be aligned with our chosen coordinate axes
— the variables ug...u,,—1. The eigenvectors e; of A are the principal axes
of these ellipses, and the corresponding eigenvalues A; equal 1 /%‘27 where
o; is the standard deviation of the probability density function along the
direction of these axes.

This can be visualised by imagining that we diagonalise A, and expand
equation (6.5) in our diagonal basis. The resulting expression for L is a
sum of square terms; the cross terms vanish in this basis by definition. The
equations of the equiprobability contours become the equations of ellipses:

Q = — Z Aii (uz — u?)Q =k (6.7)

where k is some constant. By comparison with the equation for the loga-
rithm of a Gaussian distribution, we can associate A;; with —1 /ai2 in our
eigenvector basis.

IThe use of this is called Gauss’ Method. Higher order terms in the expansion repre-
sent any non-Gaussianity in the probability distribution, which we neglect. See MacKay,
D.J.C., Information Theory, Inference and Learning Algorithms, CUP (2003).

82 CHAPTER 6. THE FIT COMMAND: MATHEMATICAL DETAILS

The problem of evaluating the standard deviations of our variables u; is
more complicated, however, as we are attempting to evaluate the width of
these elliptical equiprobability contours in directions which are, in general,
not aligned with their principal axes. To achieve this, we first convert our
Hessian matrix into a covariance matrix.

6.4 The Covariance Matrix

The terms of the covariance matrix V;; are defined by:

Vig = {(wi =) (w; =) (6.8)

Its leading diagonal terms may be recognised as equalling the variances of
each of our n, variables; its cross terms measure the correlation between the
variables. If a component V;; > 0, it implies that higher estimates of the
coefficient u; make higher estimates of u; more favourable also; if V;; < 0,
the converse is true.

It is a standard statistical result that V = (—A)~!. In the remainder of
this section we prove this; readers who are willing to accept this may skip
onto section 6.5.

Using Awu; to denote (ul — u?), we may proceed by rewriting equa-
tion (6.8) as:

Vz‘j = / <o / AuiAujP (u[{Xi, fi, Uz}) d™u (6.9)

f ... fuo;’:7oo AuiAuj exp(—Q) d™u
f o fifioi—oo eXp(—Q) dnuu

The normalisation factor in the denominator of this expression, which
we denote as Z, the partition function, may be evaluated by n,-dimensional
Gaussian integration, and is a standard result:

Z = // exp (%AuTAAu> d™u (6.10)

(2m)"/2
Det(—A)

Differentiating log,.(Z) with respect of any given component of the Hes-
sian matrix A;; yields:

-2

aAij [loge(Z)] = %/ t /izoo AUZAUJ eXP(_Q) dnull (611)

6.5. THE CORRELATION MATRIX 83

which we may identify as equalling V;;:

Vij = =2

o1 los.(2) (6.12)

= -2

2 o7)

0
= 2—— [log.(Det(—A
g1 lom.(Det(~A))
This expression may be simplified by recalling that the determinant of a

matrix is equal to the scalar product of any of its rows with its cofactors,
yielding the result:

aAij [Det(—A)] = —al-j (613)

where a;; is the cofactor of A;;. Substituting this into equation (6.12) yields:
Det(—A)

Recalling that the adjoint AT of the Hessian matrix is the matrix of
cofactors of its transpose, and that A is symmetric, we may write:

Vij = (6.14)

— At
Vij = =———
Det(—A)
which proves the result stated earlier.

=(—A)"! (6.15)

6.5 The Correlation Matrix

Having evaluated the covariance matrix, we may straightforwardly find the
standard deviations in each of our variables, by taking the square roots of
the terms along its leading diagonal. For datafiles where the user does not
specify the standard deviations o; in each value f;, the task is not quite
complete, as the Hessian matrix depends critically upon these uncertainties,
even if they are assumed the same for all of our f;. This point is returned
to in section 6.6.
The correlation matrix C, whose terms are given by:

‘/i .

O'Z'O'j

Cl'j =

(6.16)

may be considered a more user-friendly version of the covariance matrix for
inspecting the correlation between parameters. The leading diagonal terms
are all clearly equal unity by construction. The cross terms lie in the range
—1 < (5 <1, the upper limit of this range representing perfect correlation
between parameters, and the lower limit perfect anti-correlation.

84 CHAPTER 6. THE FIT COMMAND: MATHEMATICAL DETAILS

6.6 Finding o;

Throughout the preceding sections, the uncertainties in the supplied target
values f; have been denoted o; (see section 6.1). The user has the option
of supplying these in the source datafile, in which case the provisions of the
previous sections are now complete; both best-estimate parameter values
and their uncertainties can be calculated. The user may also, however, leave
the uncertainties in f; unstated, in which case, as described in section 6.1,
we assume all of the data values to have a common uncertainty ogata, which
is an unknown.

In this case, where 0; = 0qata V¢, the best fitting parameter values are
independent of o4,ta, but the same is not true of the uncertainties in these
values, as the terms of the Hessian matrix do depend upon cgat,. We must
therefore undertake a further calculation to find the most probable value
of 0gata, given the data. This is achieved by maximising P (0qata| {Xi, fi})-
Returning once again to Bayes’ Theorem, we can write:

p ({fl} |O-dataa {Xl}) P (Udata| {Xz})
P ({fi} [{xi})

As before, we neglect the denominator, which has no effect upon the
maximisation problem, and assume a uniform prior P (0gata| {x;}). This
reduces the problem to the maximisation of P ({f;} |0gata, {Xi}), which we
may write as a marginalised probability distribution over u:

P (Udata| {Xi’ fZ}) =

(6.17)

oo
P({fi} o () = [[P owa b w x (618)

—00

P (u|ogata, {x:}) d™u

Assuming a uniform prior for u, we may neglect the latter term in the in-
tegral, but even with this assumption, the integral is not generally tractable,
as P ({fi} |odata, {x:} , {u;}) may well be multimodal in form. However, if
we neglect such possibilities, and assume this probability distribution to be

approximate a Gaussian globally, we can make use of the standard result for
an ny-dimensional Gaussian integral:

//Z exp (%UTAu> ™ = % (6.19)

We may thus approximate equation (6.18) as:

p ({fz} |Udataa {Xl}) ~ P ({fz} |Jdataa {Xz}) uO) X (620)

)/2
P (u0|o-data’ {Xi’ fl}) %

6.6. FINDING o7 85

As in section 6.2, it is numerically easier to maximise this quantity via
its logarithm, which we denote Lo, and can write as:

ng—1 12
L, = Y <_[fz Juo (x4))] _1oge(2m/a—data)>+ (6.21)

2
i=0 2Jdata

(2m)m/?
108 (Det (—A))

This quantity is maximised numerically, a process simplified by the fact
that u® is independent of ogata.

86 CHAPTER 6. THE FIT COMMAND: MATHEMATICAL DETAILS

Chapter 7

ChangeLog

2006 Aug 26: PyXPlot 0.5.7

set display command implemented.

set keycolumns command implemented.

CTRL-C behaviour changed; no longer quits PyXPlot.
plot ‘*.dat’ now arranges files alphabetically.

Escaping of LaTeX < and > symbols fixed.

Major bugfix to fit command’s error estimation.

Major bugfix to the positioning of legends in the “outside” and “below”
positions to avoid overlapping with axes.

help command text substantially revised.

2006 Aug 18: PyXPlot 0.5.6

9

Ability to unset variables via “a=" implemented.

Handling on scipy error messages in the int_dx and spline commands
improved.

Colour-highlighted terminal added.

The inline help system made much more complete.
select modifier implemented.

set texthalign and set textvalign implemented.

set xticdir command implemented.

Support for CSV input datafiles implemented.

87

88

CHAPTER 7. CHANGELOG

pyxplot_watch quiet mode added. Also, behaviour changed to allow
the watching of files, even when they do not initially exist.

Labels can now be placed on “nolabels”, “nolabelstics” and “invisible”
axes. Example 10 changed to demonstrate this.

set log, when issued on its own, now applies to all axes, rather than
throwing an error.

2006 Jul 25: PyXPlot 0.5.5

pyxplot_watch implemented.
fit command now gives error estimates, as well as correlation matrices.
Many new pointtypes added, including upper and lower limit symbols.

Handling of SIGINT improved; now exits current command in inter-
active mode, and exits PyXPlot when running a script.

Quote characters can now be escaped in LaTeX strings, to allow strings
with both > and ” characters to be rendered.

Installer no longer creates any files belonging to root in the user’s
homespace.

show xlabel and show xrange implemented.

Bug fix: ¢d command no longer crashes if target directory doesn’t
exist.

Bug fix: some commands, e.g. plot, which previously didn’t work
when capitalised, now do.

Major bug fix to int_dx and diff_ dx functions.

2006 Jul 3: PyXPlot 0.5.4

edit command implemented.

Numerical integration and differentiation functions implemented.
New makefile installer added.

man page added.

Brief tour of gnuplot syntax added to documentation.

Many minor bug fixes.

2006 Jun 27: PyXPlot 0.5.3

89

set bar and set palette implemented.

Stacked barcharts implemented.

Command history files and the save command implemented.
Plotting of functions with errorbars implemented.

Ability to define a LaTeX preamble implemented.

Bug fix to smoothed splines, to ensure that smoothing is always applied
to a sensible degree by default.

Bug fix to the autoscaling of bar charts, histograms and errorbars, to
ensure that their full extent is contained within the plot area.

Bug fix to arrow plotting, to prevent PyX from crashing if arrows of
zero lengths are plotting (they have no direction...)

2006 Jun 14: PyXPlot 0.5.2

spline command, and csplines/acsplines plot styles implemented.
Syntax plot[0:1], with no space, now allowed.

Automatic names of datasets in legends no longer have full paths, but
only the path in the form that the user specified it.

Bug fix to the handling of LaTeX special characters in the automatic
names of datasets, e.g. file paths containing underscores.

Error messages now sent to stderr, rather than stdout.

multiplot mode now plots items in the order that they are plotted;
previously all arrows and text labels had been plotted in front of plots.

set backup command implemented, for keeping backups of overwritten
files.

Bug fix, enabling the use of axis x5 without axis x3, and likewise for
y.

unset axis command implemented, for removing axes from plots.

‘invisible’, ‘nolabels’, and ‘nolabelsticks’ axis title implemented, for
producing axes without text labels.

plot ’every’ modifier re-implemented, to use the same syntax as gnu-
plot.

fit command re-implemented to work with functions of > 1 variable.

90

CHAPTER 7. CHANGELOG

plot with pointlines defined as alias for ‘linespoints’.

plot using rows syntax implemented, for plotting horizontally-arranged
datafiles.

Bug fix to replot command in multiplot mode, to take account of any
move commands applied to the last plot.

Bug fix to errorbar pointsizes. pointsize modifier now produces sensi-
ble output with all errorbar plot styles.

show command re-implemented to accept any word that the set com-
mand will.

2006 Jun 2: PyXPlot 0.5.1

Pling and c¢d commands implemented; ¢ ¢ shell command substitution
implemented.

Arrows (both from set arrow and the arrow command) can now have
linetypes and colours set.

Colours can now be specified as either palette indices or PyX colour
names in all contexts — e.g. ‘plot with colour red’.

Function plotting fixed to allow plotting of functions which are not
valid across the whole range of the x-axis.

Transparent terminals now have anti-aliasing disabled.

Warnings now issued when too many columns are specified in plot
command; duplicate errors filtered out in two-pass plotting.

Function splicing implemented.

Documentation: sections on barcharts, function splicing, and datafile

globbing added.

2006 May 27: PyXPlot 0.5.0

Name changed to PyXPlot.

Change to distribution format: PyX Version 0.9 now ships with pack-
age.

Safety installer added; checks for required packages.

‘errorrange’ plot styles added; allow errorbars to be given as min/max
values, rather than as a standard deviation.

91
‘boxes’, ‘wboxes’, ‘steps’, ‘fsteps’, ‘histeps’ and ‘impulses’ plot styles
implemented — allow the production of histograms and bar charts.
plot with fillcolour implemented, to allow coloured bar charts.
Handling of broken datafiles sanitised: now warns for each broken line.
gridlines on multiple axes, e.g. ‘set grid x1x2x3” now allowed.

Major bugfix to the way autoscaling works: linked axes share infor-
mation and scale intelligently between plots.

—help and —version commandline options implemented.

‘using’ specifiers for datafiles can now include expressions, such as
$(2+x).

eps terminal fixed to produce encapsulated postscript.
datafile names now glob, so that plot ‘“*’ will plot many datafiles.

Documentation: examples 6,7 and 8 added.

2006 May 18: GnuPlot+ 0.4.3

text and arrow commands now accept expressions rather than just
floats for positional coordinates.

clear command major bug-fixed.

‘plot with’ clause bugfixed; state variable was not resetting.
Automatical key titles for datafile datasets made more informative.
Autoscaling of multiple axes bugfixed.

Autoscaling of inverted axes fixed.

set grid command fixed to only produce x/y gridlines when requested.
X11_singlewindow changed to use gv --watch.

landscape terminal postscript header detection bugfixed.

noenhanced terminal changed to produce proper postscript.

Plotting of single column datafiles without using specifier fixed.

2006 May 4: GnuPlot+ 0.4.2

Autoscaling redesigned, no longer uses PyX for this.

92

CHAPTER 7. CHANGELOG
Numerical expression handling fixed in set title, set origin and set
label.
Handling of children fixed, to prevent zombies from lingering around.
arrow command implemented.

set textcolour, set axescolour, set gridmajcolour, set gridmincolour and
set fontsize implemented.

Colour palette can now be set in configuration file.
Ranges for axes other then x1/y1 can now be set in the plot command.

Postscript noenhanced can now produce plots almost as big as an A4
sheet.

Plotting of one column datafiles, against datapoint number, imple-
mented.

Negative errorbars error trapped.

Comment lines now allowed in command files.

2006 May 1: GnuPlot+ 0.4.1

Documentation converted from ASCII to LaTeX.

ChangelLog added.

Configuration files now supported.

Prevention of temporary files in /tmp overwriting pre-existing files.

set term enhanced / noenhanced / landscape / portrait / png / gif /
jpeg / transparent / solid / invert / noinvert implemented.

set dpi implemented, to allow user to choose quality of gif/jpg/png
output.

'set grid” command now allows user to specify which axes grid attaches

to (extended APT).

Support introduced for plotting gzipped datafiles. Filenames ending
in ‘.gz’ are assumed to be gzipped.

load command implemented.
move command implemented.

Long lines can now be split using ‘Iinesplit character at the end of a
line. Any whitespace at the beginning of the next is omitted.

93

text / delete_text / undelete_text / move_text commands implemented.
refresh command implemented. (extended API)

point types, line styles, and colours now start at 1, for gnuplot com-
patibility.

default terminal changed to postscript for non-interactive sessions.

2006 Apr 27: GnuPlot+ 0.4.0

Bug fix: now looks for input scripts in the user’s cwd, not in /tmp.
‘set logscale’ is now valid syntax (as in gnuplot), as well as ‘set log’.

multiplot implemented, including linked axes, though with some bro-
kenness if linked axes are allowed to autoscale.

‘dots’ plotting style implemented.

Bug fix: can now include a plot ‘with’ clause after an ‘axes’ clause;
could not previously without an error message arising.

Pointstyles now increment between plotted datasets, even in a colour
terminal where the colours also increment.

garbage collection of .eps files from the X11 terminal added. Previously
they were left to fester in /tmp.

pointlinewidth added as a plot style, specifying the linewidth to be
used in plotting points. ‘set plw’ and ‘set lw’ both added (extended
API).

delete, clear and undelete commands added to the multiplot environ-
ment.

unset command implemented.

set notitle implemented.

2006 Apr 14: GnuPlot+ 0.3.2

The autoscaling of logarithmic axes made more trust-worthy: error
checks to ensure that they do not try to cover negative ordinates.

Error checks put in place to prevent empty keys being plotted, which
made PyX crash previously. Now can plot empty graphs happily.

Datasets with blank titles removed from the key, to allow users to
plot some datasets to be omitted from the key. This is not possible in
gnuplot.

94 CHAPTER 7. CHANGELOG

e Bug fix to prevent PyX’s texrunner from crashing irreparably upon
receiving bad LaTeX. Now uses a spanner to attempt to return it to
working order for the next plot.

e Bug fix to the autoscaling of axes with no range of data — previous did
not work for negative ordinates. Now displays an axes with a range of
+/- 1.0 around the data.

2006 Apr 12: GnuPlot+ 0.3.1

e Plotting of functions fixed: plot command will now plot any algebraic
expression, not just functions of the form f(x).

e Space added after command prompt.
2006 Apr 12: GnuPlot+ 0.3.0

e X1l _singlewindow and X11_multiwindow terminals implemented, as
distinct from just standard X11.

e Key positioning allowed to be xcentre, ycentre, below and outside,
as well as in the corners of the plot. Key allowed to be offseted in
position.

e Datasets colours can be set via ‘plot with colour <n>’

e Datasets are split when there is a blank line in the datafile; lines are
not joined up between the two segments.

e set size implemented; can now change aspect ratio of plots.

e working directory of GnuPlot+ changed to /tmp, so that LaTeX’s
temporary files are stored there rather than in the user’s cwd.

2006 Mar 30: GnuPlot+ 0.2.0

e Standard GnuPlot dual axes improved upon, allowing users to add x3,
x4 axes, etc, up to any number of axes that may be desired.

e Autocomplete mechanism for commandline substantially cleaned up

and debugged.

e Bug fixes to the plotting of arrows/labels. Now appear above gridlines,
not below.

2006 Feb 26: GnuPlot+ 0.1.0

Index

acsplines plot style, 38
alignment
text, 31
arrow command, 34
arrows, 29
arrows plot style, 25, 70
axes
colour, 32
multiple, 54
removal, 21
reserved labels, 22, 33
setting ranges, 12
axes modifier, 21

backup files, 29

bar charts, 35, 60, 62

best fit lines, 13, 38

boxes plot style, 35, 60, 62

ChangelLog, 87
clear command, 32
colour output, 19
colours
axes, 32
configuration file, 49
fillcolour, 62
grid, 32
inverting, 20

setting for datasets, 23, 58

setting the palette, 24

shades of grey, 50

text, 30
columns keyword, 26
command line syntax, 5, 17
command scripts

comment lines, 6

95

comment lines, 6
configuration file

colours, 49
configuration files, 42
correlation matrix, 83
covariance matrix, 82
csplines plot style, 38
csv files, 8

datafile format, 8
datafiles

globbing, 28

horizontal, 26
Debian Linux, 3
delete command, 32
delete_arrow command, 34
delete_text command, 34
diff_dx() function, 39
differentiation, 39

DISPLAY environment variable, 20

dots style, 24

encapsulated postscript, 19
errorbars, 27

escape characters, 2

every modifier, 9

exit command, 5

fillcolour modifier, 36, 62
fit command, 13, 64, 79
fontsize, 30
fsteps plot style, 35, 60
function fitting, 64
function splicing, 37
functions

unsetting, 7

96

General Public License, 4
gif output, 20
transparency, 20
globbing, 28
grid, 31
colour, 32

Hessian matrix, 81
hidden axes, 21

histeps plot style, 35, 60
horizontal datafiles, 26

image resolution, 20
impulses plot style, 35, 60
index modifier, 8
installation, 3

under Debian, 3
int_dx() function, 39
integration, 39
invisible keyword, 22

jpeg output, 20

landscape orientation, 20, 58
linetype modifier, 12
linewidths

setting for datasets, 24
load command, 6
lower-limit datapoints, 25

magic axis labels, 22, 33
Microsoft Powerpoint

importing figures into, 56
monochrome output, 19
multiple axes, 54
multiple windows, 19
multiplot, 32, 52

inset plots, 58

linked axes, 58

nolabels keyword, 22
nolabelstics keyword, 22

overwriting files, 29

plot command, 6

INDEX

png output, 20

transparency, 20
pointtype modifier, 12
portrait orientation, 20
postscript

encapsulated, 19
postscript output, 19
presentations

importing figures into, 56
pyxplot_watch, 40

quit command, 5
quote characters, 2

refresh command, 35, 56
removing axes, 21

replot command, 11, 35
replotting, 35

reset command, 7

resolution of bitmap output, 20
rows keyword, 26

save command, 6

select keyword, 25

set arrow command, 29, 30

set autoscale command, 12

set axescolour command, 44

set axescolour command, 32

set axis command, 21

set backup command, 29, 44

set bar command, 44

set boxfrom command, 35, 44, 60

set boxwidth command, 36, 44

set command, 41

set data style command, 45

set display command, 35, 45

set dpi command, 20, 45

set fontsize command, 30, 45

set function style command, 45

set grid command, 31, 45

set gridmajcolour command, 32,
46

set gridmincolour command, 32,
46

set key command, 23

INDEX

set key command, 46

set keycolumns command, 23

set keycolumns command, 46

set label command, 30

set linewidth command, 46

set logscale command, 13

set multiplot command, 47

set noarrow command, 29

set nologscale command, 13

set origin command, 32, 47, 52

set output command, 10, 47

set palette command, 24

set pointlinewidth command, 47

set pointsize command, 47

set samples command, 11, 47

set size command, 18, 48

set size ratiocommand, 18, 44

set size square command, 18

set terminal command, 10, 18,
19, 45-48

set textcolour command, 30, 34,
48

set texthaligncommand, 31, 34,
48

set textvaligncommand, 31, 34,
48

set title command, 48

set width command, 18, 48

set xrange command, 12, 21

special characters, 2

splicing functions, 37

spline command, 38, 64

spreadsheets, importing data from,
8

steps plot style, 35, 60

system requirements, 3

text
alignment, 31
colour, 30
size, 30
text command, 34, 56
title modifier, 22
transparent terminal, 20

undelete command, 32
undelete_arrow command, 34
undelete_text command, 34
unset command, 7

unsetting variables, 7
upper-limit datapoints, 25
using columns modifier, 26
using rows modifier, 26

variables
unsetting, 7

watching scripts, 40
wboxes plot style, 36, 62
wildcards, 28

with modifier, 11

X11 terminal, 19

97

