PyXPlot Users’ (Guide

A Command-line Plotting Package,
with Interface similar to that of Gnuplot,
which produces

Publication-Quality Output.

Version 0.6.3

Dominic Ford

Email: coders@pyxplot.org.uk

February 2007



Contents

Introduction
1.1 Overview . . . . . . . . e
1.2 System Requirements . . . . ... ... ... ... ......
1.3 Imstallation . . .. .. ... .. ...
1.3.1 Installation as User. . . . . .. ... ... ... ....
1.3.2 System-wide Installation . . . . . . ... ... .. ...
1.4 Credits. . . . . . . . e
1.5 Legal Blurb . . . . .. ... ...
First Steps With PyXPlot
2.1 Getting Started . . . . . ... oo
2.2 FirstPlots. . . . . . . . .
2.3 Axis Labels and Titles . . . . . . ... ... ... .......
2.4 Operators and Functions . . . . . .. ... ... ... ... ..
2.5 Plotting Datafiles . . . . . . ... ... ... 0oL
2.6 Directing Where Output Goes . . . . . . .. ... ... ....
2.7 DataStyles . . . . .. ..
2.8 Setting Axis Ranges . . . . .. ... ... ... ... ...,
2.9 Function Fitting . . . . ... ..o o oo
2.10 Interactive Help . . . . . . . . . . .. ... ... ...
2.11 Differences Between PyXPlot and Gnuplot . . . . . . . . . ..

Extensions of Gnuplot’s Interface

3.1 The Commandline Environment . . . .. ... .. ... ...
3.2 Formatting and Terminals . . . . . . .. .. ... ... ...
3.2.1 PaperSizes . . . . . . . ... ...
3.3 Plotting . . . .. ...
3.3.1 Configuring Axes . . . . . ... ... .
3.3.2 Keysand Legends . . . ... ... ...........
3.3.3 The linestyle Keyword . . .. ... ... ......
3.3.4 Colour Plotting . . . . .. ... ... ... .......
3.3.5 General Extensions Beyond Gnuplot . . . . . ... ..
3.4 Sundry Items (Arrows, Text Labels, and More) . . . . . . ..



ii

3.5

3.6

3.7
3.8
3.9
3.10

3.41 Arrows ... ... ...
3.4.2 Text Labels . . . . . ... ... ......
3.4.3 Gridlines . . ... ... ... ..., ..
Multi-plotting . . . . . .. ... oL

3.5.1 Deleting, Moving and Changing Plots

3.5.2 Linked Axes. . .. .. ... .. ......
3.5.3 Text Labels, Arrows and Images . . . . .
3.5.4 SpeedlIssues ... .............
Barcharts and Histograms . . . . . ... .. ...
3.6.1 Basic Operation . ... ... .......
3.6.2 Stacked Bar Charts . .. ... ......
3.6.3 Steps . ... ...
Function Splicing . . . ... ... ... ... ...
Datafile Interpolation: Spline Fitting . . . . . . .
Numerical Integration and Differentiation . . . .
Script Watching: pyxplot_watch . . . . . . .. ..

Configuring PyXPlot

4.1
4.2
4.3
4.4
4.5
4.6

Overview . . . . . . . ... ...
Configuration Files . . . . . . . .. ... ... ..
An Example Configuration File . . . . . . . . ..
Configuration Options: settings section . . . .
Configuration Options: terminal section . . . .
Recognised Colour Names . . . . . ... .. ...

Command Reference

5.1
5.2
5.3
5.4
9.5
5.6
5.7
5.8
5.9

5.10 j

5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18

ATTOW . . v v v v v e s e e e e e e e e e e e e e

edit . . ...

CONTENTS



CONTENTS iii

519 refresh . . . . . .. Lo 71
5.20 replot . . .. L 71
D.21 reset ..o 72
D.22 SAVE . .. .o e e 72
D.23 set . . oL e 72
5.23.1 arrow . . ... e 73
5.23.2 autoscale . . . . ... 73
5.23.3 axescolour . . . . . ... 74
5.23.4 axisS . ... .. 74
5.23.5 backup . . .. .. 75
5.23.6 bar . . . . ... 75
5.23.7 boxfrom . . .. ... oo 75
5.23.8 boxwidth . . .. ... ... ... .. ... ... 76
5.23.9 datastyle . . . . .. ... 76
5.23.10display . . . . . ..o 76
5.23.11dpi . . . .. 77
5.23.12fontsize . . . . ..o 77
5.23.13function style . . . . . .. ... oL 7
523 1dgrid . . ..o 7
5.23.15 gridmajcolour . . . . . ... Lo Lo 78
5.23.16 gridmincolour . . . . . . ... ..o 78
B5.23.1TKkey . . . . 79
5.23. 18 keycolumns . . . . .. ... 79
5.23.191abel . . . ... 80
5.23.20linestyle . . .. ..o oL oL 80
5.2321linewidth . . . . . .. .. Lo oo 81
5.23.22logscale . . ... Lo Lo 81
5.23.23multiplot . . . ... oo 82
5.23.24mxtics . . .. ... 82
5.23.25mytics . . ... Lo 82
5.23.26 N0ArTOW . . . . . . ..o e e e e e 82
5.23.27T1n0axis . . . . ..o 83
5.23.28nobackup . . .. ... Lo 83
5.23.29nodisplay . . . .. ..o oo 83
5.23.30mnogrid . . . ... Lo 83
5.23.31nokey . . ... 83
5.23.32nolabel . . ... 83
5.23.33nolinestyle . . . . . . ... Lo oL 84
5.23.34nologscale . . . .. ..o 84
5.23.35nomultiplot . . . . . ... oo 84
5.23.36notitle . . . . ... 84
5.23.37TnoxXbtics . . . ... 85
5.23.38noytics . . . . ..o 85

5.23.39origin . ... Lo 85



v

The
6.1
6.2
6.3
6.4
6.5
6.6

CONTENTS

5.23400utput . . . ..o 85
5.2341palette . . . . . . . 85
5.23.42 papersize . . . ... 86
5.23.43 pointlinewidth . . . . . .. .. ... oo 86
9.23.44pointsize . . . . ... oL 86
5.23.4bpreamble . . . . .. ..o oo 87
5.23.46samples . . . ... 87
5.23.47size . ... 87
5.23.48style . . . . . 88
5.23.49terminal . . . ... Lo 88
5.23.50textcolour . . . . .. ..o 92
5.23.51texthalign . . . . . . .. ..o 92
5.23.52textvalign . . . .. ..o 93
5.23.53title . . . .. .. 93
5.23.54width . . . ... 93
5.23.55xlabel . . . ... 93
0.23.56Xrange . . . . . ... oo e 94
5.23.57xticdir . . . . ... 94
5.23.58Xtics . . ... 95
5.23.59ylabel . . . . ... 96
5.23.60yrange . . . . . ... oL 96
5.23.61yticdir . . . . . ... 96
5.23.62ytics . . .. 96
show . . . . . 96
spline . . .. 96
text ..o 97
undelete . . . . .. 97
unset . ... L e 98
fit Command: Mathematical Details 99
Notation . . . . . . . . . . . 99
The Probability Density Function . . . . . . . ... ... ... 100
Estimating the Errorinu® . . .. ... ... ....... .. 100
The Covariance Matrix . . . . . . . . . . .. ... ... .... 102
The Correlation Matrix . . . . . . .. ... .. ... ..... 103
Findingo; . . . . . . . oo 104

7 ChangeLog 107



Chapter 1

Introduction

1.1 Overview

PyXPlot is a command-line graphing package, which, for ease of use, has an
interface based heavily upon that of gnuplot — perhaps UNIX’s most widely-
used plotting package. Despite the shared interface, however, PyXPlot is
intended to significantly improve upon the quality of gnuplot’s output, pro-
ducing publication-quality figures. The command-line interface has also
been extended, providing a wealth of new features, and short-cuts for some
operations which were felt to be excessively cumbersome in the original.
The motivation behind PyXPlot’s creation was the apparent lack of a
free plotting package which combined both high-quality output and a simple
interface. Some — pgplot for one — provided very attractive output, but
required a program to be written each time a plot was to be produced — a
potentially time consuming task. Others, gnuplot being the prime example,
were quick and simple to use, but produced less attractive results.
PyXPlot attempts to fill that gap, offering the best of both worlds.
Though the interface is based upon that of gnuplot, text is now rendered
with all of the beauty and flexibility of the IATEX typesetting environment;
the “multiplot” environment is made massively more flexible, making it easy
to produce galleries of plots; and the range of possible output formats is ex-
tended — to name but a few of the enhancements. A number of examples of
the results of which PyXPlot is capable can be seen on the project website!.
As well as the ease of use and flexibility of gnuplot’s command-line in-
terface — it can be used either interactively, read a list of commands from
a file, or receive instructions through a UNIX pipe from another process —
I believe it to bring another distinct advantage. It insists upon data being
written to a datafile on disk before being plotted. Packages which allow, or
more often require, plotting to be done from within a programming language
can encourage the calculation of data and its plotting to occur in the same

"http://www.pyxplot.org.uk/



2 CHAPTER 1. INTRODUCTION

program. I believe this to be a dangerous temptation, as the storage of raw
datapoints to disk can then often be seen as a secondary priority. Months
later, when the need arises to replot the same data in a different form, or
to compare it with newer data, remembering how to use a hurriedly written
program can prove tricky, but remembering how to plot a simple datafile
less so.

The similarity of the interface to that of gnuplot is such that simple
scripts written for gnuplot should work with PyXPlot with minimal modi-
fication; gnuplot users should be able to get started very quickly. However,
as PyXPlot remains work in progress, it supports only a subset of the func-
tionality and configurability of gnuplot, and some features may be found to
be missing. These will be discussed further in Section 2.11. A description
of those features which have been added to the interface can be found in
Chapter 3.

A brief overview of gnuplot’s interface is provided for novice users in
Chapter 2. However, the attention of past gnuplot users is drawn to one of
the key changes to the interface — namely that all textual labels on plots are
now printed using the IXTEX typesetting environment. This does unfortu-
nately introduce some incompatibility with the original, since some strings
which were valid before are no longer valid (see Section 2.3 for more details).
For example:

set xlabel ’x"2’

would have been valid in gnuplot, but now needs to be written in XTEX
mathmode as:

set xlabel ’$x°2$°

It is the view of the author, however, that the nuisance of this incompati-
bility is far outweighed by the power that IXTEX brings. For users with no
prior knowledge of ITEX the author recommends Tobias Oetiker’s excellent
introduction, The Not So Short Guide to ETEX2€>.

1.2 System Requirements

PyXPlot works on many UNIX-like operating systems. The authors have
tested it under Linux, SunOS and MacOS X, and believe that it should work
on other similar systems. It requires that the following software packages
(not included) be installed:

“Download from:
http://www.ctan.org/tex-archive/info/lshort/english/lshort.pdf



1.3. INSTALLATION 3

python  (Version 2.3 or later)
latex (Used for all textual labels)
convert (ImageMagick; needed for the gif, png and jpg terminals)
The following package is not required for installation, but many PyX-
Plot features are disabled when it is not present, including the fit and

spline commands and the integration of functions. It is very strongly rec-
ommended:

scipy  (Python Scientific Library)

The following package is not required for installation, but it is not pos-
sible to use the X11 terminal, i.e. to display plots on screen, without it:

gv  (Ghostview; used for the X11 terminal)

Debian/Ubuntu users can find the above software in the packages tetex-extra,
gv, imagemagick, python2. 3, python2.3-scipy.

1.3 Installation

1.3.1 Installation as User

The following steps describe the installation of PyXPlot from a .tar.gz
archive by a user without superuser (i.e. root) access to his machine. It is
assumed that the packages listed above have already been installed; if they
are not, you need to contact your system administrator.

e Unpack the distributed .tar.gz:

tar xvfz pyxplot_0.6.3.tar.gz
cd pyxplot

e Run the installation script:

./configure
make

e Finally, start PyXPlot:

./pyxplot



4 CHAPTER 1. INTRODUCTION

1.3.2 System-wide Installation

Having completed the steps described above, PyXPlot may be installed
system-wide by a superuser with the following additional step:

make install

By default, the PyXPlot executable installs to /usr/local/bin/pyxplot.
If desired, this installation path may be modified in the file Makefile.skel,
by changing the variable USRDIR in the first line to an alternative desired
installation location.

PyXPlot may now be started by any system user, simply by typing:

pyxplot

1.4 Credits

Before proceeding any further, the author would like to express his gratitude
to those people who have contributed to PyXPlot — first and foremost, to
Jorg Lehmann and André Wobst, for writing the PyX graphics library for
Python, upon which this software is heavily built. Thanks must also go
to Ross Church for his many useful comments and suggestions during its
development.

1.5 Legal Blurb

This manual and the software which it describes are both copyright (C)
Dominic Ford 2006-7. They are both distributed under the GNU General
Public License (GPL) Version 2, a copy of which is provided in the COPYING
file in this distribution. Alternatively, it may be downloaded from:
http://www.gnu.org/copyleft/gpl.html.



Chapter 2

First Steps With PyXPlot

In this chapter, I shall provide a brief overview of the basic operation of
PyXPlot, essentially covering those areas of syntax which are borrowed di-
rectly from gnuplot. Users who are already familiar with gnuplot may wish
to skim or skip this chapter, though Section 2.3, describing the use of KTEX
to render text, and Section 2.11, detailing which parts of gnuplot’s interface
are and are not supported in PyXPlot, may be of interest. In the following
chapter, I shall go on to describe PyXPlot’s extensions of gnuplot’s interface.
Describing gnuplot’s interface in its entirety is a substantial task, and
what follows is only an overview; novice users can find many excellent tuto-
rials on the web which will greatly supplement what is provided below.

2.1 Getting Started

The simplest way to start PyXPlot is simply to type “pyxplot” at a shell
prompt to start an interactive session. A PyXPlot command-line prompt
will appear, into which commands can be typed. PyXPlot can be exited
either by typing “exit”, “quit”, or by pressing CTRL-D.

Alternatively, a list of commands to be executed may be stored in a
command script, and executed by passing the filename of the command
script to PyXPlot on the shell command line, for example:

pyxplot foo

In this case, PyXPlot would exit immediately after finishing executing the
commands from the file foo. Several filenames may be passed on the com-
mand line, to be executed in sequence:

pyxplot fool foo2 foo3

Wildcards can also be used; the following would execute all command scripts
in the presenting working directory whose filenames end with a .plot suffix:

5



6 CHAPTER 2. FIRST STEPS WITH PYXPLOT

pyxplot *.plot

It is possible to use PyXPlot both interactively, and from command
scripts, in the same session. One way to do this is to pass the magic filename
‘-’ on the command line:

pyxplot fool - foo2

This magic filename represents an interactive session, which commences after
the execution of fool, and should be terminated in the usual way after use,
with the “exit” or “quit” commands. Afterwards, the command script
foo2 would execute.

From within an interactive session, it is possible to run a command script
using the load command:

pyxplot> load ’foo’

This example would have the same effect as typing the contents of the file
foo into the present session.

A related command is “save”, which stores a history of the commands
executed in the present interactive session to file.

All command files can include comment lines, which should begin with
a hash character, for example:

# This is a comment

Long commands may be split over multiple lines in the script by termi-
nating each line of it with a backslash character, whereupon the following
line will be appended to the end of it.

2.2 First Plots

The basic workhorse command of PyXPlot is the plot command, which
is used to produce all plots. The following simple example would plot the
function sin(zx):

plot sin(x)

It is also possible to plot data from files. The following would plot data
from a file ‘datafile’, taking the z-coordinate of each point from the first
column of the datafile, and the y-coordinate from the second. The datafile is
assumed to be in plain text format, with columns separated by whitespace
and/or commas':

'Tf the filename of a datafile ends with a .gz suffix, it is assuming to be gzipped
plaintext, and is decoded accordingly.



2.3. AXIS LABELS AND TITLES 7

plot ’datafile’

Several items can be plotted on the same graph by separating them by
commas:

plot ’datafile’, sin(x), cos(x)

It is possible to define one’s own variables and functions, and then plot them:

a =2

b=1

c=1.5

f(x) = a*x(x*%2) + bxx + c
plot f(x)

To unset a variable or function once it has been set, the following syntax
should be used:

2.3 Axis Labels and Titles

Labels can be applied to the two axes of the plot, and a title put at the top:

set xlabel ’This is the X axis’
set ylabel ’This is the Y axis’
set title ’A plot of sin(x)’
plot sin(x)

The output from this simple example is shown in Figure 2.1. All such text
labels should be placed between either single (’) or double (”) quotes. They
are displayed using IATEX, and so any KITEX commands can be used, for
example to put equations on axes:

set xlabel ’$\frac{x"2}{c"2}$’

As a caveat, however, this does mean that care needs to be taken to escape
any of IATEX’s reserved characters —ie.: \ & % # { } $ -~ or ~.

Because of the use of quotes to delimit text labels, special care needs
to be taken when apostrophe and quote characters are used. The following
command would raise an error, because the apostrophe would be interpret-
ted as marking the end of the text label:

set xlabel ’'My plot’s X axis’



8 CHAPTER 2. FIRST STEPS WITH PYXPLOT

A plot of sin(x)
1 T T

— sin(x)

0.5 4

This is the Y axis
o

—-0.5

,]_ 1 1
—10 -5 0 5 10
This is the X axis

Figure 2.1: A simple first plot with axis labels. See the text for more details.

The following would achieve the desired effect:
set xlabel "My plot’s X axis"

To allow one to render IXTEX strings containing both single and double quote
characters — for example, to put a German umlaut on the name “Joérg” in the
KTEX string “J\"org’s Data” — PyXPlot recognises the backslash character
to be an escape character when followed by either ” or ” in a KITEX string.
This is the only case in which PyXPlot considers \ an escape character. To
render the example string above, one would type:

set xlabel "J\\"org’s Data"

Two backslashes are used. The first backslash is the IXTEX escape char-
acter used to produce the umlaut; the second is a PyXPlot escape character,
used so that the ” character is not interpretted as delimiting the string.

Having set labels and titles, they may be removed thus:

set xlabel ’’
set ylabel ’°

set title ’°

These are two other ways of removing the title from a plot:



2.4. OPERATORS AND FUNCTIONS 9

set notitle
unset title

The unset command may be followed by essentially any word that can
follow the set command, such as xlabel or title, to return that setting
to its default configuration. The reset command restores all configurable
parameters to their default states.

2.4 Operators and Functions

As has already been seen above, some mathematical functions such as sin(x)
are pre-defined within PyXPlot. A list of frequently-used functions which are
predefined in PyXPlot is given in Table 2.22. A list of operators recognised
by PyXPlot is given in Table 2.4.

2.5 Plotting Datafiles

In the simple example of the previous section, we plotted the first column of
a datafile against the second. It is also possible to plot any arbitrary column
of a datafile against any other; the syntax for doing this is:

plot ’datafile’ using 3:5

This example would plot the fifth column of the file datafile against the
third. As mentioned above, columns in datafiles can be separated using
whitespace and/or commas, which means that PyXPlot is compatible both
with the format used by gnuplot, and also with comma-separated-value
(CSV) files which many spreadsheets produce. Algebraic expressions may
also be used in place of column numbers, for example:

plot ’datafile’ using (3+$1+$2):(2+$3)

In algebraic expressions, column numbers should be prefixed by dollar signs,
to distinguish them from numerical constants. The example above would
plot the sum of the values in the first two columns of the datafile, plus three,
on the horizontal axis, against two plus the value in the third column on the
vertical axis. A more advanced example might be:

2Users with some experience in Python may be interested to know that all of the
functions in the core and math modules are recognised.



10 CHAPTER 2. FIRST STEPS WITH PYXPLOT

acos(x) Return the arc cosine (measured in radians) of
x.

asin(x) Return the arc sine (measured in radians) of z.

atan(x) Return the arc tangent (measured in radians) of
x.

atan2(y, x) Return the arc tangent (measured in radians) of

y/x. Unlike atan(y/z), the signs of both = and
y are considered.

ceil(x) Return the ceiling of x as a float. This is the
smallest integral value > x.

cos(z) Return the cosine of x (measured in radians).

cosh(z) Return the hyperbolic cosine of x.

degrees(z) Convert angle x from radians to degrees.

exp(z) Return e raised to the power of x.

fabs(z) Return the absolute value of the float x.

floor(x) Return the floor of x as a float. This is the

largest integral value < x.

fmod(z, y) Return fmod(x, y), according to platform C. x
% y may differ.

frexp(z) Return the mantissa and exponent of x, as pair
(m,e). m is a float and e is an int, such that
x=m x 2¢ If zis 0, m and e are both 0. Else
0.5 < abs(m) < 1.0.

hypot(z,y)  Return the Euclidean distance, y/x2 + y2.

ldexp(z, ) Return z x 2°.

log(z], base]) Return the logarithm of x to the given base. If
the base not specified, returns the natural loga-
rithm (base e) of z.

log10(x) Return the base 10 logarithm of x.

max(z,y,...)  Return the greatest of the numerical values sup-
plied.

min(z,y,...)  Return the least of the numerical values sup-
plied.

modf(z) Return the fractional and integer parts of x.

Both results carry the sign of z. The integer
part is returned as a real.

pow(z,y) Return zv.

radians(z) Converts angle x from degrees to radians.
sin(x) Return the sine of z (measured in radians).
sinh(x) Return the hyperbolic sine of x.

sqrt(x) Return the square root of x.

tan(z) Return the tangent of x (measured in radians).
tanh(x) Return the hyperbolic tangent of z.

Table 2.2: A list of mathematical functions which are pre-defined within
PyXPlot.



2.5. PLOTTING DATAFILES

and

or

Algebraic sum
Algebraic subtraction
Algebraic multiplication
Algebraic exponentiation
Algebraic division
Modulo operator

Left binary shift

Right binary shift
Binary and

Binary or

Logical exclusive or
Magnitude comparison
Magnitude comparison
Magnitude comparison
Magnitude comparison
Equality comparison
Equality comparison
Alias for '=

Logical and

Logical or

Table 2.4: A list of mathematical operators which PyXPlot recognises.

11



12 CHAPTER 2. FIRST STEPS WITH PYXPLOT

0.0 0.0 Start of index 0, data block 0.
1.0 1.0
2.0 2.0
3.0 3.0
A single blank line marks the start of a new data block.
0.0 5.0 Start of index 0, data block 1.
1.0 4.0
2.0 2.0
A double blank line marks the start of a new index.
0.0 1.0 Start of index 1, data block 0.
1.0 0
A single blank line marks the start of a new data block.
0.0 5.0 Start of index 1, data block 1.

<etc>

Figure 2.2: An example PyXPlot datafile — the datafile is shown in the two
left-hand columns, and commands are shown to the right.

plot ’datafile’ using 3.0:$($2)

This would place all of the datapoints on the line x = 3, drawing their
vertical positions from the value of some column n in the datafile, where the
value of n is itself read from the second column of the datafile.

Later, in Section 3.4, I shall discuss how to plot rows of datafiles against
one another, in horizontally arranged datafiles.

It is also possible to plot data from only a range of lines within a datafile.
When PyXPlot reads a datafile, it looks for any blank lines in the file. It
divides the datafile up into “data blocks”, each being separated by single
blank lines. The first datablock is numbered 0, the next 1, and so on.

When two or more blank lines are found together, the datafile is divided
up into “index blocks”. Each index block may be made up of a series of data
blocks. To clarify this, a labelled example datafile is shown in Figure 2.2.

By default, when a datafile is plotted, all data blocks in all index blocks
are plotted. To plot only the data from one index block, the following syntax
may be used:

plot ’datafile’ index 1

To achieve the default behaviour of plotting all index blocks, the index
modifier should be followed by a negative number.

It is also possible to specify which lines and/or data blocks to plot from
within each index. For this purpose the every modifier is used, which takes
six values, separated by colons:



2.6. DIRECTING WHERE OUTPUT GOES 13

plot ’datafile’ every a:b:c:d:e:f
The values have the following meanings:

Plot data only from every ath line in datafile.

Plot only data from every bth block within each index block.
Plot only from line ¢ onwards within each block.

Plot only data from block d onwards within each index block.
Plot only up to the eth line within each block.

Plot only up to the fth block within each index block.

W Q0 o

Any or all of these values can be omitted, and so the following would both
be valid statements:

plot ’datafile’ index 1 every 2:3
plot ’datafile’ index 1 every :::3

The first would plot only every other data point from every third data block;
the second from the third line onwards within each data block.

A final modifier for selecting which parts of a datafile are plotted is
select, which plots only those data points which satisfy some given crite-
rion. This is an extension of gnuplot’s original syntax, and is described in
Section 3.4.

2.6 Directing Where Output Goes

By default, when PyXPlot is used interactively, all plots are displayed on
the screen. It is also possible to produce postscript output, to be read into
other programs or embedded into KTEX documents, as well as a variety of
other graphical formats. The set terminal command? is used to specify
the output format that is required, and the set output command the file
to which output should be directed. For example,

set terminal postscript
set output ’myplot.eps’
plot sin(x)

would produce a postscript plot of sin(x) to the file myplot.eps.

The set terminal command can also be used to configure further as-
pects of the output file format. For example, the following would produce
black-and-white and colour output respectively:

3gnuplot users should note that the syntax of the set terminal command in PyXPlot
is rather different; see Section 3.2.



14 CHAPTER 2. FIRST STEPS WITH PYXPLOT

set terminal monochrome
set terminal colour

The former is useful for preparing plots for black-and-white publications,
the latter for preparing plots for colourful presentations.

Both encapsulated and non-encapsulated postscript can be produced.
The former is recommended for producing figures to embed into documents,
the latter for plots which are to be printed without further processing. The
postscript terminal produces the latter; the eps terminal should be used
to produce the former. Similarly the pdf terminal produces pdf files:

set terminal postscript
set terminal eps
set terminal pdf

It is also possible to produce plots in the gif, png and jpeg graphic
formats, as follows:

set terminal gif
set terminal png
set terminal jpg

More than one of the above keywords can be combined on a single line,
for example:

set terminal postscript colour
set terminal gif monochrome

To return to the default state of displaying plots on screen, the x11
terminal should be selected:

set terminal x11

For more details of the set terminal command, including how to pro-
duce transparent gifs and pngs, see Section 3.2.

We finally note that, after changing terminals, the replot command is
especially useful; it repeats the last plot command.. If any plot items are
placed after it, they are added to the last plot.

2.7 Data Styles

By default, data from files are plotted with points, and functions are plotted
with lines. However, either kinds of data can be plotted in a variety of ways.
To plot a function with points, for example, the following syntax is used*:

*Note that when a plot command contains both using/every modifiers, and the with
modifier, the latter must come last.



2.7. DATA STYLES 15
plot sin(x) with points

The number of points displayed (i.e. the number of samples of the function)
can be set as follows:

set samples 100
Likewise, datafiles can be plotted with lines:
plot ’datafile’ with lines

A variety of other styles are available. 1inespoints combines both the
points and lines styles, drawing lines through points. Errorbars can also
be drawn, as follows:

plot ’datafile’ with yerrorbars

In this case, three columns of data need to be specified: the z- and y-
coordinates of each datapoint, plus the size of the vertical errorbar on that
datapoint. By default, the first three columns of the datafile are used, but
once again (see Section 2.5), the using modifier can be used:

plot ’datafile’ using 2:3:7 with yerrorbars

More details of the errorbars plot style can be found in Section 3.4. Other
plots styles supported by PyXPlot are listed in Section 2.11, and their details
can be found in many gnuplot tutorials. Bar charts will be discussed further
in Section 3.6.

The modifiers “pointtype” and “linetype”, which can be abbreviated
to “pt” and “lt” respectively, can also be placed after the with modifier.
Each should be followed by an integer. The former specifies what shape of
points should be used to plot the dataset, and the latter whether a line should
be continuous, dotted, dash-dotted, etc. Different integers correspond to
different styles.

The default plotting style referred to above can also be changed. For
example:

set style data lines

The default style for plotting data from files is then changed to lines. Sim-
ilarly the “set style function” command changes the default style for
plotting functions.



16 CHAPTER 2. FIRST STEPS WITH PYXPLOT

2.8 Setting Axis Ranges

In Section 2.2, the set xlabel configuration command was previously in-
troduced for placing text labels on axes. In this section, the configuration
of axes is extended to setting their ranges.

By default, PyXPlot automatically scales axes to some sensible range
which contains all of the plotted data. However, it is also possible for the
user to override this and set his own range. This can be done directly from
the plot command, for example:

plot [-1:1]1[-2:2] sin(x)

The ranges are specified immediately after the plot statement, with the
syntax [minimum:maximum].® The first specified range applies to the z-axis,
and the second to the y-axis.® Any of the values can be omitted, for example:

plot [:1[-2:2] sin(x)

would only set a range on the y-axis.
Alternatively, ranges can be set before the plot statement, using the
set xrange statement, for example:

set xrange [-2:2]
set y2range [a:Db]

Having done so, a range may subsequently be turned off, and an axis re-
turned to its default autoscaling behaviour, using the set autoscale com-
mand, which takes a list of axes to which it is to apply. If no list is supplied,
then the command is applied to all axes.

set autoscale x y
set autoscale

Axes can be set to have logarithmic scales using the set logscale com-
mand, which also takes a list of axes to which it should apply. Its converse
is set nologscale:

set logscale
set nologscale y x x2

Further discussion of the configuration of axes can be found in Sec-
tion 3.3.1.

5An alternative valid syntax is to replace the colon with the word ‘o’: [minimum to
maximum].

6As will be discussed in Section 3.3.1, if further ranges are specified, they apply to the
x2-axis, then the y2-axis, and so forth.



2.9. FUNCTION FITTING 17

2.9 Function Fitting

It is possible to fit functional forms to data points in datafiles using the fit
command. A simple example might be:”

f(x) = a*x+b
fit £() ’datafile’ index 1 using 2:3 via a,b

The coefficients to be varied are listed after the keyword “via”; the
keywords index, every and using have the same meanings as in the plot
command.?

This is useful for producing best-fit lines?, and also has applications for
estimating the gradients of datasets. The syntax is essentially identical to
that used by gnuplot, though a few points are worth noting;:

e When fitting a function of n variables, at least n+1 columns (or rows —
see Section 3.4) must be specified after the using modifier. By default,
the first n + 1 columns are used. These correspond to the values of
each of the n inputs to the function, plus finally the value which the
output from the function is aiming to match.

e If an additional column is specified, then this is taken to contain the
standard error in the value that the output from the function is aiming
to match, and can be used to weight the datapoints which are input
into the fit command.

e By default, the starting values for each of the fitting parameters is
1.0. However, if the variables to be used in the fitting process are
already set before the fit command is called, these initial values are
used instead. For example, the following would use the initial values
{a =100,b = 50}:

f(x) = axx+b

a = 100

b = 50

fit £() ’datafile’ index 1 using 2:3 via a,b

e As with all numerical fitting procedures, the fit command comes with
caveats. It uses a generic fitting algorithm, and may not work well with
poorly behaved or ill-constrained problems. It works best when all of
the values it is attempting to fit are of order unity. For example, in a
problem where a was of order 10'°, the following might fail:

"In gnuplot, this example would have been written fit £(x) ..., rather than fit £()
. ... This syntax is supported in PyXPlot, but deprecated.

8The select keyword, to be introduced in Section 3.4 can also be used.

9 Another way of producing best-fit lines is a to use a cubic spline; more details in given
in Section 3.8



18 CHAPTER 2. FIRST STEPS WITH PYXPLOT

f(x) = axx
fit £() ’datafile’ via a

However, better results might be achieved if a were artificially made
of order unity, as in the following script:

f(x) = lelO*ax*xx
fit £() ’datafile’ via a

e A series of ranges may be specified after the fit command, using the
same syntax as in the plot command, as described in Section 2.8. If
ranges are specified then only datapoints falling within these ranges are
used in the fitting process; the ranges refer to each of the n variables
of the fitted function in order.

e For those interested in the mathematical details, the workings of the
fit command is discussed in more detail in Chapter 6.

At the end of the fitting process, the best-fitting values of each parameter
are output to the terminal, along with an estimate of the uncertainty in
each. Additionally, the Hessian, covariance and correlation matrices are
output in both human-readable and machine-readable formats, allowing a
more complete assessment of the probability distribution of the parameters.

2.10 Interactive Help

In addition to this Users’ Guide, PyXPlot also has a help command, which
provides a hierarchical source of information. Typing ‘help’ alone gives a
brief introduction to the help system, as well as a list of topics on which
help is available. To display help on any given topic, type ‘help’ followed by
the name of the topic. For example:

help commands

provides information on PyXPlot’s commands. Some topics have subtopics,
which are listed at the end of each page. To view them, add further words
to the end of your help request — an example might be:

help commands help

which would display help on the help command itself.



2.11.

DIFFERENCES BETWEEN PYXPLOT AND GNUPLOT 19

2.11 Differences Between PyXPlot and Gnuplot

The commands supported by PyXPlot are only a subset of those available
in gnuplot, although most of its functionality is present. Features which are
supported by this version include:

Allocation of user-defined variables and functions.
The print, help, exit and quit commands.
The reset and clear commands.

The ! command, to execute the remainder of the line as a shell com-
mand, e.g. !1s.

The cd and pwd commands, to change and display the current working
directory.

The use of ¢ ¢ back-quotes to substitute the output of a shell com-
mand.19

Set plot titles, axis labels, axis ranges, pointsize, linestyles, etc.
Fitting of functions to data via the fit command.

Basic 2d plotting and replotting of functions and datafiles, with the
following styles: lines, points, linespoints, dots, boxes, steps,
fsteps, histeps, impulses, csplines, acsplines and errorbars of
all flavours (see Section 3.4 for details of changes to errorbars).

Automatic and manual selection of linestyles, linetypes, linewidths,
pointtypes and pointsizes.

Use of dual axes. Note: Operation here differs slightly from original
gnuplot; dual axes are displayed whenever they are defined, there is no
need to set xtics nomirror. See the details in the following chapter.

Placing arrows and textual labels on plots.
Putting grids on plots (colour can be set, but not linestyle).
Setting plot aspect ratios with set size ratio or set size square.

Multiplot (which is very significantly improved over gnuplot; see Sec-
tion 3.5).

107t should be noted that back-quotes can only be used outside quotes. For example,
set xlabel ’‘ls‘’ will not work. The best way to do this would be: set xlabel ‘echo

non

. . (4
; 1s ; echo "’"°.



20

CHAPTER 2. FIRST STEPS WITH PYXPLOT

e Setting major/minor tics with the set xtics and set mxtics com-
mands.

Gnuplot features which PyXPlot does not presently support include:

e Parametric function plotting.

e Three-dimensional plotting (i.e. gnuplot’s splot command).



Chapter 3

Extensions of Gnuplot’s
Interface

A large number of new functions are available in PyXPlot which were not
originally present in gnuplot. This chapter describes these extensions. From
here onwards I shall presume that the user is familiar with the basic opera-
tion of gnuplot, and shall concentrate on the differences between PyXPlot’s
interface and that of gnuplot. In addition to having read the previous chap-
ter, novice users may also find it of use to consult one of the many gnuplot
tutorials which are to be found on the web before proceeding.

3.1 The Commandline Environment

PyXPlot uses the GNU Readline command-line environment, which means
that the up and down arrow keys can be used to repeat previously executed
commands. Each user’s command history is stored in his homespace in a
history file called ‘. pyxplot_history’, allowing PyXPlot to remember com-
mand histories between sessions. Additionally, a save command is provided,
allowing the user to save his command history from the present session to a
text file; this has the following syntax:

save ’output_filename’

From the shell command line, the PyXPlot accepts the following switches
which modify its behaviour:

-h --help Display a short help message listing the available
command-line switches.

-v --version Display the current version number of PyXPlot.

-q -—quiet Turn off the display of the welcome message on
startup.

21



22 CHAPTER 3. EXTENSIONS OF GNUPLOT’S INTERFACE

-V --verbose Display the welcome message on startup, as hap-
pens by default.
-c —--colour Use colour highlighting! to display output in green,

warning messages in amber, and error messages
in red.? These colours can be changed in the
terminal section of the configuration file; see Sec-
tion 4.1 for more details.

-m --monochrome Do not use colour highlighting, as happens by de-
fault.

3.2 Formatting and Terminals

In this section I shall outline the new and modified commands for controlling
the graphic output format of PyXPlot.

The widths of plots may be set be means of two commands — set size
and set width. Both are equivalent, and should be followed by the desired
width measured in centimetres, for example:

set width 20

The set size command can also be used to set the aspect ratio of plots
by following it with the keyword ratio. The number which follows should
be the desired ratio of height to width. The following, for example would
produce plots three times as high as they are wide:

set size ratio 3.0

The command set size noratio returns to PyXPlot’s default aspect
ratio of the golden ratio, i.e. ((1+5)/2) _1, which matches that of a sheet
of A4 paper3. The special command set size square sets the aspect ratio
to unity.

If the enlarge modifier is used with the set terminal command then
the whole plot is enlarged or, in the case of large plots, shrunk to the current
paper size (minus a small margin). The aspect ratio of the plot is preserved.
This is perhaps most useful when preparing a plot to send to a printer with
the postscript terminal.

In Section 2.6 I described how the set terminal command can be used
to produce plots in various graphic formats. In addition, I here describe

!This will only function on terminals which support colour output.

2The author apologies to those members of the population who are red/green colour-
blind, but draws their attention to the following sentence.

30f less practical significance, it has been in use since the time of the Pythagoreans,
and is seen repeatedly in the architecture of the Parthenon.



3.2. FORMATTING AND TERMINALS 23

how the way in which plots are displayed on the screen can be changed.
The default terminal, X11, is used to send output to screen.

By default, each time a new plot is generated, if the previous plot is still
open on the display, the X11 terminal will replace it with the new one, thus
keeping only one plot window open at a time. This has the advantage that
the desktop does not become flooded with plot windows.

If this behaviour is not desired, old plots can be kept visible when plotting
further graphs by using the the X11 multiwindow terminal:

set terminal X11_singlewindow
plot sin(x)
plot cos(x) <-- first plot window disappears

c.f.:

set terminal X11_multiwindow
plot sin(x)
plot cos(x) <-- first plot window remains

As an additional option, the X11 persist terminal keeps plot windows
open after PyXPlot exits; the above two terminals close all plot windows
upon exit.

As there are many changes to the options accepted by the set terminal
command in comparison to those understood by gnuplot, the syntax of PyX-
Plot’s command is given below, followed by a list of the recognised settings:

set terminal { X11_singlewindow | X11_multiwindow | X11_persist |
postscript | eps | pdf | gif | png | jpg }

colour | color | monochrome }

portrait | landscape }

invert | noinvert }

transparent | solid }

enlarge | noenlarge }

A A A

x11_singlewindow Displays plots on the screen (in X11 windows, using
ghostview). Each time a new plot is generated, it re-
places the old one, preventing the desktop from be-
coming flooded with old plots.* [default when run-
ning interactively; see below]|

4The author is aware of a bug, that this terminal can occasionally go blank when a
new plot is generated. This is a known bug in ghostview, and can be worked around by
selecting File — Reload within the ghostview window.



24 CHAPTER 3. EXTENSIONS OF GNUPLOT’S INTERFACE

x11multiwindow As above, but each new plot appears in a new window,

x11_persist
postscript
eps

pdf

gif

png

jrg
colour

color
monochrome
portrait

landscape

invert
noinvert
transparent
solid

enlarge
noenlarge

and the old plots remain visible. As many plots as may
be desired can be left on the desktop simultaneously.
As above, but plot windows remain open after PyX-
Plot closes.

Sends output to a postscript file. The filename for this
file should be set using set output. [default when
running non-interactively; see below]

As above, but produces encapsulated postscript.

As above, but produces pdf output.

Sends output to a gif image file; as above, the filename
should be set using set output.

As above, but produces a png image

As above, but produces a jpeg image

Allows datasets to be plotted in colour. Automatically
they will be displayed in a series of different colours, or
alternatively colours may be specified using the with
colour plot modifier (see below). [default]
Equivalent to the above; provided for users of nation-
alities which can’t spell. ®

Opposite to the above; all datasets will be plotted in
black.

Sets plots to be displayed in upright (normal) orien-
tation. [default]

Opposite of the above; produces side-ways plots. Not
very useful when displayed on the screen, but you fit
more on a sheet of paper that way around.

Modifier for the gif, png and jpg terminals; produces
output with inverted colours.’

Modifier for the gif, png and jpg terminals; opposite
to the above. [default]

Modifier for the gif and png terminals; produces out-
put with a transparent background.

Modifier for the gif and png terminals; opposite to the
above. [default]

Enlarge or shrink contents to fit the current paper size.
Do not enlarge output; opposite to the above. [de-
fault]

The default terminal is normally x11_singlewindow, matching approx-

5This terminal setting is useful for producing plots to embed in talk slideshows, which
often contain bright text on a dark background. It only works when producing bitmapped
output, though a similar effect can be achieved in postscript using the set textcolour
and set axescolour commands (see Section 3.4.3).



3.3. PLOTTING 25

imately the behaviour of gnuplot. However, there is an exception to this.
When PyXPlot is used non-interactively —i.e. one or more command scripts
are specified on the command line, and PyXPlot exits as soon as it finishes
executing them — the x11 _singlewindow is not a very sensible terminal to
use. Any plot window would close as soon as PyXPlot exited. The default
terminal in this case changes to postscript.

One exception to this is when the special ‘-~ filename is specified in a list
of command scripts on the command line, to produce an interactive terminal
between running a series of scripts. In this case, PyXPlot detects that
the session will be interactive, and defaults to the usual x11_singlewindow
terminal.

An additional exception is on machines where the DISPLAY environment
variable is not set. In this case, PyXPlot detects that it has access to no X-
terminal on which to display plots, and defaults to the postscript terminal.

The gif, png and jpg terminals result in some loss of quality, since the
plot has to be sampled into a bitmapped graphic format. By default, this
sampling is performed at 300 dpi, though this may be changed using the
command set dpi <value>. Alternatively, it may be changed using the
DPI option in the settings section of a configuration file (see Section 4.1).

3.2.1 Paper Sizes

By default, when the postscript terminal produces printable, i.e. not en-
capsulated, output, the paper size for this output is read from your system
locale settings. It may be changed, however, with the set papersize com-
mand, which may be followed either by the name of a recognised paper size,
or by the dimensions of a user-defined size, specified as a height, width
pair, both being measured in millimetres. For example:

set papersize a4
set papersize 100,100

A list of recognised paper size names is given in Figure 3.1.

3.3 Plotting

In this section I outline some of the extensions of the plot command, to
give greater flexibility in the appearance of graphs.

3.3.1 Configuring Axes

By default, plots have only one x-axis and one y-axis. Further parallel axes
can be added and configured via statements such as:



26 CHAPTER 3. EXTENSIONS OF GNUPLOT’S INTERFACE

Name h/mm w/mm Name h/mm w/mm

2a0 1681 1189 medium 584 457

4a0 2378 1681 monarch 267 184

a0 1189 840 post 489 394

al 840 594 quad_demy 1143 889

alO 37 26 quarto 254 203

a2 594 420 royal 635 508

a3 420 297 statement 216 140

ad 297 210 swedish_d0 1542 1090

ab 210 148 swedish_d1 1090 771

ab 148 105 swedish_d10 48 34

a7 105 74 swedish_d2 771 545

a8 74 52 swedish_d3 545 385

a9 52 37 swedish_d4 385 272

b0 1414 999 swedish-d5 272 192

bl 999 707 swedish_-d6 192 136

b10 44 31 swedish_d7 136 96

b2 707 499 swedish_d8 96 68

b3 499 353 swedish_-d9 68 48

b4 353 249 swedish-e0 1241 878

b5 249 176 swedish_-el 878 620

b6 176 124 swedish-e10 38 27

b7 124 88 swedish_e2 620 439

b8 88 62 swedish_e3 439 310

b9 62 44 swedish_e4 310 219

c0 1296 917 swedish_e5 219 155

cl 917 648 swedish_e6 155 109

cl0 40 28 swedish_e7 109 7

c2 648 458 swedish_e8 7 54

c3 458 324 swedish_e9 54 38

cd 324 229 swedish_f0 1476 1044

c5 229 162 swedish_f1 1044 738

c6 162 114 swedish_f10 46 32

c7 114 81 swedish_f2 738 522

c8 81 57 swedish_f3 522 369

c9 57 40 swedish_f4 369 261

crown 508 381 swedish_f5 261 184

demy 572 445 swedish_f6 184 130
double_demy 889 597 swedish_f7 130 92
elephant 711 584 swedish_f8 92 65
envelope_dl 110 220 swedish_f9 65 46
executive 267 184 swedish_g0 1354 957
foolscap 330 203 swedish_gl 957 677
government_letter 267 203 swedish_gl10 42 29
international_businesscard 85 53 swedish_g2 677 478
japanese_b0 1435 1015 swedish_g3 478 338
japanese_bl 1015 717 swedish_g4 338 239
japanese_b10 44 31 swedish_g5 239 169
japanese_b2 717 507 swedish_g6 169 119
japanese_b3 507 358 swedish_g7 119 84
japanese_b4 358 253 swedish_g8 84 59
japanese_b5 253 179 swedish_g9 59 42
japanese_b6 179 126 swedish_h0 1610 1138
japanese_b7 126 89 swedish_h1 1138 805
japanese_b8 89 63 swedish_h10 50 35
japanese_b9 63 44 swedish_h2 805 569
japanese_kiku4 306 227 swedish_h3 569 402
japanese_kikub 227 151 swedish_h4 402 284
japanese_shiroku4 379 264 swedish_h5 284 201
japanese_shirokub 262 189 swedish_h6 201 142
japanese_shiroku6 188 127 swedish_h7 142 100
large_post 533 419 swedish_h8 100 71
ledger 432 279 swedish_h9 71 50

legal 356 216 tabloid 432 279

letter 279 216 us_businesscard 89 51

Figure 3.1: A list of all of the named paper sizes recognised by the set
papersize command, with their heights, h, and widths, w, measured in
millimetres.



3.3. PLOTTING 27

set x3label ’foo’
plot sin(x) axes x3yl
set axis x3

In the top statement, a further z axis, called x3, is implicitly created by
giving it a label. In the next, the axes modifier is used to tell the plot
command to plot data against the x3-axis, which also implicitly created
such an axis if it doesn’t already exist. In the third, an x3-axis is explicitly
created.

Unlike gnuplot, which allowed only a maximum of two parallel axes to
be added to plots, PyXPlot allows an unlimited number of axes to be used.
Odd-numbered z-axes appear below the plot, and even numbered z-axes
above it; a similar rule applies for y-axes, to the left and to the right. This
is illustrated in Figure 3.2.

As discussed in the previous chapter, the ranges of axes can be set ei-
ther using the set xrange command, or within the plot command. The
following two statements would set equivalent ranges for the x3-axis:

set x3range [-2:2]
plot [:J[:1[:1[:]1[-2:2] sin(x) axes x3yl

As usual, the first two ranges specified in the plot command apply to the
x- and y-axes. The next pair apply to the x2- and y2-axes, and so forth.

Having made axes with the above commands, they may subsequently be
removed using the unset axis command as follows:

unset axis x3
unset axis x3xb5y3 y7

The top statement, for example, would remove axis x3. The command
unset axis on its own, with no axes specified, returns all axes to their
default configuration. The special case of unset axis x1 does not remove
the first x-axis — it cannot be removed — but instead returns it to its default
configuration.

It should be noted, that if the following two commands are typed in
succession, the second may not entirely negate the first:

set x3label ’foo’
unset x3label ’foo’

The first may have implicitly created an x3-axis, which would need to be
removed with the unset axis x3 command.

A subtly different task is that of removing labels from axes, or setting
axes not to display. To achieve this, a number of special axis labels are
used. Labelling an axis “nolabels” has the effect that no title or numerical



28

The Y3 axis

10

—10

The Y axis

CHAPTER 3. EXTENSIONS OF GNUPLOT’S INTERFACE

The X8 axis
-10 0 10
The X4 axis
—10 0 10
The X2 axis
-10 0 10
10 . . . . . 10
H
=
a
0t 103
7
wn
—10 . . . . L —10
—10 0 10
The X axis
-10 0 10
The X3 axis

Figure 3.2: A plot demonstating the use of large numbers of axes. Odd-
numbered z-axes appear below the plot, and even numbered z-axes above

it; a similar rule applies for y-axes, to the left and to the right.



3.3. PLOTTING 29

labels are placed upon it. Labelling it “nolabelstics” is stronger still;
this removes all tick marks from it as well (similar in effect to set noxtics
in gnuplot). Finally, labelling it “invisible” makes an axis completely
invisible.

Labels may be placed on such axes, by following the magic keywords
above with a colon and the desired title, for example:

set xlabel ’nolabels:Time’

would produce an z-axis with no numeric labels, but a label of ‘Time’.

In the unlikely event of wanting to label a normal axis with one of these
magic words, this may be achieved by prefixing the magic word with a space.
There is one further magic axis label, linkaxis, which will be described in
Section 3.5.2.

The ticks of axes can be configured to point either inward, towards the
plot, as is the default, or outward towards the axis labels, or in both direc-
tions. This is achieved using the set xticdir command, for example:

set xticdir inward
set y2ticdir outward
set x2ticdir both

The position of ticks along each axis can be configured with the set
xtics command. The appearance of ticks along any axis can be turned off
with the set noxtics command. The syntax for these is given below:

set xtics { axis | border | inward | outward | both }
{ autofreq

| <increment>
| <minimum>, <increment> { , <maximum> }
I ( {"label"} <position>

{ , {"label"} <position> } .... )

}
set noxtics
show xtics

The keywords inward, outward and both alter the directions of the ticks,
and have the same effect as in the set xticdir command. The keyword
axis is an alias for inward, and border an alias for outward, both provided
for gnuplot compatibility. If the keyword autofreq is given, the automatic
placement of ticks on the axis is restored.

If <minimum>, <increment>, <maximum> are specified, then ticks are
placed at evenly spaced intervals between the specified limits. In the case
of logarithmic axes, <increment> is applied multiplicatively.



30 CHAPTER 3. EXTENSIONS OF GNUPLOT’S INTERFACE

X4 axis
0 2 4 6 8 10
X2 axis
a b ¢ d
10 T T T T
0w
ol
<
Y
_10 1 1 1 1
2 3 4 5
X axis
0 2 4 6 8 10
X3 axis

Figure 3.3: A plot demonstrating the use of the set xtics command. The
commands used to create the axes in this plot are as given in the text.

Alternatively, the final form allows ticks to be placed on an axis individ-
ually, and each given its own textual label.

The following pair of examples would both place tick marks at z =2, 3,
4, 5. In the second example, they would be labelled “a”, “b”, “c” and “d”:
set xtics 2, 1, 5

set x2tics ("a" 2, "b" 3, "c" 4, "d" 5)

The following example would place tick marks at intervals of two units
along the x3-axis:

set x3tics 2

The following example would restore the automatic placement of ticks
along the x4-axis, placing those ticks facing outwards from the graph:

set x4tics border autofreq
All of the examples above are illustrated in Figure 3.3. Minor tick marks

can be placed on axes with the set mxtics command, which has the same
syntax as above.



3.3. PLOTTING 31

3.3.2 Keys and Legends

By default, plots are displayed with a legend in their top-right corners. The
textual description of each dataset is drawn by default from the command
used to plot it. Alternatively, the user may specify his own description for
each dataset by following the plot command with the title modifier, as
follows:

plot sin(x) title ’A sine wave’
plot cos(x) title °’?

In the lower case, a blank title is specified, in which case, PyXPlot
makes no entry for this dataset in the legend. This is useful if it is desired
to place some but not all datasets into the legend of a plot. Alternatively,
the production of the legend can be completely turned off for all datasets,
by the command set nokey. The opposite effect can be achieved by the
set key command.

This latter command can also be used to dictate where on the plot the
legend should be placed, using a syntax along the lines of:

set key top right

The following recognised positioning keywords are self-explanatory: top,
bottom, left, right, xcentre and ycentre. The word outside places the
key outside the plot, on its right side. The word below places the legend
below the plot.

In addition, two positional offset coordinates may be specified after such
keywords — the first value is assumed to be an z-offset, and the second a
y-offset, in units approximately equal to the size of the plot. For example:

set key bottom left 0.0 -0.5

would display a key below the bottom left corner of the graph.

By default, entries in the key are placed in a single vertical list. They
can instead be arranged into a number of columns by means of the set
keycolumns command.. This should be followed by the integer number of
desired columns, for example:

set keycolumns 2

An example of a plot with a two-column legend is given in Figure 3.4.



32 CHAPTER 3. EXTENSIONS OF GNUPLOT’S INTERFACE

0.6 | e
04 | 1
0.2 i

O 1 1 1

0 0.2 0.4 0.6

T
e sin(z)
xexp(x) - x cos(x)

Figure 3.4: An example of a plot with a two-column legend, positioned below
the plot using set key below.



3.3. PLOTTING 33

3.3.3 The linestyle Keyword

At times, the string of style keywords following the with modifier in plot
commands can grow rather unwieldily long. For clarity, frequently used plot
styles can be stored as “linestyles”; this is true of styles involving points as
well as lines. The syntax for setting a linestyle is:

set linestyle 2 points pointtype 3

where the “2” is the identification number of the linestyle. In a subsequent
plot statement, this linestyle can be recalled as follows:

plot sin(x) with linestyle 2

3.3.4 Colour Plotting

In the with clause of the plot command, the modifier colour, (abbrev. ‘c’),

allows the colour of each dataset to be manually selected. It should be
followed either by an integer, to set a colour from the present palette, or
by a colour name. A list of valid colour names is given in Section 4.6. For
example:

plot sin(x) with c 5
plot sin(x) with colour blue

The colour modifier can also be used when defining linestyles.

PyXPlot has a palette of colours which it assigns sequentially to datasets
when colours are not manually assigned. This is also the palette to which
integers passed to set colour refer — the ‘5’ above, for example. It may be
set using the set palette command, which differs in syntax from gnuplot.
It should be followed by a comma-separated list of colours, for example:

set palette red,green,blue

Another way of setting the palette, in a configuration file, is described
in Section 4.2; a list of valid colour names is given in Section 4.6.

3.3.5 General Extensions Beyond Gnuplot



34 CHAPTER 3. EXTENSIONS OF GNUPLOT’S INTERFACE

plot linewidths

dots plot style

select keyword

For an unknown reason, gnuplot doesn’t allow set
linewidth 2 as valid syntax. This setting is permit-
ted in PyXPlot. Furthermore, set pointlinewidth
2 will set the linewidth to be used when drawing data
points. A similar effect can be achieved via:

plot sin(x) with points pointlinewidth 2

In both cases, the abbreviation plw is valid.
When using the dots style, for example:

plot sin(x) with dots

the size of the plotted dots can be varied with the
pointsize modifier, unlike in gnuplot, where the dots
were of a fixed size. For example, to display big dots,
use:

plot sin(x) with dots pointsize 10

As well as the index, using and every keywords
which gnuplot used to allow users to plot subsets of
data from datafiles, PyXPlot also has a further modi-
fier, select. This can be used to plot only those data-
points in a datafile which specify some given criterion.
For example:

plot ’datafile’ select ($8>5)
plot sin(x) select (($1>0) and ($2>0))

In the second example, two select criteria are given,
combined with the logical and operatorS. The se-
lect modifier has many applications, including plot-
ting two-dimensional slices from three-dimensional
datasets, and selecting certain subsets of datapoints
from a datafile for plotting.

Logical operators such as and, or and not can be used,
as seen in the second example above; indeed, any ex-
pression which is valid Python can be used.

5See Table 2.4 for a list of all operators recognised by PyXPlot.



3.3. PLOTTING

arrows plot style

lower and upper
limit datapoints

plotting functions

with
and
styles

errorbars

other

plot

35

The arrows plot style takes four columns of data, x1,
Y1, T2, Y2, and for each data point draws an arrow from
the point (x1,y1) to (x2,y2). Three different kinds of
arrows can be drawn: ones with normal arrow heads,
ones with no arrow heads, which just appear as lines,
and ones with arrow heads on both ends. The syntax
is:

plot ’datafile’ with arrows_head
plot ’datafile’ with arrows_nohead
plot ’datafile’ with arrows_twohead

The syntax ‘with arrows’ is a shorthand for ‘with
arrows_head’.

PyXPlot can plot datapoints using the standard
upper- and lower-limit symbols. No special syntax
is required for this; these symbols are pointtypes’ 12
and 13 respectively, obtained as follows:

plot ’upperlimits’ with points pointtype 12
plot ’lowerlimits’ with points pointtype 13

In gnuplot, when a function (as opposed to a datafile)
is plotted, only those plot styles which accept two
columns of data can be used — for example, lines
or points. It is not possible to plot a function with
errorbars, for example. In PyXPlot, by contrast, this
is possible using the following syntax:

plot f(x):g(x) with yerrorbars

Two functions are supplied, separated by a colon; plot-
ting proceeds as if a datafile had been supplied, con-
taining values of z in column 1, values of f(z) in col-
umn 2, and values of g(x) in column 3. This may be
useful, for example, if g(x) measures the intrinsic un-
certainty in f(z). The using modifier may also be
used:

plot f(x):g(x) using 2:3

"The pointtype modifier was introduced in Section 2.7.



36 CHAPTER 3. EXTENSIONS OF GNUPLOT’S INTERFACE

horizontally
arranged datafiles

Here, g(z) would be plotted on the y-axis, against f(x)
on the x-axis. It should be noted, however, that the
range of values of x used would still correspond to the
range of the plot’s horizontal axis. If the above were to
be attempted with an autoscaling horizontal axis, the
result might be rather unexpected — PyXPlot would
find itself autoscaling the z-axis range to the spread
of values of f(z), but find that this itself changed de-
pending upon the range of the z-axis.

The command syntax for plotting columns of datafiles
against one another was previously described in Sec-
tion 2.5. In an extension of gnuplot’s interface, it is
also possible to plot rows of data against one another
in horizontally-arranged datafiles. For this, the key-
word ‘rows’ is placed after the using modifier:

plot ’datafile’ index 1 using rows 1:2

The syntax ‘using columns’ is also accepted, to spec-
ify the default behaviour of plotting columns against
one another:

plot ’datafile’ index 1 using columns 1:2

When plotting horizontally-arranged datafiles, the
meanings of the index and every modifiers (see Sec-
tion 2.5) are altered slightly. The former continues to
refer to vertical blocks of data separated by two blank
lines. Blocks, as referenced in the every modifier, con-
tinue to be vertical blocks of datapoints, separated by
single blank lines. The row numbers passed to the
using modifier are counted from the top of the cur-
rent block.

However, the line-numbers specified in the every mod-
ifier — i.e. variables a, ¢ and e in the system above —
now refer to horizontal columns, rather than lines. For
example:

plot ’datafile’ using rows 1:2 every 2::3::9

would plot the data in row 2 against that in row 1,
using only the values in every other column, between
columns 3 and 9.



3.3. PLOTTING

errorbars

37

In gnuplot, when one used errorbars, one could either
specify the size of the errorbar, or the min/max range
of the errorbar. Both of these usages shared a common
syntax, and gnuplot’s behaviour depended upon the
number of data columns provided:

plot ’datafile’ with yerrorbars

Given a datafile with three columns, this would take
the third column to indicate the size of the y-errorbar,
and given a four-column datafile, it would take the
third and fourth columns to indicate the min/max
range to be marked out by the errorbar.

To avoid confusion, a different syntax is adopted in
PyXPlot. The syntax:

plot ’datafile’ with yerrorbars
now always assumes the third column of the datafile to
indicate the size of the errorbar, regardless of whether

a fourth is present. The syntax:

plot ’datafile’ with yerrorrange

always assumes the third and fourth columns to indi-
cate the min/max range of the errorbar.

For clarity, a complete list of errorbar styles is given
below:

yerrorbars Vertical errorbars; size drawn
from the third data-column.

xerrorbars Horizontal errorbars; size drawn
from the third data-column.

xyerrorbars Horizontal and vertical error-

bars; sizes drawn from the third
and fourth data-columns respec-
tively.

errorbars Shorthand for yerrorbars.



38 CHAPTER 3.

datafile wildcards

backing up over-
written files

EXTENSIONS OF GNUPLOT’S INTERFACE

yerrorrange Vertical errorbars; minimum
drawn from the third data-
column, maximum from the
fourth.
xerrorrange Horizontal errorbars; minimum
drawn from the third data-
column, maximum from the
fourth.
xyerrorrange Horizontal and vertical error-
bars; horizontal minimum drawn
from the third data-column, and
maximum from the fourth; ver-
tical minimum drawn from the
fifth, and maximum from the
sixth.
errorrange Shorthand for yerrorrange.
PyXPlot allows the wildcards ‘*’ and ‘?’ to be used
both in the filenames of datafiles following the plot
command, and also when specifying command files on
the command line and with the load command. For
example, the following would plot all datafiles in the
current directory with a ‘.dat’ suffix, using the same
plot options:

plot ’*.dat’ with linewidth 2

In the legend, full filenames are displayed, allowing the
datafiles to be distinguished.

As in gnuplot, a blank filename passed to the plot com-
mand causes the last used datafile to be used again.
By default, when plotting to a file, if the output file-
name matches that of an existing file, that file is over-
written. This behaviour may be changed with the set
backup command, which has syntax:

set backup
set nobackup

When this switch is turned on, pre-existing files will
be renamed with a tilde at the end of their filenames,
rather than being overwritten.



3.4. SUNDRY ITEMS (ARROWS, TEXT LABELS, AND MORE) 39

3.4 Sundry Items (Arrows, Text Labels, and More)

This section describes how to put arrows and text labels on plots; the syntax
is similar to that used by gnuplot, but slightly changed. It is now possible,
for example, to set the linestyles and colours with which arrows should be
drawn. Also covered is how to put grids onto plots, and how to change the
size and colour of textual labels on plots.

3.4.1 Arrows

Arrows may be placed on plots using the set arrow command, which has
similar syntax to that used by gnuplot. A simple example would be:

set arrow 1 from 0,0 to 1,1

The number ‘1’ immediately following ‘set arrow’ specifies an identification
number for the arrow, allowing it to be subsequently removed via:

unset arrow 1
or equivalently, via:
set noarrow 1

In PyXPlot, this syntax is extended; the set arrow command can be
followed by the keyword ‘with’, to specify the style of the arrow. For exam-
ple, the specifiers ‘nohead’, ‘head’ and ‘twohead’, after the keyword ‘with’,
can be used to make arrows with no arrow heads, normal arrow heads, or
two arrow heads. ‘twoway’ is an alias for ‘twohead’. For example:

set arrow 1 from 0,0 to 1,1 with nohead

In addition, linestyles and colours can be specified after the keyword
‘with’:

set arrow 1 from 0,0 to 1,1 with nohead \
linetype 1 c blue

As in gnuplot, the coordinates for the start and end points of the arrow
can be specified in a range of coordinate systems. ‘first’, the default,
measures the graph using the z- and y-axes. ‘second’ uses the x2- and
y2-axes. ‘screen’ and ‘graph’ both measure in centimetres from the origin
of the graph. In the following example, we use these specifiers, and specify
coordinates using variables rather than doing so explicitly:



40 CHAPTER 3. EXTENSIONS OF GNUPLOT’S INTERFACE

x0 = 0.0
yO = 0.0
x1=1.0
y1 = 1.0

set arrow 1 from first =x0, first =x1 \
to screen x1, screen x1 \
with nohead

In addition to these four options, which are those available in gnuplot,
the syntax ‘axisn’ may also be used, to use the nth z- or y-axis — for
example, ‘axis3’. This allows arrows to reference any arbitrary axis on
plots which make use of large numbers of parallel axes (see Section 3.3.1).

3.4.2 Text Labels

Text labels may be placed on plots using the set label command. As with
all textual labels in PyXPlot, these are rendered in KTEX:

set label 1 ’Hello World’ at 0,0

As in the previous section, the number ‘1’ is a reference number, which
allows the label to be removed by either of the following two commands:

set nolabel 1
unset label 1

The positional coordinates for the text label, placed after the keyword ‘at’,
can be specified in any of the coordinate systems described for arrows above.
A rotation angle may optionally be specified after the keyword ‘rotate’, to
rotate text counter-clockwise by a given angle, measured in degrees. For
example, the following would produce upward-running text:

set label 1 ’Hello World’ at axis3 3.0, axis4 2.7 rotate 90

The fontsize of these text labels can globally be set using the set fontsize
x command. This applies not only to the set label command, but also to
plot titles, axis labels, keys, etc. The value given should be an integer in
the range —4 < x < 5. The default is zero, which corresponds to ITEX’s
normalsize; —4 corresponds to tiny and 5 to Huge.

The set textcolour command can be used to globally set the colour
of all text output, and applies to all of the text that the set fontsize
command does. It is especially useful when producing plots to be embedded
in presentation slideshows, where bright text on a dark background may be
desired. It should be followed either by an integer, to set a colour from the
present palette, or by a colour name. A list of the recognised colour names
can be found in Section 4.6. For example:



3.4. SUNDRY ITEMS (ARROWS, TEXT LABELS, AND MORE) 41

set textcolour 2
set textcolour blue

By default, each label’s specified position corresponds to its bottom left
corner. This alignment may be changed with the set texthalign and set
textvalign commands. The former takes the options left, centre or
right, and the latter takes the options bottom, centre or top, for example:

set texthalign right
set textvalign top

3.4.3 Gridlines

Gridlines may be placed on a plot and subsequently removed via the state-
ments:

set grid
set nogrid

respectively. The following commands are also valid:

unset grid
unset nogrid

By default, gridlines are drawn from the major and minor ticks of the x-
and y-axes. However, the axes which should be used may be specified after
the set grid command:

set grid x2y2
set grid x x2y2

The top example would connect the gridlines to the ticks of the z2- and
y2- axes, whilst the lower would draw gridlines from both the z- and the
r2-axes.

If one of the specified axes does not exist, then no gridlines will be drawn
in that direction. Gridlines can subsequently be removed selectively from
some axes via:

unset grid x2x3

The colours of gridlines can be controlled via the set gridmajcolour
and set gridmincolour commands, which control the gridlines emanating
from major and minor axis ticks respectively. An example would be:

set gridmincolour blue

Any of the colour names listed in Section 4.6 can be used.
A related command is set axescolour, which has a syntax similar to
that above, and sets the colour of the graph’s axes.



42 CHAPTER 3. EXTENSIONS OF GNUPLOT’S INTERFACE

3.5 Multi-plotting

Gnuplot has a plotting mode called “multiplot” which allows many graphs
to be plotted together, and display side-by-side. The basic syntax of this
mode is reproduced in PyXPlot, but is hugely extended.

The mode is entered by the command “set multiplot”. This can be
compared to taking a blank sheet of paper on which to place plots. Plots
are then placed on that sheet of paper, as usual, with the plot command.
The position of each plot is set using the set origin command, which
takes a comma-separated x,y coordinate pair, measured in centimetres. The
following, for example, would plot a graph of sin(x) to the left of a plot of
cos(z):

set multiplot
plot sin(x)

set origin 10,0
plot cos(x)

The multiplot page may subsequently be cleared with the clear com-
mand, and multiplot mode may be left using the “set nomultiplot” com-
mand.

3.5.1 Deleting, Moving and Changing Plots

Each time a plot is placed on the multiplot page in PyXPlot, it is allocated
a reference number, which is output to the terminal. Reference numbers
count up from zero each time the multiplot page is cleared. A number of
commands exist for modifying plots after they have been placed on the page,
selecting them by making reference to their reference numbers.

Plots may be removed from the page with the delete command, and
restored with the undelete command:

delete <number>
undelete <number>

The reference numbers of deleted plots are not reused until the page is
cleared, as they may always be restored with the undelete command; plots
which have been deleted simply do not appear.

Plots may also be moved with the move command. For example, the
following would move plot 23 to position (8,8) measured in centimetres:

move 23 to 8,8

In multiplot mode, the replot command can be used to modify the last
plot added to the page. For example, the following would change the title
of the latest plot to “foo”, and add a plot of cos(z) to it:



3.5. MULTI-PLOTTING 43

set title ’foo’
replot cos(x)

Additionally, it is possible to modify any plot on the page, by first se-
lecting it with the edit command. Subsequently, the replot will act upon
the selected plot. The following example would produce two plots, and then
change the colour of the text on the first:

set multiplot
plot sin(x)

set origin 10,0
plot cos(x)

edit O # Select the first plot ...
set textcolour red
replot # ... and replot it.

The edit command can also be used to view the settings which are
applied to any plot on the multiplot page — after executing “edit 0”7, the
show command will show the settings applied to plot zero.

When a new plot is added to the page, replot always switches to act
upon this most recent plot.

The refresh command is rather similar to the replot command, but
produces an exact copy of the latest display. This can be useful, for example,
after changing the terminal type, to produce a second copy of a multiplot
page in a different format. But the crucial difference between this command
and replot is that it doesn’t replot anything. Indeed, there could be only
textual items and arrows on the present multiplot page, and no graphs to
replot.

3.5.2 Linked Axes

The axes of plots can be linked together, in such a way that they always
share a common scale. This can be useful when placing plots next to one
another, firstly, of course, if it is of intrinsic interest to ensure that they
are on a common scale, but also because the two plots then do not both
need their own axis labels, and space can be saved by one sharing the labels
from the other. In PyXPlot, an axis which borrows its scale and labels from
another is called a “linked axis”.

Such axes are declared by setting the label of the linked axis to a magic
string such as “linkaxis 0”. This magic label would set the axis to borrow
its scale from an axis from plot zero. The general syntax is “linkaxis n
m”, where n and m are two integers, separated by a comma or whitespace.
The first, n, indicates the plot from which to borrow an axis; the second,
m, indicates whether to borrow the scale of axis x1, 22, x3, etc. By default,
m = 1. The linking will fail, and a warning result, if an attempt is made to
link to an axis which doesn’t exist.



44 CHAPTER 3. EXTENSIONS OF GNUPLOT’S INTERFACE

3.5.3 Text Labels, Arrows and Images

In addition to placing plots on the multiplot page, text labels may also be
inserted independently of any plots, using the text command. This has the
following syntax:

text ’This is some text’ at x,y

In this case, the string “This is some text” would be rendered at position
(z,y) on the multiplot. As with the set label command, a rotation angle
may optionally be specified to rotate text labels through any given angle,
measured in degrees counter-clockwise, for example:

text ’This is some text’ at x,y rotate r

The commands set textcolour, set texthalignand set textvalign,
which have already been described in the context in the set label com-
mand, can also be used to set the colour and alignment of text produced
with the text command.. A useful application of this is to produce centred
headings at the top of multiplots.

As with plots, each text item has a unique identification number, and
can be moved around, deleted or undeleted with the delete, undelete and
move commands.

It should be noted that the text command can also be used outside
of the multiplot environment, to render a single piece of short text instead
of a graph. Omne obvious application is to produce equations rendered as
graphical files for inclusion in talks.

Arrows may also be placed on multiplot pages, independently of any
plots, using the arrow command, which has syntax:

arrow from x,y to X,y

As above, arrows receive unique identification numbers, and can be
deleted and undeleted.

The arrow command may be followed by the ‘with’ keyword to specify
to style of the arrow. The style keywords which are accepted are identical to
those accepted by the set arrow command (see Section 3.4.1). For example:

arrow from x1,yl to x2,y2 \
with twohead colour red

Bitmap images in jpeg form may be placed on the multiplot using the
jpeg command. This has syntax:

jpeg ’filename’ at x,y width w



3.6. BARCHARTS AND HISTOGRAMS 45

As an alternative to the width modifier the height of the image can be
specified, using the analogous height modifier. An optional angle can also
be specified using the rotate modifier; this causes the included image to be
rotated counter-clockwise by a specified angle (in degrees).

Vector graphic images in eps format may be placed on to a multiplot us-
ing the eps command, which has a syntax analogous to the jpeg command.
However neither height nor width need be specified; in this case the image
will be included at its native size. For example:

eps ’filename’ at 3,2 rotate 5

will place the eps file with its bottom-left corner at position (3,2) cm from
the origin, rotated counter-clockwise through 5 degrees.

3.5.4 Speed Issues

By default, whenever an item is added to a multiplot, or an existing item
moved or replotted, the whole multiplot is replotted to show the change.
This can be a time consuming process on large and complex multiplots. For
this reason, the set nodisplay command is provided, which stops PyXPlot
from producing any output. The set display command can subsequently
be issued to return to normal behaviour.

This can be especially useful in scripts which produce large multiplots.
There is no point in producing output at each step in the construction of a
large multiplot, and so a great speed increase can be achieved by wrapping
the script with:

set nodisplay

[...prepare large multiplot...]
set display

refresh

3.6 Barcharts and Histograms

3.6.1 Basic Operation
As in gnuplot, bar charts and histograms can be produced using the boxes
plot style:

plot ’datafile’ with boxes

Horizontally, the interfaces between the bars are, by default, at the mid-
points along the x-axis between the specified datapoints (see, for example,
Panel (a) of Figure 3.5). Alternatively, the widths of the bars may be set



46 CHAPTER 3. EXTENSIONS OF GNUPLOT’S INTERFACE

Lr (c)

—o

M @ T

| ()
| (b)
> 05 1 1 i
O 1 1 1 m_
5

10

X X

Figure 3.5: A gallery of different bar chart styles which PyXPlot can pro-
duce. See the text for more details.

using the set boxwidth command. In this case, all of the bars will be cen-
tred upon their specified z-coordinates, and have total widths equalling that
specified in the set boxwidth command. Consequently, there may be gaps
between them, or they may overlap, as seen in Panel (c¢) of Figure 3.5.

Having set a fixed box width, the default automatic width mode may
be restored either with the unset boxwidth command, or by setting the
boxwidth to a negative width.

As a third alternative, it is also possible to specify different widths for
each bar manually, in a column of the input datafile. For this, the wboxes
plot style should be used:

plot ’datafile’ using 1:2:3 with wboxes

This plot style expects three columns of data to be specified: the z- and
y-coordinates of each bar, and the width in the third column. Panel (b) of
Figure 3.5 shows an example of this plot style in use.

By default, the bars all originate from the line y = 0, as is normal for a
histogram. However, should it be desired for the bars to start from a different
vertical point, that may be achieved with the set boxfrom command, for
example:

set boxfrom 5



3.6. BARCHARTS AND HISTOGRAMS 47

Figure 3.6: A second gallery of different bar chart styles which PyXPlot can
produce. See the text for more details.

All of the bars would then originate from the line y = 5. Panel (f) of
Figure 3.6 shows the kind of effect that is achieved; for comparison, panel (b)
of the same figure shows the same bar chart with the boxes starting from
their default position at y = 0.

The bars may be filled using the with fillcolour modifier, followed by
the name of a colour:

plot ’datafile’ with boxes fillcolour blue
plot ’datafile’ with boxes fc 4

Panels (c) and (d) of Figure 3.5 demonstrate the use of filled bars.

Finally, the impulses plot style, as in gnuplot, produces bars of zero
width; see Panel (e) of Figure 3.6 for an example.



48 CHAPTER 3. EXTENSIONS OF GNUPLOT’S INTERFACE

3.6.2 Stacked Bar Charts

If several datapoints are supplied at a common z-coordinate to the boxes
or wboxes plot styles, then the bars are stacked one above another into a
stacked barchart. Consider the following datafile:

The second bar at x = 2 would be placed on top of the first, spanning
the range 2 < y < 5, and having the same width as the first. If plot colours
are being automatically selected from the palette, then a different palette
colour is used to plot the upper bar.

3.6.3 Steps

As an alternative to solid boxes, a graph may also be plotted with “steps”;
see Panels (a), (c¢) and (d) of Figure 3.6 for examples. As is illustrated by
these panels, three flavours of steps are available (exactly as in gnuplot):

plot ’datafile’ with steps
plot ’datafile’ with fsteps
plot ’datafile’ with histeps

When using the steps plot style, the datapoints specify the right-most
edges of each step. By contrast, they specify the left-most edges of the steps
when using the fsteps plot style. The histeps plot style works rather like
the boxes plot style; the interfaces between the steps occur at the horizontal
midpoints between the datapoints.

3.7 Function Splicing

In PyXPlot, as in gnuplot, user-defined functions may be declared on the
command line:

f(x) = x*sin(x)

As an extension to what is possible in gnuplot, it is also possible to declare
functions which are only valid over a certain range of argument space. For
example, the following function would only be valid in the range —2 < x <
2:8

8The syntax [-2:2] can also be written [-2 to 21.



3.7. FUNCTION SPLICING 49

Figure 3.7: A simple example of the use of function splicing to truncate the
function sin(z) at = —2 and = = 7. See details in the text.

f(x)[-2:2] = x*sin(x)

The following function would only be valid when all of a,b,c were in the
range —1 — 1:

f(a,b,c)[-1:1]1[-1:1]1[-1:1] = a+b+c

If an attempt is made to evaluate a function outside of its specified
range, then an error results. This may be useful, for example, for plotting a
function, but not continuing it outside some specified range. The following
would print the function sin(x), but only in the range —2 < z < 7:

f(x)[-2:7] = sin(x)
plot f(x)

The output of this particular example can be seen in Figure 3.7. A similar ef-
fect could also have been achieved with the select keyword; see Section 3.4.

It is possible to make multiple declarations of the same function, over
different regions of argument space; if there is an overlap in the valid argu-
ment space for multiple definitions, then later declarations take precedence.
This makes it possible to use different functional forms for a function in
different parts of parameter space, and is especially useful when fitting a
function to data, if different functional forms are to be spliced together to
fit different regimes in the data.



50 CHAPTER 3. EXTENSIONS OF GNUPLOT’S INTERFACE

15 T T T T T T T T T T

10

Figure 3.8: An example of the use of function splicing to define a function
which does not have an analytic form — in this case, the Fibonacci sequence.
See the text for details.

Another application of function splicing is to work with functions which
do not have analytic forms, or which are, by definition, discontinuous, such
as top-hat functions or Heaviside functions. The following example would
define f(x) to be a Heaviside function:

f(x) =0
f(x)[0:] =1

The following example would define f(z) to follow the Fibonacci sequence,
though it is not at all computationally efficient, and it is inadvisable to
evaluate it for z > 8:

f(x) =1
f(x)[2:] = £(x-1) + £(x-2)
plot [0:8] f(x)

The output of this example can be seen in Figure 3.8

3.8 Datafile Interpolation: Spline Fitting
The spline command fits a spline through data from a file. For example:

spline f() ’datafile’ index 1 using 2:3



3.9. NUMERICAL INTEGRATION AND DIFFERENTIATION 51

The function f(x) now becomes a special function, representing a spline
fit to the given datafile. It can be plotted or otherwise used in exactly the
same way as any other function. This approach is more flexible than gnu-
plot’s syntax, as the spline f(x) can subsequently be spliced together with
other functions (see the previous section), or used in any mathematical op-
eration. The following code snippet, for example, would fit splines through
two datasets, and then plot the interpolated differences between them, re-
gardless, for example, of whether the two datasets were sampled at exactly
the same = coordinates:

spline f() ’datafilel’
spline g() ’datafile2’
plot f£(x)-g(x)

Smoothed splines can also be produced:
spline f() ’datafilel’ smooth 1.0

where the value 1.0 determines the degree of smoothing to apply; the higher
the value, the more smoothing is applied. The default behaviour is not to
smooth at all (equivalent to smooth 0.0); a value of 1.0 corresponds to the
default amount of smoothing applied in the gnuplot acsplines plot style.

3.9 Numerical Integration and Differentiation

Special functions are available for performing numerical integration and dif-
ferentiation of expressions: int_dx() and diff_dx(). In each case, the “x”
may be replaced with any valid variable name, to integrate or differentiate
with respect to any given variable.

The function int_dx () takes three parameters — firstly the expression to
be integrated, followed by the minimum and maximum integration limits.
For example, the following would plot the integral of the function sin(z):

plot int_dt(sin(t),0,x)

The function diff_dx () takes two obligatory parameters plus two further
optional parameters. The first is the expression to be differentiated, followed
by the point at which the differential should be evaluated, following by
optional parameters €; and €5, which are described below. The following
example would evaluate the differential of the function cos(x) with respect
tox at x = 1.0

print diff_dx(cos(x), 1.0)



52 CHAPTER 3. EXTENSIONS OF GNUPLOT’S INTERFACE

Differentials are evaluated by a simple differencing algorithm, and a pa-
rameter € controls the spacing with which to perform the differencing oper-
ation:

df ~ f(@o+¢/2) = flao — ¢/2)

dz|,_,, €

where € = € + zey. By default, e; = e = 1075, which is appropriate for the
differentiation of most well-behaved functions.

Advanced users may be interested to know that integration is performed
using the quad function of the integrate package of the scipy numerical
toolkit for Python — a general purpose integration routine.

3.10 Script Watching: pyxplot_watch

PyXPlot includes a simple tool for watching command script files, and exe-
cuting them whenever they are modified. This may be useful when develop-
ing a command script, if one wants to make small modifications to it, and
see the results in a semi-live fashion. This tool is invoked by calling the
pyxplot_watch command from a shell prompt. The command-line syntax
of pyxplot_watch is similar to that of PyXPlot itself, for example:

pyxplot_watch script

would set pyxplot_watch to watch the command script file script. One
difference, however, is that if multiple script files are specified on the com-
mand line, they are watched and executed independently, not sequentially,
as PyXPlot itself would do. Wildcard characters can also be used to set
pyxplot_watch to watch multiple files.”

This is especially useful when combined with GhostView’s watch facility.
For example, suppose that a script foo produces postscript output foo.ps.
The following two commands could be used to give a live view of the result
of executing this script:

gv ——watch foo.ps &
pyxplot_watch foo

“Note that pyxplot_watch *.script and pyxplot_watch \*.script will behave dif-
ferently in most UNIX shells. In the first case, the wildcard is expanded by your shell,
and a list of files passed to pyxplot_watch. Any files matching the wildcard, created after
running pyxplot_watch, will not be picked up. In the latter case, the wildcard is expanded
by pyxplot_watch itself, which will pick up any newly created files.



Chapter 4

Configuring PyXPlot

4.1 Overview

As is the case in gnuplot, PyXPlot can be configured using the set command
— for example:

set output ’foo.eps’

would set it to send its plotted output to the file foo.eps. Typing ‘set’ on
its own returns a list of all recognised ‘set’ configuration parameters. The
unset command may be used to return settings to their default values; it
recognises a similar set of parameter names, and once again, typing ‘unset’
on its own gives a list of them. The show command can be used to display
the values of settings.

4.2 Configuration Files

PyXPlot can also be configured by means of a configuration file, with file-
name .pyxplotrc, which is scanned once upon startup. This file may be
placed either in the user’s current working directory, or in his home directory.
In the event of both files existing, settings in the former override those in
the latter; in the event of neither file existing, PyXPlot uses its own default
settings.

The configuration file should take the form of a series of sections, each
headed by a section heading enclosed in square brackets, and followed by
variables declared using the format:

OUTPUT=foo0.eps

The following sections are used, although they do not all need to be
present in any given file:

53



54

CHAPTER 4. CONFIGURING PYXPLOT

settings — contains parameters similar to those which can be set with
the set command. A complete list is given in Section 4.4 below.

terminal — contains parameters for altering the behaviour and ap-
pearance of PyXPlot’s interactive terminal. A complete list is given
in Section 4.5.

variables — contains variable definitions. Any variables defined in
this section will be predefined in the PyXPlot mathematical environ-
ment upon startup.

functions — contains function definitions.

colours — contains a variable ‘palette’, which should be set to a
comma-separated list of the sequence of colours in the palette used to
plot datasets. The first will be called colour 1 in PyXPlot, the second
colour 2, etc. A list of recognised colour names is given in Section 4.6.

latex — contains a variable ‘preamble’, which is prefixed to the begin-
ning of all WTEX text items, before the \begin{document} statement.
It can be used to define custom IXTEX macros, or to include pack-
ages using the \includepackage{} command. The preamble can be

changed using the set preamble command.

4.3 An Example Configuration File

As an example, the following is a configuration file which would represent

PyXPlot’s default configuration:

[settings]
ASPECT=1.0
AUTOASPECT=0N
AXESCOLOUR=Black
BACKUP=0FF
BAR=1.0
BOXFROM=0
BOXWIDTH=0
COLOUR=0N
DATASTYLE=points
DISPLAY=0N
DPI=300
ENLARGE=0FF
FONTSIZE=0
FUNCSTYLE=1ines
GRID=0FF



4.3. AN EXAMPLE CONFIGURATION FILE 95

GRIDAXISX=1
GRIDAXISY=1
GRIDMAJCOLOUR=Grey60
GRIDMINCOLOUR=Grey90
KEY=0N

KEYCOLUMNS=1
KEYPOS=TOP RIGHT
KEY_XO0FF=0.0
KEY_YOFF=0.0
LANDSCAPE=0FF
LINEWIDTH=1.0
MULTIPLOT=0FF
ORIGINX=0.0
ORIGINY=0.0

OUTPUT=
POINTLINEWIDTH=1.0
POINTSIZE=1.0
SAMPLES=250
TERMINVERT=0FF
TERMTRANSPARENT=0FF
TERMTYPE=X11_singlewindow
TEXTCOLOUR=Black
TEXTHALIGN=Left
TEXTVALIGN=Bottom
TITLE=

TIT_XOFF=0.0
TIT_YOFF=0.0
WIDTH=8.0

[terminal]
COLOUR=0FF
COLOUR_ERR=Red
COLOUR_REP=Green
COLOUR_WRN=Brown
SPLASH=0N

[variables]
pi = 3.14159265358979

[colours]

palette = Black, Red, Blue, Magenta, Cyan, Brown, Salmon, Gray,
Green, NavyBlue, Periwinkle, PineGreen, SeaGreen, GreenYellow,
Orange, CarnationPink, Plum



o6

[1latex]
PREAMBLE=

CHAPTER 4. CONFIGURING PYXPLOT

4.4 Configuration Options: settings section

The following table provides a brief description of the function of each of
the parameters in the settings section of the above configuration file, with
a list of possible values for each:

ASPECT

AUTOASPECT

AXESCOLOUR

BACKUP

BAR

BOXFROM

BOXWIDTH

Possible values: Any floating-point number.
Analogous set command: set size ratio

Sets the aspect ratio of plots.

Possible values: ON / OFF

Analogous set command: set size ratio

Sets whether plots have the automatic aspect ratio,
which is the golden ratio. If ON, then the above setting
is ignored.

Possible values: Any recognised colour.
Analogous set command: set axescolour

Sets the colour of axis lines and ticks.

Possible values: ON / OFF

Analogous set command: set backup

When this switch is set to ‘ON’; and plot output is
being directed to file, attempts to write output over
existing files cause a copy of the existing file to be
preserved, with a tilda after its old filename (see Sec-
tion 3.4).

Possible values: Any floating-point number.
Analogous set command: set bar

Sets the horizontal length of the lines drawn at the
end of errorbars, in units of their default length.
Possible values: Any floating-point number.
Analogous set command: set boxfrom

Sets the horizontal point from which bars on bar charts
appear to emanate.

Possible values: Any floating-point number.
Analogous set command: set boxwidth

Sets the default width of boxes on barcharts. If
negative, then the boxes have automatically selected
widths, so that the interfaces between bars occur at
the horizontal midpoints between the specified data-
points.



4.4. CONFIGURATION OPTIONS: SETTINGS SECTION o7

COLOUR

DATASTYLE

DISPLAY

DPI

ENLARGE

FONTSIZE

FUNCSTYLE

GRID

GRIDAXISX

GRIDAXISY

Possible values: ON / OFF

Analogous set command: set terminal

Sets whether output should be colour (ON) or
monochrome (OFF).

Possible values: Any plot style.

Analogous set command: set data style

Sets the plot style used by default when plotting
datafiles.

Possible values: ON / OFF

Analogous set command: set display

When set to ‘ON’, no output is produced until the
set display command is issued. This is useful for
speeding up scripts which produce large multiplots;
see Section 3.5.4 for more details.

Possible values: Any floating-point number.
Analogous set command: set dpi

Sets the sampling quality used, in dots per inch,
when output is sent to a bitmapped terminal (the
jpeg/gif/png terminals).

Possible values: ON / OFF

Analogous set command: set terminal

When set to ‘ON’ output is enlarged or shrunk to fit
the current paper size.

Possible values: Integers in the range —4 — 5.
Analogous set command: set fontsize

Sets the fontsize of text, varying between IXTEX’s tiny
(—4) and Huge (5).

Possible values: Any plot style.

Analogous set command: set function style
Sets the plot style used by default when plotting func-
tions.

Possible values: ON / OFF

Analogous set command: set grid

Sets whether a grid should be displayed on plots.
Possible values: Any integer.

Analogous set command: None

Sets the default z-axis to which gridlines should at-
tach, if the set grid command is called without spec-
ifying which axes to use.

Possible values: Any integer.

Analogous set command: None

Sets the default y-axis to which gridlines should at-
tach, if the set grid command is called without spec-
ifying which axes to use.



o8

GRIDMAJCOLOUR

GRIDMINCOLOUR

KEY

KEYCOLUMNS

KEYPOS

KEY_XOFF

KEY_YOFF

LANDSCAPE

LINEWIDTH

MULTIPLOT

CHAPTER 4. CONFIGURING PYXPLOT

Possible values: Any recognised colour.
Analogous set command: set gridmajcolour
Sets the colour of major grid lines.

Possible values: Any recognised colour.
Analogous set command: set gridmincolour
Sets the colour of minor grid lines.

Possible values: ON / OFF

Analogous set command: set key

Sets whether a legend is displayed on plots.

Possible values: Any integer > 0.

Analogous set command: set keycolumns

Sets the number of columns into which the legends of
plots should be divided.

Possible values: “TOP RIGHT”, “TOP MIDDLE”,
“TOP LEFT”, “MIDDLE RIGHT”, “MIDDLE MID-
DLE”, “MIDDLE LEFT”, “BOTTOM RIGHT”,
“BOTTOM MIDDLE”, “BOTTOM LEFT”, “BE-
LOW”, “OUTSIDE”.

Analogous set command: set key

Sets where the legend should appear on plots.
Possible values: Any floating-point number.
Analogous set command: set key

Sets the horizontal offset, in approximate graph-
widths, that should be applied to the legend, relative
to its default position, as set by KEYPOS.

Possible values: Any floating-point number.
Analogous set command: set key

Sets the vertical offset, in approximate graph-heights,
that should be applied to the legend, relative to its
default position, as set by KEYPOS.

Possible values: ON / OFF

Analogous set command: set terminal

Sets whether output is in portrait orientation (OFF),
or landscape orientation (ON).

Possible values: Any floating-point number.
Analogous set command: set linewidth

Sets the width of lines on plots, as a multiple of the
default.

Possible values: ON / OFF

Analogous set command: set multiplot

Sets whether multiplot mode is on or off.



4.4. CONFIGURATION OPTIONS: SETTINGS SECTION 99

ORIGINX

ORIGINY

OUTPUT

PAPER_HEIGHT

PAPER_WIDTH

POINTLINEWIDTH

POINTSIZE

SAMPLES

TERMINVERT

Possible values: Any floating point number.
Analogous set command: set origin

Sets the horizontal position, in centimetres, of the de-
fault origin of plots on the page. Most useful when
multiplotting many plots.

Possible values: Any floating point number.
Analogous set command: set origin

Sets the vertical position, in centimetres, of the de-
fault origin of plots on the page. Most useful when
multiplotting many plots.

Possible values: Any string.

Analogous set command: set output

Sets the output filename for plots. If blank, the de-
fault filename of pyxplot.foo is used, where ‘foo’ is an
extension appropriate for the file format.

Possible values: Any floating-point number.
Analogous set command: set papersize

Sets the height of the papersize for postscript output
in millimetres.

Possible values: Any floating-point number.
Analogous set command: set papersize

Sets the width of the papersize for postscript output
in millimetres.

Possible values: Any floating-point number.
Analogous set command: set pointlinewidth /
plot with pointlinewidth

Sets the linewidth used to stroke points onto plots, as
a multiple of the default.

Possible values: Any floating-point number.
Analogous set command: set pointsize / plot
with pointsize

Sets the sizes of points on plots, as a multiple of their
normal sizes.

Possible values: Any integer.

Analogous set command: set samples

Sets the number of samples (datapoints) to be evalu-
ated along the z-axis when plotting a function.
Possible values: ON / OFF

Analogous set command: set terminal

Sets whether jpeg/gif/png output has normal colours
(OFF), or inverted colours (ON).



60

TERMTRANSPARENT

TERMTYPE

TEXTCOLOUR

TEXTHALIGN

TEXTVALIGN

TITLE

TIT_XOFF

TIT_YOFF

WIDTH

CHAPTER 4. CONFIGURING PYXPLOT

Possible values: ON / OFF

Analogous set command: set terminal

Sets whether jpeg/gif/png output has transparent
background (ON), or solid background (OFF).
Possible values: X11_singlewindow,

X11 multiwindow, X11 persist, PS, EPS, PDF, PNG,
JPG, GIF

Analogous set command: set terminal

Sets whether output is sent to the screen or to disk,
and, in the latter case, the format of the output. The
ps option should be used for both encapsulated and
normal postscript output; these are distinguished us-
ing the ENHANCED option, above.

Possible values: Any recognised colour.
Analogous set command: set textcolour

Sets the colour of all text output.

Possible values: Left, Centre, Right

Analogous set command: set texthalign

Sets the horizontal alignment of text labels to their
given reference positions.

Possible values: Top, Centre, Bottom

Analogous set command: set textvalign

Sets the vertical alignment of text labels to their given
reference positions.

Possible values: Any string.

Analogous set command: set title

Sets the title to appear at the top of the plot.
Possible values: Any floating point number.
Analogous set command: set title

Sets the horizontal offset of the title of the plot from
its default central location.

Possible values: Any floating point number.
Analogous set command: set title

Sets the vertical offset of the title of the plot from its
default location at the top of the plot.

Possible values: Any floating-point number.
Analogous set command: set width / set size
Sets the width of plots in centimetres.

4.5 Configuration Options: terminal section

The following table provides a brief description of the function of each of
the parameters in the terminal section of the above configuration file, with



4.6. RECOGNISED COLOUR NAMES 61

a list of possible values for each:

COLOUR

COLOUR_ERR

COLOUR_REP

COLOUR_WRN

SPLASH

Possible values: ON / OFF

Analogous command-line switches: -c,
—-—colour, -m, ——monochrome

Sets whether colour highlighting should be used in
the interactive terminal. If turned on, output is dis-
played in green, warning messages in amber, and er-
ror messages in red; these colours are configurable, as
described below. Note that not all UNIX terminals
support the use of colour.

Possible values: Any recognised terminal colour.
Analogous command-line switches: None.

Sets the colour in which error messages are displayed
when colour highlighting is used. Note that the list
of recognised colour names differs from that used in
PyXPlot; a list is given at the end of this section.
Possible values: Any recognised terminal colour.
Analogous command-line switches: None.

As above, but sets the colour in which PyXPlot dis-
plays its non-error-related output.

Possible values: Any recognised terminal colour.
Analogous command-line switches: None.

As above, but sets the colour in which PyXPlot dis-
plays its warning messages.

Possible values: ON / OFF

Analogous command-line switches: -q, --quiet,
-V, -—verbose

Sets whether the standard welcome message is dis-
played upon startup.

The colours recognised by the COLOUR_XXX configuration options above
are: Red, Green, Brown, Blue, Purple, Magenta, Cyan, White, Normal. The
final option produces the default foreground colour of your terminal.

4.6 Recognised Colour Names

The following is a complete list of the colour names which PyXPlot recog-
nises in the set textcolour, set axescolour commands, and in the colours
section of its configuration file. It should be noted that they are case-

insensitive:

GreenYellow, Yellow, Goldenrod, Dandelion, Apricot, Peach, Melon,
YellowOrange, Orange, BurntOrange, Bittersweet, RedOrange, Mahogany,
Maroon, BrickRed, Red, OrangeRed, RubineRed, WildStrawberry, Salmon,



62 CHAPTER 4. CONFIGURING PYXPLOT

CarnationPink, Magenta, VioletRed, Rhodamine, Mulberry, RedViolet, Fuch-
sia, Lavender, Thistle, Orchid, DarkOrchid, Purple, Plum, Violet, Roy-
alPurple, BlueViolet, Periwinkle, CadetBlue, CornflowerBlue, Midnight-
Blue, NavyBlue, RoyalBlue, Blue, Cerulean, Cyan, ProcessBlue, SkyBlue,
Turquoise, TealBlue, Aquamarine, BlueGreen, Emerald, JungleGreen, Sea-
Green, Green, ForestGreen, PineGreen, LimeGreen, YellowGreen, Spring-
Green, OliveGreen, RawSienna, Sepia, Brown, Tan, Gray, Grey, Black,
White, white, black.

The following further colours provide a scale of shades of grey from dark
to light, also case-insensitive:

grey05, greyl0, greyld, grey20, grey25, grey30, grey35, grey40, grey4s,
greyb0, greybb, grey60, grey6d, grey70, grey7d, grey80, grey85, grey90,
grey95.

The common mis-spelling of grey, “gray”, is also accepted.

For a colour chart of these colours, the reader is referred to Appendix B
of the PyX Reference Manual.!

"http://pyx.sourceforge.net/manual/colorname. html



Chapter 5

Command Reference

This chapter contains an alphabetically ordered list of all the commands
that PyXPlot understands.

5.1 arrow

arrow [from] <x>, <y> [to] <x>, <y> [with <option> ... ]

Arrows may be placed on multiplot pages independently of any plots
using the arrow command, which has syntax:

arrow from x,y to X,y

The arrow command may be followed by the ‘with’ keyword to specify
to style of the arrow. The style keywords which are accepted are ‘nohead’,
‘head’ (default) or ‘twohead’, in addition to keywords such as ‘colour’,
‘linewidth’ or ‘linetype’, which have the same syntax and meaning as
they do in the plot command. An example would be:

arrow from x,y to x,y with twohead linetype 2 colour blue

Arrows receive unique identification numbers which count sequentially
from one, and which are output to the terminal after the arrow command
is called. By reference to these numbers, they can later be deleted and
undeleted with the delete and undelete commands respectively. For ex-
ample:

delete 2

63



64 CHAPTER 5. COMMAND REFERENCE

5.2 cd

cd <directory>

PyXPlot’s cd command is very similar to the shell cd command; it can
be used to change the current working directory. For example:

cd foo

5.3 clear
clear

In multiplot mode the clear command removes all current plots, ar-
rows and text objects from the working page. In single plot mode it is not
especially useful; it removes the current plot to leave a blank page.

The clear command should not be followed by any parameters.

5.4 delete

delete <plot number>,

The delete command is part of the multiplot environment; it removes
plots, arrows or text items from a multiplot page. The desired items should
be identified using a comma-separated list of their reference numbers, which
count sequentially from zero for the first item created on a multiplot page,
and are displayed on the terminal when items are created. For example:

delete 1,2,3

removes item numbers 1, 2 and 3.
Having been deleted, multiplot items can be restored using the undelete
command.

5.5 edit

edit <plot number>

The edit command is part of the multiplot environment; it allows one to
modify the properties of any plot on a multiplot. The desired plot should be
identified using the reference number which it was given when it was created
using the plot command; it would have been displayed on the terminal at
that time. For example, consider the following command sequence:



5.6. EPS 65

edit 1
set textcolour red
replot

Here, the edit command sets the following set textcolour command
to affect the plot with reference number 1 — the first plot which would have
been placed on the multiplot. The set textcolour red command then
affects this plot, although does not take effect until the replot command is
called.

The edit command also has the effect of resetting all of PyXPlot’s plot
settings to those used to produce the chosen plot, and so in conjunction with
the show command, can be used to inspect as well as modify the settings of
any plot on a multiplot page. For example:

edit 1
show textcolour

would show the text colour used in plot 1.

Having issued the edit command, no further command needs to be
issued to return to a state of adding plots to a multiplot rather than editing
the existing plots; simply call the plot command rather than the replot
command to do this.

5.6 eps

eps ’<filename>’ [at <x>, <y>] [rotate <angle>] [width <width>]
[height <height>]

The eps command places an eps format file into the current plot. The at
modifier can be used to specify the position of the bottom-left corner of the
file, otherwise it is placed at the origin. If the rotate modifier is used the
image is rotated by the specified angle counter-clockwise. Either the width
or height can be specified, followed by the width or height respectively in
cm that the resulting image should be; otherwise the native file width will
be used. The eps command is perhaps most useful in multiplot mode, where
included files can be combined with plots, text labels, etc.

5.7 exit
exit

The exit command can be used to quit PyXPlot. If multiple command
files, or a mixture of command files and interactive sessions, are specified on



66 CHAPTER 5. COMMAND REFERENCE

the command line, then PyXPlot moves onto the next command-line item
after receiving the exit command.

PyXPlot may also be quit be pressing CTRL-D or via the quit com-
mand. In interactive mode, CTRL-C terminates the current command, if
one is running. When running a script, CTRL-C terminates execution of it.

5.8 fit

fit [<range specifier> ...] <function> ’<datafile>’
[index <index specifier>] [using <using specifier>]
via <variable>[, <variable>, ...]

The fit command may be used to fit functional forms to data points in
datafiles. A simple example might be:

f(x) = axx+b
fit £(x) ’datafile’ index 1 using 2:3 via a,b

The coefficients to be varied are listed after the keyword ‘via’; the key-
words ‘index’, ‘every’ and ‘using’ have the same meanings as in the plot
command.

This is useful for producing best-fit lines and also has applications for
estimating the gradients of datasets. The syntax is essentially identical
to the used by gnuplot, though a few points are worth noting, which are
outlined in Section 2.9.

5.9 help

help [<topic> [<sub-topic> ... ] 1]

The help command provides an easily-navigable source of information
which is supplementary to that in this manual. To obtain information on any
particular topic, type help followed by the name of the topic. For example:

help commands

provides information on PyXPlot’s commands. Some topics have subtopics;
these are listed at the end of each help page. To view them, add further
words to the end of your help request — an example might be:

help commands help

Information is arranged with general information about PyXPlot un-
der the heading about, and information about PyXPlot’s commands under
commands. Information about the format that input datafiles should take
can be found under datafile. Other categories are self-explanatory.

To exit any help page, press the ‘q’ key.



5.10. JPEG 67

5.10 jpeg

jpeg ’<filename>’ [at <x>, <y>] [rotate <angle>] [width <width>]
[height <height>]

The jpeg command places a jpeg format bitmap image into the current
plot. The at modifier can be used to specify the position of the bottom-
left corner of the image, otherwise it is placed at the origin. If the rotate
modifier is used the image is rotated by the specified angle counter-clockwise.
Either the width or height modifier should be specified, followed by the
width or height respectively in cm that the resulting image should be. The
jpeg command is perhaps most useful in multiplot mode, where images can
be combined with plots, text labels, etc.

5.11 load

load ’<filename>’

The load command executes a PyXPlot command script file, just as if
its contents had been typed into the current terminal. For example:

load ’foo’

would have the same effect as typing the contents of the file foo into the
present session.

Wildcards can be used in the load command, in which case all com-
mandfiles matching the given wildcard are executed, for example:

load ’*.script’

5.12 move
move <plot number> to <x>, <y>

The move command is part of the multiplot environment; it can be used
to move items around on a multiplot page. The desired item to be moved
should be identified using the reference number which it was given when it
was created; it would have been displayed on the terminal at that time. For
example:

move 23 to 8,8

This would move multiplot item 23 to position 8,8 (measured in centimetres).
If this item were a plot, the end result would be the same as if the command
set origin 8,8 had been called before it had originally been plotted.



68 CHAPTER 5. COMMAND REFERENCE

5.13 !

! <shell command>
<command> ‘<shell command>‘

Shell commands can be executed from within PyXPlot by pre-fixing
them with pling (!) characters, for example:

Imkdir foo

As an alternative, back-quotes (‘) can be used to substitute the output of a
shell command into a PyXPlot command, for example:

set xlabel ‘echo "’" ; 1ls ; echo "’"¢

Note that back-quotes cannot be used inside quote characters, and so the
following would not work:

set xlabel ’‘1s¢’

5.14 plot

plot [<range specifier> ...] (’<filename>’|<function>)
[using <using specifier>] [axes <axis specifier>]
[select <select specifier>]
[index <index specifier>]
[every <every specifier>]
[with <style> [<style modifier> ... ] ]

The plot command is the main workhorse command of PyXPlot, which
is used to produce all plots. For example to plot the sine function:

plot sin(x)

Ranges for the axes of a graph can be specified by placing them in
square-brackets before the name of the function to be plotted. Leaving a
set of brackets empty specifies that an axis will be automatically scaled, as
happens by default. An example of this syntax would be:

plot [-pi:pil sin(x)

which would plot the function sin(z) across some default range of values on
the z-axis.

Datafiles may also be plotted as well as functions, in which case the
filename of the datafile to be plotted should be enclosing in apostrophes.
An example of this syntax would be:



5.14. PLOT 69

plot ’datafile’ with points

which would plot the file called ‘datafile’. Section 2.5 should be studied
for further details of the format that is expected of input datafiles, and how
PyXPlot may be directed to plot only certain portions of datafiles.

In plots which have multiple parallel axes — for example, an x-axis along
its lower edge and an z2-axis along its upper edge — the pair of axes against
which data should be plotted should be specified using the modifier axes
following the name of the function or datafile to be plotted, for example:

plot sin(x) axes x2yl

The style in which data should be plotted may be specified following the
modifier with, with the following syntax:

plot sin(x) with points

The following plot styles are recognised: lines, points, linespoints,
dots, boxes, wboxes, impulses, steps, histeps, fsteps, xerrorbars,
yerrorbars, xyerrorbars, xerrorrange, yerrorrange, xyerrorrange,
arrows_head, arrows_nohead, arrows_twohead, csplines, acsplines.

In addition, 1p and pl are recognised as abbreviations for linespoints;
errorbars is recognised as an abbreviation for yerrorbars; errorrange
is recognised as an abbreviation for yerrorrange; and arrows_twoway is
recognised as an alternative for arrows_twohead.

As well as plot styles, the with modifier can also be followed by the
following keywords:

linetype — specifies the linetype (e.g. dotted) used by the lines plot style.
linewidth — specifies the width of line, in pt, used by the lines plot style.

pointsize — specifies the size of datapoints, relative to the default size,
used by the points plot style.

pointlinewidth — as above, but specifies the linewidth, in pt, used to ren-
der the crosses, circles, etc, used to mark datapoints.

linestyle — this can be used in conjunction with the set linestyle com-
mand to save default plot styles.

colour — specifies the colour used to plot the dataset, either by one of the
recognised colour names or by an integer, to use one from the current
palette.

fillcolour — relavant to the boxes and wboxes plot styles, specifies a
colour in which bar charts should be filled.



70 CHAPTER 5. COMMAND REFERENCE

An example using several of these keywords would be:

plot sin(x) axes x2yl with colour blue linetype 2 \
linewidth 5

Multiple datasets can be plotted on a single graph by listing them with
commas separating them:

plot sin(x) with colour blue, cos(x) with linetype 2

5.15 print

print <expression>

The print command outputs the value of a mathematical expression to
the terminal. It is most often used to find the value of a variable, though it
can also be used to produce formatted output from a PyXPlot script. For
example:

print a

would print the value of the variable a.

5.16 pwd

pwd

The pwd command prints the location of the current working directory.

5.17 7

? [<help option> ... ]

The 7 symbol is a shortcut to the help command.

5.18 quit
quit

The quit command can be used to exit PyXPlot. If multiple command
files, or a mixture of command files and interactive sessions, are specified on
the command line, then PyXPlot moves onto the next command-line item
after receiving the exit command.

PyXPlot may also be quit be pressing CTRL-D or via the exit com-
mand. In interactive mode, CTRL-C terminates the current command, if
one is running. When running a script, CTRL-C terminates execution of it.



5.19. REFRESH 71

5.19 refresh

refresh

The refresh command produces an exact copy of the latest display. This
can be useful, for example, after changing the terminal type, to produce a
second copy of a plot in a different graphic format. It differs from the
replot command in that it doesn’t replot anything; subsequent usages of
the set command since the previous plot command have no affect on the
output. The refresh command is also especially useful in the multiplot
environment; it can be used to produce second copies of multiplot pages
where there need not necessarily even be any plots; there might perhaps
only be textual items and arrows.

5.20 replot

replot [<plot number>]

In single plot mode, the replot command causes the most recent plot
command to be re-run. This can be useful to replot a datafile which has
changed in the meantime, but also to change some aspect of a plot within
PyXPlot itself. Usages of the set command between the original plot
command and the calling of the replot command are applied to the new
plot. For example:

plot sin(x)
set textcolour red
replot

In multiplot mode, the replot command acts by default upon the last
plot item which was added to the multiplot page, and causes that to be
replotted. It is possible to change this behaviour by first calling the edit
command, in which case any given plot within a multiplot can be modified
and replotted.

Specifying a function or datafile after the replot command causes that
function or data file to be added to the plot. The syntax here is the same
as for the plot command. For example:

replot sin(x) axes x2yl with linespoints

will add a plot of the function sin(x) to the current plot.



72 CHAPTER 5. COMMAND REFERENCE

5.21 reset

reset

The reset command returns the values of all settings that have been
changed with the set command back to their default values.

5.22 save

save ’<filename>’

The save command saves a list of all of the commands which have been
executed in the current interactive PyXPlot session into a given file. The
filename of the desired location for this file should be placed in quotes, for
example:

save ’foo’

would save a command history into the file named ‘foo’.

5.23 set

set <option> <value>

The set command sets the value of various operational parameters
within PyXPlot. For example:

set pointsize 2

would sets the default point size to 2. The basic syntax always follows that
above: the set command should be followed by some keyword specifying
which setting it is which should be set. If a further parameter is needed
to specify what value to set this setting to, it should follow this keyword.
Settings which work in an on/off fashion tend to take a syntax along the
lines of:

set key Set option ON

set nokey Set option OFF

More details of the functions of each individual setting can be found in
the subsections below, which represents a complete list of the recognised
setting keywords.

The reader should also see the show command, which can be used to dis-
play the current values of settings, and the unset command, which returns
settings to their default values. Section 4.2 describes how commonly used
settings can be saved into a configuration file.



5.23. SET 73

5.23.1 arrow

set arrow <arrow number> from [<co-ordinate>] <x>,
[<co-ordinate>] <y> to [<co-ordinate>] <x>,
[<co-ordinate>] <y> [with <modifier> ]

<co-ordinate> = ( first | second | screen | graph |
axis<axisnumber> )

The set arrow command causes an arrow to be added to a plot. An
example of its syntax would be:

set arrow 1 from 0,0 to 1,1

which would cause an arrow to be drawn between the points 0,0 and 1,1,
as measured on the x and y axes. The tag ‘1’ immediately following the
arrow keyword is an identification number, and allows the arrow to be re-
moved later with the unset arrow command. By default the co-ordinates
are measured relative to the first z- and y-axes, but can be specified in a
range of coordinate systems. These are specified as follows:

set arrow 1 from first O, second O to axis3 1, axisd 1

As can be seen, the name of the desired coordinate system precedes the
position value in that coordinate system. The coordinate system first, the
default, measures the graph using the x- and y-axes. second uses the z2-
and y2-axes. screen and graph both measure in centimetres from the origin
of the graph. The syntax axisn may also be used, to use the n th z- or
y-axis; for example, axis3 above.

The set arrow command can be followed by the keyword ‘with’, to
specify the style of the arrow. For example, the specifiers ‘nohead’, ‘head’
and ‘twohead’, after the keyword ‘with’, can be used to make arrows with
no arrow heads, normal arrow heads, or two arrow heads. ‘twoway’ is an
alias for ‘twohead’. Normal line type modifiers can also be used here. For
example:

set arrow 2 from first O, second 2.5 to axis3 O,
axis4 2.5 with colour blue nohead

5.23.2 autoscale
set autoscale <axis>[<axis>... ]

The autoscale setting causes PyXPlot to choose the scaling for an axis
automatically based on the data and/or functions to be plotted against it.
As an example of the syntax:



74 CHAPTER 5. COMMAND REFERENCE

set autoscale x1

would cause the size of the first z-axis to be scaled to fit the data. Multiple
axes can be specified, viz.:

set autoscale x1y3

5.23.3 axescolour

set axescolour <colour>

The axescolour setting changes the colour of the plot’s axes. For ex-
ample:

set axescolour blue

changes the axes to be blue. Any of the recognised colour names listed in
Section 4.6 can be used.

5.23.4 axis
set axis <axis>,

The command:
set axis x2
may be used to add a second z-axis to a plot, with default settings. In
general, there is no practical reason to use this command, as a second x-axis
would implicitly be created anyway by any of the following statements:
set x2label ’foo’ \\
set x2ticdir outwards \\

plot sin(x) axes x2yl

Of more practical use is the ‘unset x2’ command, which is used to
remove an axis once it has been added to a plot. After executing:

set x2label ’foo’
for example, the only way to tell PyXPlot to subsequently produce a plot
without a second z-axis would be to delete this axis with the following

command:

unset axis x2



5.23. SET 75

Note that in this case, the unset x2label command would be sufficent
to remove the label ‘foo’ placed on the new axis, but not sufficient to delete
the new axis that the set x2label command implicitly created. Multiple
axes can be deleted in a single unset axis statement, for example:

unset axis x2x4x5

In the special cases of unset axis x1 or unset axis y1, these axes
cannot be deleted; a plot must have at least one x- and one y-axis. Instead,
the unset axis command restores these axes to their default configurations,
removing any set titles or ranges that they might have been given.

5.23.5 backup

set backup

The setting backup changes PyXPlot’s behaviour when it detects that a
file which it is about to write is going to overwrite an existing file. Whereas
by default the existing file would be overwritten by the new one, when the
backup setting is turned on, it is renamed, placing a tilde at the end of
its filename. For example, suppose that a plot were to be written with
filename ‘out.ps’, but such a file already existed. With the backup setting
turned on the existing file would be renamed ‘out.ps ’ to save it from being
overwritten.

The setting may be turned off via set nobackup.

5.23.6 bar

set bar ( large | small | <barsize> )

The bar setting changes the size of the bar on the end of the errorbars,
relative to the current pointsize. For example:

set bar 2

sets the bars to be twice the size of the points. The options ‘large’ and
‘small’ are equivalent to 1 (the default) and 0 (no bar) respectively.

5.23.7 boxfrom

set boxfrom <value>

The ‘boxfrom’ setting alters PyXPlot’s behaviour when plotting bar
charts. It changes the horizontal line (vertical point; y-axis value) from
which the boxes of bar charts appear to emanate. The default value is zero
(i.e. boxes extend from the line of the y-axis). An example of its syntax
would be:



76 CHAPTER 5. COMMAND REFERENCE

set boxfrom 2

which would make the boxes of a barchart emanate vertically from the line
y = 2.

5.23.8 boxwidth
set boxwidth <width>

The ‘boxwidth’ setting alters PyXPlot’s behaviour when plotting bar
charts. It sets the default width of the boxes used, in graph z-axis units.
If the specified width is negative then, as happens by default, the boxes
have automatically selected widths, such that the interfaces between them
occur at the horizontal midpoints between their specified z-positions. For
example:

set boxwidth 2
would set all boxes to be two units wide.
set boxwidth -2

would set all of the bars to have differing widths, centred upon their specified
xr-positions, such that their interfaces occur at the horizontal midpoints
between them.

5.23.9 data style

See ‘set style data’.

5.23.10 display
set [noldisplay

By default, whenever an item is added to a multiplot, or an existing item
moved or replotted, the whole multiplot is replotted to show the change.
This can be a time consuming process on large and complex multiplots.
For this reason, the ‘set nodisplay’ command is provided, which stops
PyXPlot from producing any output. The ‘set display’ command can
subsequently be issued to return to normal behaviour.

This can be especially useful in scripts which produce large multiplots.
There is no point in producing output at each step in the construction of a
large multiplot, and so a great speed increase can be achieved by wrapping
the script with:

set nodisplay

[...prepare large multiplot...]
set display

refresh



5.23. SET 7

5.23.11 dpi

set dpi <value>

When PyXPlot is set to produce bitmapped graphics output, using the
gif, jpg or png terminals (see the ‘set terminal’ command), the ‘dpi’
setting changes how many dots per inch these graphics files are produced
with. That is to say, it changes the image resolution of these file formats:

set dpi 100

sets the output to a resolution of 100 dots per inch. Higher dpi values yield
better quality images, but larger file sizes.

5.23.12 fontsize
set fontsize <value>

The fontsize setting changes the size of the fount! used to render all
text labels which appear on a plot, including keys, axis labels, etc. The
value specified should be an integer in the range -4 to 5, corresponding to
BTEXs tiny (-4) and Huge (5) sizes, for example:

set fontsize 2

The default value is zero, A TEX’s normal fount size. As an alternative,
fount sizes can be specified directly in the KTEX text of labels, for example:

set xlabel ’\Large This is a BIG label’

5.23.13 function style

See ‘set style function’.
5.23.14 grid
set [nolgrid <axis> ...

The grid setting controls whether a grid is placed behind a plot or not.
Issuing the command:

set grid

would cause a grid to be drawn with its gridlines connecting to the ticks of
the default axes (usually the first z- and y-axes). Conversely, issuing:

IThis is not a spelling mistake. ‘font’, by contrast, would be a spelling mistake. See
the Oxford English Dictionary.



78 CHAPTER 5. COMMAND REFERENCE

unset grid

would remove from the plot all gridlines associated with the ticks of any
axes. One or more axes can be specified for the set grid command; a grid
will then be drawn to connect with the ticks of these axes. An example of
this syntax would be:

set grid x1 y3
which would cause gridlines to be drawn from ticks of the first x- and third
y-axes.

It is possible, though not always aesthetically very pleasing, to draw

gridlines from multiple parallel axes, for example:

set grid x1x2x3

5.23.15 gridmajcolour
set gridmajcolour <colour>

The ‘gridmajcolour’ setting changes the colour that is used to plot the
gridlines (see the set grid command) which are associated with the major
ticks of axes (i.e. major gridlines). For example:
set gridmajcolour purple
would cause the major grid lines to be drawn in purple. Any of the recog-

nised colour names listed in Section 4.6 can be used.
See also the set gridmincolour command.

5.23.16 gridmincolour
set gridmincolour <colour>

The gridmincolour setting changes the colour that is used to plot the
gridlines (see the set grid command) which are associated with the minor
ticks of axes (i.e. minor gridlines). For example:

set gridmincolour purple

would cause the minor grid lines to be drawn in purple. Any of the recognised
colour names listed in Section 4.6 can be used.

See also the set gridmajcolour command.



5.23. SET 79
5.23.17 key
set key [ <position> ... ] [<xoffset>, <yoffset>]

The setting ‘key’ determines whether a legend is placed on a plot, and
if so, where it should be located on the plot. Issuing the command:

set key

simply causes a legend to be added to the plot in its default position, usually
the plot’s upper-right corner. The converse action is achieved by:

set nokey
or:
unset key

both of which cause a plot to have no legend. A position for the key may
also be specified after the set key command, for example:

set key bottom left

Recognised positions are ‘top’, ‘bottom’, ‘left’, ‘right’, ‘below’, ‘outside’,
‘xcentre’ and ‘ycentre’. In addition, if none of these quite achieved the
desired result, a positional offset may be specified after one of the position
keywords above. The first value is assumed to be an z-offset, and the second
a y-offset, in units approximately equal to the size of the plot. For example:

set key bottom left 0.0 -0.5

would display a key below the bottom left corner of the graph.

5.23.18 keycolumns

set keycolumns <value>

The ‘keycolumns’ settings sets how many columns the legend of a plot
should be arranged into. By default, all of the entries in the legends of
plots are arranged in a single vertical list. However, for plots with very
large number of datasets, it may be preferably to split this list into several
columns. The set keycolumns command can be followed by any positive
integer, for example:

set keycolumns 3



80 CHAPTER 5. COMMAND REFERENCE

5.23.19 label

set label <label number> ’<text>’ [<co-ordinate>] <x>,
[<co-ordinate>] <y>
[rotate <angle>]

<co-ordinate> = ( first | second | screen | graph |
axis<axisnumber> )

The set label command can be used to place text labels onto a plot.
For example:

set label 1 ’Hello’ 0, O

would place the word ‘Hello’ at plot co-ordinates (0,0), as measured on the
z- and y-axes. The tag ‘1’ immediately following the ‘label’ keyword is
an identification number, and allows the label to be removed later with the
unset label command. By default the position coordinates of the label are
measured relative to the first z- and y-axes, but can be specified in a range
of coordinate systems. These are specified as follows:

set label 1 ’Hello’ first O, second O

As can be seen, the name of the desired coordinate system precedes the
position value in that coordinate system. Following gnuplot’s nomenclature,
the coordinate system first the default, measures the graph using the z-
and y-axes. second uses the z2- and y2-axes. screen and graph both
measure in centimetres from the origin of the graph. The syntax axisn may
also be used, to use the n th x- or y-axis; for example, axis3:

set label 1 ’Hello’ axis3 1, axisd4 1

A rotation angle may optionally be specified after the keyword ‘rotate’
to produce text rotated to any arbitrary angle, measured in degrees counter-
clockwise. The following example would produce upward-running text:

set label 1 ’Hello’ 1.2, 2.5 rotate 90

5.23.20 linestyle

set linestyle <style number> <style specifier> ...

At times, the string of style keywords following the ‘with’ modifier in
plot commands can grow rather unwieldily long. For clarity, frequently used
plot styles can be stored as linestyles; this is true of styles involving points
as well as lines. The syntax for setting a linestyle is:



5.23. SET 81

set linestyle 2 points pointtype 3

where the ‘2’ is the identification number of the linestyle. In a subsequent
plot statement, this linestyle can be recalled as follows:

plot sin(x) with linestyle 2
5.23.21 linewidth
set linewidth <value>

Sets the default linewidth, in units of pt, of the lines used to plot datasets
onto graphs with the ‘lines’ plot style (see the plot command for details
of plot styles), for example in the following statement:

plot sin(x) with lines

The linewidths of individual datasets can be set as follows; the set
linewidth setting only affects plot statements where no linewidth is man-
ually specified:

plot sin(x) with lines linewidth 5.0
5.23.22 logscale
set logscale [<axis> ... ] <base>

The ‘logscale’ setting causes an axis to be laid out with logarithmically,
rather than linearly, spaced intervals. For example, issuing the command:

set log

would cause all of the axes of a plot to be scaled logarithmically. Alterna-
tively only one, or a selection of axes, can be set to scale logarithmically as
follows:

set log x1 y2

This would cause the first z- and second y-axes to be scaled logarithmi-
cally. Linear scaling can be restored to all axes via:

set nolog
or:

unset log



82 CHAPTER 5. COMMAND REFERENCE

and to only one, or a selection of axes, via:
set nolog x1 y2

or:

unset log x1y2

Optionally, a base may be specified at the end of the set logscale
command, to produce axes labelled in logarithms to arbitrary bases.

5.23.23 multiplot
set multiplot
Issuing the command:
set multiplot
causes PyXPlot to enter multiplot mode, which allows many graphs to be

plotted together and displayed side-by-side. See Section 3.5 for a full dis-
cussion of multiplot mode.

5.23.24 mxtics

See set xtics.

5.23.25 mytics

See set xtics.

5.23.26 noarrow

set noarrow [<arrow number>]
Issuing the command:
set noarrow

removes all arrows, as set using the set arrow command, from the current
plot. Alternatively, individual arrows can be removed using the syntax:

set noarrow 2

where the tag ‘2’ here is the identification number given to the arrow to be
removed when it was initially set using the set arrow command.



5.23. SET 83

5.23.27 noaxis

set noaxis <axis specification>,

The set noaxis command is equivalent to the unset axis command.
It should be followed by a comma-separated lists of axes, which are to be
removed from the current axis configuration.

5.23.28 nobackup

See backup.

5.23.29 nodisplay
See display.

5.23.30 nogrid
set norgrid [<axis> ... ]

Issuing the command set nogrid removes gridlines from the current
plot. On its own, the command removes all gridlines from the plot, but
alternatively, those gridlines connected to the ticks of certain axes can se-
lectively be removed. The syntax for doing this is as follows:

set nogrid x1 y2

5.23.31 nokey

set nokey

Issuing the command set nokey causes plots to be generated with no
legend. See the command set key for more details.

5.23.32 nolabel

set nolabel [<label number> ... ]
Issuing the command:
set nolabel

removes all text labels, as set using the set label command, from the cur-
rent plot. Alternatively, individual labels can be removed using the syntax:

set nolabel 2

where the tag ‘2’ here is the identification number given to the label to be
removed when it was initially set using the set label command.



84 CHAPTER 5. COMMAND REFERENCE

5.23.33 nolinestyle

set nolinestyle <style number>

The nolinestyle setting deletes a line style. For example, the com-
mand:

set nolinestyle 3

would delete the third linestyle, if defined. See the command set linestyle
for more details.

5.23.34 nologscale

set nologscale [<axis> ... ]

The logscale setting causes an axis to be laid out with logarithmically,
rather than linearly, spaced intervals. Conversely, the nologscale setting
is used to restore linear scaling. For example, issuing the command:

set nolog

would cause all of the axes of a plot to be scaled linearly. Alternatively only
one, or a selection of axes, can be set to scale linearly as follows:

set nologscale x1 y2

This would cause the first z- and second y-axes to be scaled linearly.

5.23.35 nomultiplot

set nomultiplot

Issuing the command set nomultiplot places PyXPlot into single plot-
ting mode. See above for a detailed discussion of PyXPlot’s multiplot and
single plot modes. Broadly speaking, single plot mode is used to produce
single graphs on their own; multiplot mode is used to produce galleries of
many plots side-by-side.

5.23.36 notitle

set notitle

Issuing the command set notitle will cause graphs to be produced
with no title at the top.



5.23. SET 85

5.23.37 noxtics

set no<axis sepcification>tics

This command causes graphs to be produced with no tick marks along
their z-axes.

5.23.38 noytics

See set noxtics.

5.23.39 origin
set origin <x>, <y>

The ‘origin’ setting controls the default location of graphs on a multi-
plot. For example, the command:

set origin 3,5

would cause the next graph to be plotted at position (3, 5) centimetres on the
multiplot page. The set origin command is of little use outside multiplot
mode.

5.23.40 output

set output ’<filename>’

The output setting controls the name of the file that is produced for non-
interactive terminals (postscript, eps, jpeg, gif and png). For example:

set output ’myplot.eps’

causes the output to be written to the file ‘myplot.eps’.

5.23.41 palette

set palette <colour>, [<colour> ... ]

PyXPlot has a palette of colours which it assigns sequentially to datasets
when colours are not manually assigned. This is also the palette to which is
referred if the user issues a command such as:

plot sin(x) with colour 5

requesting the fifth colour from the palette. By default, this palette contains
a range of distinctive colours, however the user can choose to substitute his
own list of colours for these using the set palette command. It should be
followed by a comma-separated list of colour names, for example:



86 CHAPTER 5. COMMAND REFERENCE

set palette red,green,blue

If, after issuing this command, the following plot statement were to be
executed:

plot sin(x), cos(x), tan(x), exp(x)

the first function would be plotted in red, the second in green, and the third
in blue. Upon reaching the fourth, the palette would cycle back to red.
Any of the recognised colour names listed in Section 4.6 can be used.

5.23.42 papersize
set papersize (sizel|<x>, <y>)

The papersize option sets the size of output produced by the postscript
terminal. This can take the form of either a recognised papersize name — a
list of these is given below — or a height, width pair of values, both measured
in millimetres. For example:

set papersize a4
set papersize letter
set papersize 200,100

A list of recognised papersizes can be found in Figure 3.1.

5.23.43 pointlinewidth

set pointlinewidth <value>

The ‘pointlinewidth’ setting changes the width of the lines that are
used to plot datapoints. For instance:

set pointlinewidth 20

would cause points to be plotted with lines 20 times the default thickness.
Note that ‘pointlinewidth’ can be abbreviated as ‘plw’.

5.23.44 pointsize

set pointsize <value>

The ‘pointsize’ setting changes the size at which points are plotted
relative to their default size. It should be followed by a single value, the
relative size, which can be any positive number. For example:

set pointsize 1.5

would cause points to be plotted 1.5 times the default size.



5.23. SET 87

5.23.45 preamble

The premble setting changes the preamble that is prepended to each item
of text rendered using IXTEX. This allows, for example, different packages
to be loaded by default and user-defined macros to be set up.

5.23.46 samples

The samples setting determines the number of values along the z-axis at
which functions are evaluated when they are plotted. For example:

set samples 100

causes 100 points to be evaluated. Increasing this value will cause func-
tions to be plotted more smoothly, but also more slowly, and the resulting
postscript files generated will be correspondingly larger.

When functions are plotted with the points plot style, this also affects
the number of points plotted.
5.23.47 size

set size (<width>|ratio <ratio>|noratiolsquare)

The setting size is deprecated; use set width instead. It sets the width
of the plot in centimetres. However, the command set size, when followed
by the keyword ratio, is still used to set the aspect ratio of plots. See the
‘ratio’ setting below for details.

noratio

set size noratio
Running:

set size noratio

resets PyXPlot to produce plots with its default aspect ratio, which is the
golden section. Other aspect ratios can be set with the set size ratio
command.

ratio
set size ratio <ratio>

The command:

set size ratio x



88 CHAPTER 5. COMMAND REFERENCE

sets the aspect ratio of plots produced by PyXPlot. The height of resulting
plots will equal the plot width, as set by the set width command, muliplied
by this aspect ratio. The value x in the above statement can be substituted
with any positive value, for example:

set size ratio 2.0
would cause PyXPlot to produce plots that are twice as high as they are
wide.

The default aspect ratio which PyXPlot uses is a golden ratio of 2/(1 +
v/5), which matches that of a sheet of A4 paper.

square

set size square
The command:
set size square

sets PyXPlot to produce square plots, i.e. with unit aspect ratio. Other
aspect ratios can be set with the set size ratio command.

5.23.48 style

set style { data | function } <style modifier> ...

The set style data command affects the default style that data from
a file is plotted with. Likewise the set style function command changes
the default style that functions are plotted with. Any valid style modifier
can be used. For example:

set style data points
set style function lines linestyle 1

would cause datafiles to be plotted by default using points and functions
using lines with the first defined linestyle.

5.23.49 terminal

set terminal <terminal type> [<option> ... ]

Syntax:



5.23. SET 89

set terminal { X11_singlewindow | X11_multiwindow | X11_persist |
postscript | eps | pdf | gif | png | jpg }

colour | color | monochrome }

portrait | landscape }

invert | noinvert }

transparent | solid }

enlarge | noenlarge }

B NS WSS

The set terminal command controls the graphic format in which PyX-
Plot should output plots, for example setting whether it should output plots
to files or display them in a window on the screen. Various options can also
be set within many of the graphic formats which PyXPlot supports using
this command.

The following graphic formats are supported: X11_singlewindow,

X11 multiwindow, X11 persist, postscript, eps, pdf, gif, jpeg, png. To
select one of these formats, simply type the name of the desired format
after the set terminal command. To obtain more details on each, see the
subtopics below.

The following settings, which can also be typed following the set terminal
command, are used to change the options within some of these graphic for-
mats: colour, monochrome, enhanced, noenhanced, portrait, landscape,
invert, noinvert, transparent, solid, enlarge, noenlarge. Details of
each of these can be found below.

colour

The colour terminal option causes plots to be produced in colour.

color

The color terminal option is provided for the convenience of users unable
to spell colour.

enlarge

The enlarge terminal option causes the complete plot to be enlarged or
shrunk to fit the current paper size.

eps

set terminal eps [<option> ... ]

Sends output to eps files. The filename to which output is to be sent
should be set using the set output command; the default is ‘pyxplot.eps’.
This terminal produces encapsulated postscript suitable for including in, for
example, M TEXdocuments.



90 CHAPTER 5. COMMAND REFERENCE

gif

set terminal gif [<option> ... ]

The gif terminal renders output as gif files. The filename to which
output is to be sent should be set using the set output command; the
default is pyxplot.gif. The number of dots per inch used can be changed
using the dpi option; the filename using set output. Transparent gifs can
be produced with the transparent option. Also of relevance is the invert
option for producing gifs with inverted colours.

invert

The invert terminal option causes the bitmap terminals (gif, jpeg, png)
to produce output with inverted colours. Useful for producing plots for
slideshows, where bright colours on a dark background may be desired.

jpeg

set terminal jpeg [<option> ... ]

The jpeg terminal renders output as jpeg files. The filename to which
output is to be sent should be set using the set output command; the
default is pyxplot. jpg. The number of dots per inch used can be changed
using the dpi option. Of relevance is the invert option for producing jpegs
with inverted colours.

landscape

The landscape terminal option causes PyXPlot’s output to be displayed in
rotated orientation. Useful for printing as you get more on your sheet of
paper that way around; probably less useful for plotting things on screen.

monochrome

The monochrome terminal option causes plots to be rendered in black and
white; by default, different dash styles are used to differentiate between lines
on plots with several datasets.

noenlarge

The noenlarge terminal option causes the output not to be scaled (the
opposite of enlarge above).



5.23. SET 91

noinvert

The noinvert terminal option causes the bitmap terminals (gif, jpeg,
png) to produce normal output without inverted colours. The converse of
inverse.

pdf

set terminal pdf [<option> ... ]

The pdf terminal options causes pdf format output files to be produced.

png
set terminal png [<option> ... ]

The png terminal renders output as png files. The filename to which
output is to be sent should be set using the set output command; the
default is pyxplot.png. The number of dots per inch used can be changed
using the dpi option; the filename using set output. Transparent pngs can

be produced with the transparent option. Also of relevance is the invert
option for producing pngs with inverted colours.

portrait
The portrait terminal option causes PyXPlot’s output to be displayed in
upright (normal) orientation.

postscript

set terminal postscript [<option> ... ]

Sends output to postscript files. The filename to which output is to be
sent should be set using the set output command; the default is pyxplot.ps.
This terminal produces non-encapsulated postscript suitable for sending di-
rectly to a printer.

solid

The solid option causes the gif and png terminals to produce output with
a non-transparent background. The converse of transparent.
transparent

The transparent terminal option causes the gif and png terminals to pro-
duce output with a transparent background.



92 CHAPTER 5. COMMAND REFERENCE

X11_multiwindow

Displays plots on the screen (in X11 windows, using ghostview). Each time
a new plot is generated it appears in a new window, and the old plots
remain visible. As many plots as may be desired can be left on the desktop
simultaneously.

X11_persist

Displays plots on the screen in X11 windows, using ghostview. Each time a
new plot is generated it appears in a new window, and the old plots remain
visible. When PyXPlot is exited the windows remain in place until they are
closed manually.

X11_singlewindow

Displays plots on the screen (in X11 windows, using ghostview). Each time
a new plot is generated it replaces the old one, preventing the desktop from
becoming flooded with old plots. This terminal is the default when running
interactively.

5.23.50 textcolour

set textcolour <colour>

The ‘textcolour’ setting changes the colour of all text displayed on a
plot. For example:

set textcolour red

causes all text labels, including the labels on graph axes and legends, etc. to
be rendered in red. Any of the recognised colour names listed in Section 4.6
can be used.

5.23.51 texthalign

set texthalign ( left | centre | right )

The ‘texthalign’ setting controls how text labels, placed on plots using
the set label command, and upon multiplots using the text command,
are justified horizontally with respect to their specified positions. Three
options are available:

set texthalign left
set texthalign centre
set texthalign right



5.23. SET 93

5.23.52 textvalign

set textvalign ( bottom | center | top )

The ‘textvalign’ setting controls how text labels, placed on plots using
the set label command, and upon multiplots using the text command, are
justified vertically with respect to their specified positions. Three options
are available:

set textvalign bottom
set textvalign centre
set textvalign top

5.23.53 title
set title ’<title>’

The ‘title’ setting can be used to set a title for a plot, to be displayed
above it. For example, the command:

set title ’foo’

would cause a title ‘foo’ to be displayed above a graph. The easiest way to
remove a title, having set one, is via:

set title 7’
5.23.54 width
set width <value>
The width setting controls the size of a graph. For example:
set width 10
sets output to be 10 centimetres in width. For the bitmap terminals (gif,

jpg and png) this setting, in conjunction with the dpi setting, controls the
number of pixels across the final image.

5.23.55 xlabel
set xlabel ’<text>’

The x1abel setting controls the label placed on its z-axis (abscissa). For
example:

set xlabel ’$x$°



94 CHAPTER 5. COMMAND REFERENCE

sets the label on the z-axis to ‘z’. Labels can be placed on higher axes by
inserting their number after the ‘x’, for example:

set x10label ’foo’

would label the tenth x axis.
Similarly, labels can be placed on y-axes as follows:

set ylabel ’$y$’
set y2label ’foo’

5.23.56 xrange

set x[<axisnumber>]range ’<text>’

The xrange setting controls the range of values along the x-axes of plots.
For function plots, this is also the domain across which the function will be
evaluated. For example:

set xrange [0:10]

sets the first x axis to be between 0 and 10. Higher numbered axes may
be referred to be inserting their number after the x; y-axes similarly be
replacing the x with a y. Hence:

set y23range [-5:5]

sets the range of the 23rd y-axis to be between -5 and 5. The following
command:

set xrange [:10]

would set the z-axis to have an upper limit of 10, but an automatically-
scaling lower-limit.

5.23.57 xticdir

set (xl|y) [Kaxisnumber>]ticdir (inward|outward|both)

The ‘xticdir’ setting can be used to set whether the ticks along the z-
axis of a plot point inwards, towards the graph, as by default, or outwards,
towards the numeric labels along the axis. They can also be set to point in
both directions simultaneously. The syntax for this is as follows:

set xticdir inward
set xticdir outward
set xticdir both



5.23.

SET 95

The same setting can also be made on higher numbered axes, by inserting
their numbers after the ‘x’, for example:

set x10ticdir outward

Similarly, the ‘x’ can be substituted with a ‘y’ to set the directions of
ticks on vertical axes:

set yticdir inward
set ylOticdir both

5.23.58 xtics

set [m]x[<axisnumber>]tics

[axis|border|inward|outward|both]

[auto

| [<minimum>,] <increment[, <maximum>]
| ( ’<label>’ <position> ... )

]

The xtics option specifies the positions of tick marks on the z-axis

(similarly, ytics acts on the y-axis). One can specify:

The axis to modify; if none is specified, then the command acts upon
all axes.

mxtics to alter the placement of minor tic marks.

The keywords inward, outward and both, which alter the directions
of the tics. axis is an alias for inward, border for outward.

The autofreq keyword restores automatic placement of the tics

If minimum, increment, maximum are specified, then ticks are placed
at evenly spaced intervals between the specified limits. In the case of
logarithmic axes, increment is applied multiplicatively.

The final form allows ticks to be placed on an axis manually with
individual labels.

Two examples:

set xtics 2 1 5

will set tick marks on the z-axis at positions 2, 3, 4 and 5.

set x2tics ("a" 2, "b" 3)

will set tick marks on the second x-axis at positions 2 and 3 reading ‘a’ and
‘b’ respectively.



96 CHAPTER 5. COMMAND REFERENCE

5.23.59 ylabel

See xlabel.

5.23.60 yrange

See xrange.

5.23.61 yticdir

See xticdir.

5.23.62 ytics

See xtics.

5.24 show

show ( all | settings | axes | variables | functions |
<parameter> ... )

The show command displays the values of PyXPlot’s internal parameters.
For example:

show pointsize

will display the current default point size.

Details of the various settings that can be shown can be found under the
set command; any keyword which can follow the set command can also
follow the show command.

In addition, show all shows the configuration state of all aspects of
PyXPlot. The command show settings shows all of PyXPlot’s settings,
as distinct from variables, functions and axes. show axes shows the config-
uration of all of PyXPlot’s axes. show variables lists all of the currently
defined variables. And finally, show functions lists all of the current user-
defined functions.

5.25 spline

spline [<range specification>] <function name> ’<filename>’
[index <index specification>] [every <every specification>]
[using <using specification>]

The spline command fits a spline to a datafile. A special function is
created that represents the spline fit and can be used in the same way as
any other user-defined function. For example:



5.26. TEXT 97

spline f() ’data.1’

would create a function f(x) that is a fit to the data in the file data.1. By
default, the spline command uses the first two columns of a data file in
a manner analogous to the plot command. The index, every and using
modifiers can be used in the same way as in the plot command to select
which parts of the datafile should be used; see the datafile section for more
details.

Note that trying to generate splines of multi-valued functions will not,
in general, produce useful results.

5.26 text

text ’<text string>’ [at <x>, <y>] [rotate <angle>]

The text command is primarily part of the multiplot environment; it
can be used to add blocks of text to a multiplot. It can, however, also be
used in single plot mode, in a way that is described below. As always in
PyXPlot, the text is rendered using IXTEX. An example would be:

text ’Hello world’ at 0,2

which would render the text ‘Hello world” at position (0,2), measured in
centimetres. The alignment of the text item with respect to this position
can be set using the set texthalign and set textvalign commands.

A rotation angle may optionally be specified after the keyword ‘rotate’
to produce text rotated to any arbitrary angle, measured in degrees counter-
clockwise. The following example would produce upward-running text:

text ’Hello’ at 1.5, 3.6 rotate 90

Outside of multiplot mode, the text command can be used to produce
images consisting simply of one single text item. This can be useful for
importing IATEXed equations as gif images into slideshow programs such as
Microsoft Powerpoint which are incapable of producing such neat mathe-
matical notation by themselves.

5.27 undelete

undelete <item number>,

The undelete command is part of the multiplot environment; it can
be used to reverse the effect of deleting a multiplot item with the delete
command. The desired item to be undeleted should be identified using the
reference number which it was given when it was created; it would have been
displayed on the terminal at that time. For example:



98 CHAPTER 5. COMMAND REFERENCE

undelete 1

will cause the previously item numbered 1 to reappear.

5.28 unset
unset <setting>

The unset command causes a setting that has been changed using the
set command to be returned to its default value. For example:

unset linewidth

returns the linewidth to its default value.
The list of keywords which can follow the unset command are essentially
the same as those which can follow the set command.



Chapter 6

The fit Command:
Mathematical Details

In this section, the mathematical details of the workings of the £it command
are described. This may be of interest in diagnosing its limitations, and
also in understanding the various quantities that it outputs after a fit is
found. This discussion must necessarily be a rather brief treatment of a
large subject; for a fuller account, the reader is referred to D.S. Sivia’s Data
Analysis: A Bayesian Tutorial.

6.1 Notation

I shall assume that we have some function f(), which takes ny parameters,
x0..-Tn,—1, the set of which may collectively be written as the vector x. We
are supplied a datafile, containing a number nq of datapoints, each consisting
of a set of values for each of the ny parameters, and one for the value which
we are seeking to make f(x) match. I shall call of parameter values for the
1th datapoint x;, and the corresponding value which we are trying to match
fi- The datafile may contain error estimates for the values f;, which I shall
denote o;. If these are not supplied, then I shall consider these quantities
to be unknown, and equal to some constant ogaa.

Finally, I assume that there are n, coefficients within the function f()
that we are able to vary, corresponding to those variable names listed af-
ter the via statement in the fit command. I shall call these coefficients
ug...Un, —1, and refer to them collectively as u.

I model the values f; in the supplied datafile as being noisy Gaussian-
distributed observations of the true function f(), and within this framework,
seek to find that vector of values u which is most probable, given these
observations. The probability of any given u is written P (u|{x;, fi,0:}).

99



100 CHAPTER 6. THE FIT COMMAND: MATHEMATICAL DETAILS

6.2 The Probability Density Function

Bayes’ Theorem states that:

P (/) [ 0.0} P (4] {1, 0:])
B ((/]] (00)) (6.1)

Since we are only seeking to maximise the quantity on the left, and the
denominator, termed the Bayesian evidence, is independent of u, we can
neglect it and replace the equality sign with a proportionality sign. Further-
more, if we assume a uniform prior, that is, we assume that we have no prior
knowledge to bias us towards certain more favoured values of u, then P (u)
is also a constant which can be neglected. We conclude that maximising
P (u|{xi, fi,oi}) is equivalent to maximising P ({ f;} |u, {x;, 0:}).

P (u|{x;, fi,0i}) =

Since we are assuming f; to be Gaussian-distributed observations of the
true function f(), this latter probability can be written as a product of nq
Gaussian distributions:

ng—1 1 <_ [fz _ fu(xz)]2>
p ({fl} |ua {Xi’ O-Z}) = €X (62)
H) oV 2T P 201‘2

The product in this equation can be converted into a more computa-
tionally workable sum by taking the logarithm of both sides. Since loga-
rithms are monotonically increasing functions, maximising a probability is
equivalent to maximising its logarithm. We may write the logarithm L of

P (u] {x;, fi,0i}) as:

ng—1

202
i=0 i

where k is some constant which does not affect the maximisation process.
It is this quantity, the familiar sum-of-square-residuals, that we numerically
maximise to find our best-fitting set of parameters, which I shall refer to

from here on as u.

6.3 Estimating the Error in u’

To estimate the error in the best-fitting parameter values that we find, we
assume P (u| {x;, fi,0;}) to be approximated by an n,-dimensional Gaussian
distribution around u®. Taking a Taylor expansion of L(u) about u’, we
can write:



6.3. ESTIMATING THE ERROR IN U° 101

el oL
Lu) = L)+ > (u—uf) o
i=0 '

+ (6.4)

uo

Zero at u® by definition

et (=) (w —wf) o
2 auzﬁu]

+(9(u—u0)3

i=0 j=0 uod

Since the logarithm of a Gaussian distribution is a parabola, the quadratic
terms in the above expansion encode the Gaussian component of the prob-
ability distribution P (u| {x;, f;,0;}) about u’.! We may write the sum of
these terms, which we denote (), in matrix form:

Q= % (u—uO)TA(u—uO) (6.5)

where the superscript T represents the transpose of the vector displacement
from u’, and A is the Hessian matrix of L, given by:

0*L
8ulau] uo

Aij = VVL = (6.6)

This is the Hessian matrix which is output by the £it command. In gen-
eral, an ny-dimensional Gaussian distribution such as that given by equa-
tion (6.4) yields elliptical contours of equiprobability in parameter space,
whose principal axes need not be aligned with our chosen coordinate axes
— the variables ug...u,,—1. The eigenvectors e; of A are the principal axes
of these ellipses, and the corresponding eigenvalues A; equal 1 /%‘27 where
o; is the standard deviation of the probability density function along the
direction of these axes.

This can be visualised by imagining that we diagonalise A, and expand
equation (6.5) in our diagonal basis. The resulting expression for L is a
sum of square terms; the cross terms vanish in this basis by definition. The
equations of the equiprobability contours become the equations of ellipses:

Q = — Z Aii (uz — u?)Q =k (6.7)

where k is some constant. By comparison with the equation for the loga-
rithm of a Gaussian distribution, we can associate A;; with —1 /ai2 in our
eigenvector basis.

IThe use of this is called Gauss’ Method. Higher order terms in the expansion repre-
sent any non-Gaussianity in the probability distribution, which we neglect. See MacKay,
D.J.C., Information Theory, Inference and Learning Algorithms, CUP (2003).



102 CHAPTER 6. THE FIT COMMAND: MATHEMATICAL DETAILS

The problem of evaluating the standard deviations of our variables u; is
more complicated, however, as we are attempting to evaluate the width of
these elliptical equiprobability contours in directions which are, in general,
not aligned with their principal axes. To achieve this, we first convert our
Hessian matrix into a covariance matrix.

6.4 The Covariance Matrix

The terms of the covariance matrix V;; are defined by:

Vig = {(wi =) (w; =) (6.8)

Its leading diagonal terms may be recognised as equalling the variances of
each of our n, variables; its cross terms measure the correlation between the
variables. If a component V;; > 0, it implies that higher estimates of the
coefficient u; make higher estimates of u; more favourable also; if V;; < 0,
the converse is true.

It is a standard statistical result that V = (—A)~!. In the remainder of
this section we prove this; readers who are willing to accept this may skip
onto Section 6.5.

Using Awu; to denote (ul — u?), we may proceed by rewriting equa-
tion (6.8) as:

Vz‘j = / <o / AuiAujP (u[ {Xi, fi, Uz}) d™u (6.9)

f ... fuo;’:7oo AuiAuj exp(—Q) d™u
f o fifioi—oo eXp(—Q) dnuu

The normalisation factor in the denominator of this expression, which
we denote as Z, the partition function, may be evaluated by n,-dimensional
Gaussian integration, and is a standard result:

Z = // exp (%AuTAAu> d™u (6.10)

(2m)"/2
Det(—A)

Differentiating log,.(Z) with respect of any given component of the Hes-
sian matrix A;; yields:

-2

aAij [loge(Z)] = %/ t /izoo AUZAUJ eXP(_Q) dnull (611)



6.5. THE CORRELATION MATRIX 103

which we may identify as equalling V;;:

Vij = =2

o1 los.(2) (6.12)

= -2

2 o7 )

0
= 2—— [log.(Det(—A
g1 lom.(Det(~A))
This expression may be simplified by recalling that the determinant of a

matrix is equal to the scalar product of any of its rows with its cofactors,
yielding the result:

aAij [Det(—A)] = —al-j (613)

where a;; is the cofactor of A;;. Substituting this into equation (6.12) yields:
Det(—A)

Recalling that the adjoint AT of the Hessian matrix is the matrix of
cofactors of its transpose, and that A is symmetric, we may write:

Vij = (6.14)

— At
Vij = =———
Det(—A)
which proves the result stated earlier.

=(—A)"! (6.15)

6.5 The Correlation Matrix

Having evaluated the covariance matrix, we may straightforwardly find the
standard deviations in each of our variables, by taking the square roots of
the terms along its leading diagonal. For datafiles where the user does not
specify the standard deviations o; in each value f;, the task is not quite
complete, as the Hessian matrix depends critically upon these uncertainties,
even if they are assumed the same for all of our f;. This point is returned
to in Section 6.6.
The correlation matrix C, whose terms are given by:

‘/i .

O'Z'O'j

Cl'j =

(6.16)

may be considered a more user-friendly version of the covariance matrix for
inspecting the correlation between parameters. The leading diagonal terms
are all clearly equal unity by construction. The cross terms lie in the range
—1 < (5 <1, the upper limit of this range representing perfect correlation
between parameters, and the lower limit perfect anti-correlation.



104 CHAPTER 6. THE FIT COMMAND: MATHEMATICAL DETAILS

6.6 Finding o;

Throughout the preceding sections, the uncertainties in the supplied target
values f; have been denoted o; (see Section 6.1). The user has the option
of supplying these in the source datafile, in which case the provisions of the
previous sections are now complete; both best-estimate parameter values
and their uncertainties can be calculated. The user may also, however, leave
the uncertainties in f; unstated, in which case, as described in Section 6.1,
we assume all of the data values to have a common uncertainty ogata, which
is an unknown.

In this case, where 0; = 0qata V¢, the best fitting parameter values are
independent of o4,ta, but the same is not true of the uncertainties in these
values, as the terms of the Hessian matrix do depend upon cg,t,. We must
therefore undertake a further calculation to find the most probable value
of 0gdata, given the data. This is achieved by maximising P (0qata| {Xi, fi})-
Returning once again to Bayes’ Theorem, we can write:

p ({fl} |O-dataa {Xl}) P (Udata| {Xz})
P ({fi} [{xi})

As before, we neglect the denominator, which has no effect upon the
maximisation problem, and assume a uniform prior P (0gata| {x;}). This
reduces the problem to the maximisation of P ({f;} |0gata, {Xi}), which we
may write as a marginalised probability distribution over u:

P (0datal {xi, fi}) = (6.17)

oo
P({fi} o () = [ [ P owa b w x (618)

—00

P (u|ogata, {x:}) d™u

Assuming a uniform prior for u, we may neglect the latter term in the in-
tegral, but even with this assumption, the integral is not generally tractable,
as P ({fi} |odata, {x:} , {u;}) may well be multimodal in form. However, if
we neglect such possibilities, and assume this probability distribution to be

approximate a Gaussian globally, we can make use of the standard result for
an ny-dimensional Gaussian integral:

//Z exp (%UTAu> ™ = % (6.19)

We may thus approximate equation (6.18) as:

p ({fz} |Udataa {Xl}) ~ P ({fz} |Jdataa {Xz} ) uO) X (620)

)/2
P (u0|o-data’ {Xi’ fl}) %



6.6. FINDING o7 105

As in Section 6.2, it is numerically easier to maximise this quantity via
its logarithm, which we denote Lo, and can write as:

ng—1 12
L, = Y <_[fz Juo (x4))] _1oge(2m/a—data)>+ (6.21)

2
i=0 2Jdata

(2m)m/?
108 ( Det (—A))

This quantity is maximised numerically, a process simplified by the fact
that u® is independent of ogata.




106 CHAPTER 6. THE FIT COMMAND: MATHEMATICAL DETAILS



Chapter 7

ChangeLog

2007 Feb 26: PyXPlot 0.6.3

Summary:

Second PyXPlot beta-release. The most significant change is the introduc-
tion of a new command-line parser, with greatly improved handling of com-
plex expressions and much more meaningful syntax error messages. Multi-
platform compatibility has also been massively improved, and dependencies
loosened. A small number of new commands have been added; most no-
table among them are the jpeg and eps commands, which embed images in
multiplots.

Details — New and Extended Commands:

jpeg

eps

set xtics and set mxtics

text and set label commands extended to allow text rotation.

set log command extended to allow the use of logarithms with bases
other than 10.

set preamble
set term enlarge | noenlarge
set term pdf

set term xll_persist

107



108 CHAPTER 7. CHANGELOG

Details — Eased System Requirements:

e Requirement on Python 2.4 minimum eased to version 2.3 minimum.

e Requirements on scipy and readline eased; PyXPlot will now work
in reduced form when they are absent, though they are still strongly
recommended.

e dvips and ghostscript are no longer required.

Details — Removed Commands:

Due to a general refinement of PyXPlot’s API, some of the less sensible
pieces of syntax from Version 0.5 are no longer supported. The author
apologises for any inconvenience caused.

e The delete_arrow, delete_text, move_text, undelete_arrow and
undelete_text commands have been removed from the PyXPlot API.
The move, delete and undelete commands should now be used to act
upon all types of multiplot objects.

e The set terminal command no longer accepts the enhanced and
noenhanced modifiers. The postscript and eps terminals should
be used instead.

e The select modifier, used after the plot, replot fit and spline
command can now only be used once; to specify multiple select cri-
teria, use the and logical operator.

2006 Sep 09: PyXPlot 0.5.8

First beta-release.



Index

? command, 70 configuration file
colours, 61

alignment configuration files, 54
text, 41 correlation matrix, 103

arrow command, 44, 63 covariance matrix, 102

arrows, 39 csv files, 9

arrows plot style, 35

axes datafile format, 12
colour, 41 datafiles
removal, 27 globbing, 38
reserved labels, 29, 43 horizontal, 36
setting ranges, 16 Debian Linux, 3

axes modifier, 25 delete command, 42, 44, 64

diff_dx() function, 51
differentiation, 51

DISPLAY environment variable, 25
dots style, 34

backup files, 38

bar charts, 45

best fit lines, 17, 50
boxes plot style, 45
edit command, 64
encapsulated postscript, 24
enlarging output, 24

eps command, 45, 65
errorbars, 37

cd command, 64
Changel.og, 107

clear command, 42, 64
colour output, 24

colours escape characters, 8
axes, 41 . every modifier, 12
configuration file, 61 exit command. 5. 65
grid, 41 T
inverting, 24 fillcolour modifier, 47
setting for datasets, 33 fit command. 17. 66. 99
setting the palette, 33 fontsize, 40 T
shades of grey, 62 fsteps plot style, 45
text, 40 function splicing, 48

columns keyword, 36 functions

command line syntax, 5, 21 unsetting, 7

command scripts
comment lines, 6 General Public License, 4

comment lines, 6 gif output, 24

109



110

transparency, 24
globbing, 38
grid, 41

colour, 41

help command, 66
Hessian matrix, 101
hidden axes, 27
histeps plot style, 45
horizontal datafiles, 36

image resolution, 25
impulses plot style, 45
index modifier, 12
installation, 3

under Debian, 3
int_dx() function, 51
integration, 51
invisible keyword, 29

jpeg command, 44, 67
jpeg output, 24

landscape orientation, 24
linetype modifier, 15
linewidths

setting for datasets, 34
load command, 6, 67
lower-limit datapoints, 35

magic axis labels, 29, 43
monochrome output, 24
move command, 67
multiple windows, 23
multiplot, 42

nolabels keyword, 27
nolabelstics keyword, 29

overwriting files, 38

pdf output, 24

plot command, 6, 68

png output, 24
transparency, 24

pointtype modifier, 15

INDEX

portrait orientation, 24
postscript
encapsulated, 24
postscript output, 24
print command, 70
pwd command, 70
pyxplot_watch, 52

quit command, 5, 70
quote characters, 8

refresh command, 43, 71
removing axes, 27

replot command, 14, 43, 71
replotting, 43

reset command, 9, 72
resolution of bitmap output, 25
rows keyword, 36

save command, 6, 72

select keyword, 34

set arrow command, 39, 40, 73

set autoscale command, 16, 73

set axescolour command, 56, 74

set axescolour command, 41

set axis command, 25, 74

set backup command, 38, 56, 75

set bar command, 56, 75

set boxfrom command, 45, 56, 75

set boxwidth command, 46, 56,
76

set command, 53, 72

set data style command, 57, 76

set display command, 45, 57, 76

set dpi command, 25, 57, 77

set fontsize command, 40, 57,
7

set function style command, 57,
7

set grid command, 41, 57, 77

set gridmajcolour command, 41,
58, 78

set gridmincolour command, 41,
58, 78

set key command, 31



INDEX

set key command, 58, 79

set keycolumns command, 31, 79
set keycolumns command, 58
set label command, 40, 80

set linestyle command, 80
set linewidth command, 58, 81
set logscale command, 16, 81
set multiplot command, 58, 82
set mxtics command, 82

set mytics command, 82

set noarrow command, 39, 82
set noaxis command, 83

set nobackup command, 83

set nodisplay command, 83
set nogrid command, 83

set nokey command, 83

set nolabel command, 83

set nolinestyle command, 84
set nologscale command, 16, 84
set nomultiplot command, 84
set notitle command, 84

set noxtics command, 29, 85
set noytics command, 85

set origin command, 42, 59, 85
set output command, 13, 59, 85
set palette command, 33, 85
set papersize command, 26
set papersize command, 25, 59,

86

set pointlinewidthcommand, 59,

86

set pointsize command, 59, 86
set preamble command, 54, 87
set samples command, 15, 59, 87
set size command

noratio modifier, 87

ratio modifier, 87

square modifier, 88
set size command, 22, 60, 87
set size ratiocommand, 22, 56
set size square command, 22
set style command, 15, 88
set terminal command

color modifier, 89

111

colour modifier, 89
enlarge modifier, 89
eps modifier, 89
gif modifier, 90
invert modifier, 90
jpeg modifier, 90
landscape modifier, 90
monochrome modifier, 90
noenlarge modifier, 90
noinvert modifier, 91
pdf modifier, 91
png modifier, 91
portrait modifier, 91
postscript modifier, 91
solid modifier, 91
transparent modifier, 91
X11 multiwindow modifier, 92
X11_persist modifier, 92
X11_singlewindow modifier, 92
set terminal command, 13, 22,
23, 57-60, 88
set textcolour command, 40, 44,
60, 92
set texthaligncommand, 41, 44,
60, 92
set textvalign command, 41, 44,
60, 93
set title command, 60, 93
set width command, 22, 60, 93
set xlabel command, 93
set xrange command, 16, 27, 94
set xticdir command, 94
set xtics command, 29, 95
set ylabel command, 96
set yrange command, 96
set yticdir command, 96
set ytics command, 96
show command, 96
special characters, 8
splicing functions, 48
spline command, 50, 96
spreadsheets, importing data from,
9
steps plot style, 45



112

system requirements, 2

text
alignment, 41
colour, 40
size, 40
text command, 44, 97
title modifier, 31
transparent terminal, 24

undelete command, 42, 44, 97
unset command, 9, 98
unsetting variables, 7
upper-limit datapoints, 35
using columns modifier, 36
using rows modifier, 36

variables
unsetting, 7

watching scripts, 52
wboxes plot style, 46
wildcards, 38

with modifier, 14

X11 terminal, 23

INDEX



